blob: 4bdfee6f81eb4a86bce64b2cd3c01788092b15c0 [file] [log] [blame]
; RUN: llc -mtriple=i386-linux-gnu %s -o - | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK32
; RUN: llc -mtriple=x86_64-linux-gnu -mattr=+sahf %s -o - | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK64
; TODO: Reenable verify-machineinstrs once the if (!AXDead) // FIXME in
; X86InstrInfo::copyPhysReg() is resolved.
; The peephole optimizer can elide some physical register copies such as
; EFLAGS. Make sure the flags are used directly, instead of needlessly using
; lahf, when possible.
@L = external global i32
@M = external global i8
declare i32 @bar(i64)
; CHECK-LABEL: plus_one
; CHECK-NOT: seto
; CHECK-NOT: lahf
; CHECK-NOT: sahf
; CHECK-NOT: pushf
; CHECK-NOT: popf
; CHECK: incl L
define i1 @plus_one() {
entry:
%loaded_L = load i32, i32* @L
%val = add nsw i32 %loaded_L, 1 ; N.B. will emit inc.
store i32 %val, i32* @L
%loaded_M = load i8, i8* @M
%masked = and i8 %loaded_M, 8
%M_is_true = icmp ne i8 %masked, 0
%L_is_false = icmp eq i32 %val, 0
%cond = and i1 %L_is_false, %M_is_true
br i1 %cond, label %exit2, label %exit
exit:
ret i1 true
exit2:
ret i1 false
}
; CHECK-LABEL: plus_forty_two
; CHECK-NOT: seto
; CHECK-NOT: lahf
; CHECK-NOT: sahf
; CHECK-NOT: pushf
; CHECK-NOT: popf
; CHECK: addl $42,
define i1 @plus_forty_two() {
entry:
%loaded_L = load i32, i32* @L
%val = add nsw i32 %loaded_L, 42 ; N.B. won't emit inc.
store i32 %val, i32* @L
%loaded_M = load i8, i8* @M
%masked = and i8 %loaded_M, 8
%M_is_true = icmp ne i8 %masked, 0
%L_is_false = icmp eq i32 %val, 0
%cond = and i1 %L_is_false, %M_is_true
br i1 %cond, label %exit2, label %exit
exit:
ret i1 true
exit2:
ret i1 false
}
; CHECK-LABEL: minus_one
; CHECK-NOT: seto
; CHECK-NOT: lahf
; CHECK-NOT: sahf
; CHECK-NOT: pushf
; CHECK-NOT: popf
; CHECK: decl L
define i1 @minus_one() {
entry:
%loaded_L = load i32, i32* @L
%val = add nsw i32 %loaded_L, -1 ; N.B. will emit dec.
store i32 %val, i32* @L
%loaded_M = load i8, i8* @M
%masked = and i8 %loaded_M, 8
%M_is_true = icmp ne i8 %masked, 0
%L_is_false = icmp eq i32 %val, 0
%cond = and i1 %L_is_false, %M_is_true
br i1 %cond, label %exit2, label %exit
exit:
ret i1 true
exit2:
ret i1 false
}
; CHECK-LABEL: minus_forty_two
; CHECK-NOT: seto
; CHECK-NOT: lahf
; CHECK-NOT: sahf
; CHECK-NOT: pushf
; CHECK-NOT: popf
; CHECK: addl $-42,
define i1 @minus_forty_two() {
entry:
%loaded_L = load i32, i32* @L
%val = add nsw i32 %loaded_L, -42 ; N.B. won't emit dec.
store i32 %val, i32* @L
%loaded_M = load i8, i8* @M
%masked = and i8 %loaded_M, 8
%M_is_true = icmp ne i8 %masked, 0
%L_is_false = icmp eq i32 %val, 0
%cond = and i1 %L_is_false, %M_is_true
br i1 %cond, label %exit2, label %exit
exit:
ret i1 true
exit2:
ret i1 false
}
; CHECK-LABEL: test_intervening_call:
; CHECK: cmpxchg
; CHECK: seto %al
; CHECK-NEXT: lahf
; CHECK: call{{[lq]}} bar
; CHECK: addb $127, %al
; CHECK-NEXT: sahf
define i64 @test_intervening_call(i64* %foo, i64 %bar, i64 %baz) {
; cmpxchg sets EFLAGS, call clobbers it, then br uses EFLAGS.
%cx = cmpxchg i64* %foo, i64 %bar, i64 %baz seq_cst seq_cst
%v = extractvalue { i64, i1 } %cx, 0
%p = extractvalue { i64, i1 } %cx, 1
call i32 @bar(i64 %v)
br i1 %p, label %t, label %f
t:
ret i64 42
f:
ret i64 0
}
; CHECK-LABEL: test_two_live_flags:
; CHECK: cmpxchg
; CHECK: seto %al
; CHECK-NEXT: lahf
; Save result of the first cmpxchg into a temporary.
; For 32-bit ISA, EDX, EAX are used by the results.
; EAX, EBX, ECX, and EDX are used to set the arguments.
; That leaves us EDI and ESI.
; CHECK32-NEXT: movl %[[AX:eax]], %[[TMP:e[ds]i]]
; For 64-bit ISA, RAX is used for both the result and argument.
; This leaves us plenty of choices for the temporary. For now,
; this is rdx, but any register could do.
; CHECK64-NEXT: mov{{[lq]}} %[[AX:[er]ax]], %[[TMP:rdx]]
; CHECK: cmpxchg
; CHECK-NEXT: sete %al
; Save result of the second cmpxchg onto the stack.
; CHECK-NEXT: push{{[lq]}} %[[AX]]
; Restore result of the first cmpxchg from D, put it back in EFLAGS.
; CHECK-NEXT: mov{{[lq]}} %[[TMP]], %[[AX]]
; CHECK-NEXT: addb $127, %al
; CHECK-NEXT: sahf
; Restore result of the second cmpxchg from the stack.
; CHECK-NEXT: pop{{[lq]}} %[[AX]]
; Test from EFLAGS restored from first cmpxchg, jump if that fails.
; CHECK-NEXT: jne
; Fallthrough to test the second cmpxchg's result.
; CHECK: testb %al, %al
; CHECK-NEXT: je
define i64 @test_two_live_flags(
i64* %foo0, i64 %bar0, i64 %baz0,
i64* %foo1, i64 %bar1, i64 %baz1) {
%cx0 = cmpxchg i64* %foo0, i64 %bar0, i64 %baz0 seq_cst seq_cst
%p0 = extractvalue { i64, i1 } %cx0, 1
%cx1 = cmpxchg i64* %foo1, i64 %bar1, i64 %baz1 seq_cst seq_cst
%p1 = extractvalue { i64, i1 } %cx1, 1
%flag = and i1 %p0, %p1
br i1 %flag, label %t, label %f
t:
ret i64 42
f:
ret i64 0
}
; CHECK-LABEL: asm_clobbering_flags:
; CHECK: test
; CHECK-NEXT: setg
; CHECK-NEXT: #APP
; CHECK-NEXT: bsfl
; CHECK-NEXT: #NO_APP
; CHECK-NEXT: movl
; CHECK-NEXT: ret
define i1 @asm_clobbering_flags(i32* %mem) {
%val = load i32, i32* %mem, align 4
%cmp = icmp sgt i32 %val, 0
%res = tail call i32 asm "bsfl $1,$0", "=r,r,~{cc},~{dirflag},~{fpsr},~{flags}"(i32 %val)
store i32 %res, i32* %mem, align 4
ret i1 %cmp
}