blob: c319b32111feb5e2702c24def97d4000ed29df75 [file] [log] [blame]
//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This pass lowers the pseudo control flow instructions to real
/// machine instructions.
///
/// All control flow is handled using predicated instructions and
/// a predicate stack. Each Scalar ALU controls the operations of 64 Vector
/// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs
/// by writting to the 64-bit EXEC register (each bit corresponds to a
/// single vector ALU). Typically, for predicates, a vector ALU will write
/// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each
/// Vector ALU) and then the ScalarALU will AND the VCC register with the
/// EXEC to update the predicates.
///
/// For example:
/// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2
/// %SGPR0 = SI_IF %VCC
/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0
/// %SGPR0 = SI_ELSE %SGPR0
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0
/// SI_END_CF %SGPR0
///
/// becomes:
///
/// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC // Save and update the exec mask
/// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
/// S_CBRANCH_EXECZ label0 // This instruction is an optional
/// // optimization which allows us to
/// // branch if all the bits of
/// // EXEC are zero.
/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 // Do the IF block of the branch
///
/// label0:
/// %SGPR0 = S_OR_SAVEEXEC_B64 %EXEC // Restore the exec mask for the Then block
/// %EXEC = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask
/// S_BRANCH_EXECZ label1 // Use our branch optimization
/// // instruction again.
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR // Do the THEN block
/// label1:
/// %EXEC = S_OR_B64 %EXEC, %SGPR0 // Re-enable saved exec mask bits
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constants.h"
using namespace llvm;
namespace {
class SILowerControlFlowPass : public MachineFunctionPass {
private:
static const unsigned SkipThreshold = 12;
static char ID;
const SIRegisterInfo *TRI;
const SIInstrInfo *TII;
bool shouldSkip(MachineBasicBlock *From, MachineBasicBlock *To);
void Skip(MachineInstr &From, MachineOperand &To);
void SkipIfDead(MachineInstr &MI);
void If(MachineInstr &MI);
void Else(MachineInstr &MI);
void Break(MachineInstr &MI);
void IfBreak(MachineInstr &MI);
void ElseBreak(MachineInstr &MI);
void Loop(MachineInstr &MI);
void EndCf(MachineInstr &MI);
void Kill(MachineInstr &MI);
void Branch(MachineInstr &MI);
void LoadM0(MachineInstr &MI, MachineInstr *MovRel, int Offset = 0);
void computeIndirectRegAndOffset(unsigned VecReg, unsigned &Reg, int &Offset);
void IndirectSrc(MachineInstr &MI);
void IndirectDst(MachineInstr &MI);
public:
SILowerControlFlowPass(TargetMachine &tm) :
MachineFunctionPass(ID), TRI(nullptr), TII(nullptr) { }
bool runOnMachineFunction(MachineFunction &MF) override;
const char *getPassName() const override {
return "SI Lower control flow instructions";
}
};
} // End anonymous namespace
char SILowerControlFlowPass::ID = 0;
FunctionPass *llvm::createSILowerControlFlowPass(TargetMachine &tm) {
return new SILowerControlFlowPass(tm);
}
bool SILowerControlFlowPass::shouldSkip(MachineBasicBlock *From,
MachineBasicBlock *To) {
unsigned NumInstr = 0;
for (MachineBasicBlock *MBB = From; MBB != To && !MBB->succ_empty();
MBB = *MBB->succ_begin()) {
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
NumInstr < SkipThreshold && I != E; ++I) {
if (I->isBundle() || !I->isBundled())
if (++NumInstr >= SkipThreshold)
return true;
}
}
return false;
}
void SILowerControlFlowPass::Skip(MachineInstr &From, MachineOperand &To) {
if (!shouldSkip(*From.getParent()->succ_begin(), To.getMBB()))
return;
DebugLoc DL = From.getDebugLoc();
BuildMI(*From.getParent(), &From, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ))
.addOperand(To)
.addReg(AMDGPU::EXEC);
}
void SILowerControlFlowPass::SkipIfDead(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
if (MBB.getParent()->getInfo<SIMachineFunctionInfo>()->getShaderType() !=
ShaderType::PIXEL ||
!shouldSkip(&MBB, &MBB.getParent()->back()))
return;
MachineBasicBlock::iterator Insert = &MI;
++Insert;
// If the exec mask is non-zero, skip the next two instructions
BuildMI(MBB, Insert, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addImm(3)
.addReg(AMDGPU::EXEC);
// Exec mask is zero: Export to NULL target...
BuildMI(MBB, Insert, DL, TII->get(AMDGPU::EXP))
.addImm(0)
.addImm(0x09) // V_008DFC_SQ_EXP_NULL
.addImm(0)
.addImm(1)
.addImm(1)
.addReg(AMDGPU::VGPR0)
.addReg(AMDGPU::VGPR0)
.addReg(AMDGPU::VGPR0)
.addReg(AMDGPU::VGPR0);
// ... and terminate wavefront
BuildMI(MBB, Insert, DL, TII->get(AMDGPU::S_ENDPGM));
}
void SILowerControlFlowPass::If(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Reg = MI.getOperand(0).getReg();
unsigned Vcc = MI.getOperand(1).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), Reg)
.addReg(Vcc);
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), Reg)
.addReg(AMDGPU::EXEC)
.addReg(Reg);
Skip(MI, MI.getOperand(2));
MI.eraseFromParent();
}
void SILowerControlFlowPass::Else(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Src = MI.getOperand(1).getReg();
BuildMI(MBB, MBB.getFirstNonPHI(), DL,
TII->get(AMDGPU::S_OR_SAVEEXEC_B64), Dst)
.addReg(Src); // Saved EXEC
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Dst);
Skip(MI, MI.getOperand(2));
MI.eraseFromParent();
}
void SILowerControlFlowPass::Break(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Src = MI.getOperand(1).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(AMDGPU::EXEC)
.addReg(Src);
MI.eraseFromParent();
}
void SILowerControlFlowPass::IfBreak(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Vcc = MI.getOperand(1).getReg();
unsigned Src = MI.getOperand(2).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(Vcc)
.addReg(Src);
MI.eraseFromParent();
}
void SILowerControlFlowPass::ElseBreak(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Saved = MI.getOperand(1).getReg();
unsigned Src = MI.getOperand(2).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
.addReg(Saved)
.addReg(Src);
MI.eraseFromParent();
}
void SILowerControlFlowPass::Loop(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Src = MI.getOperand(0).getReg();
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ANDN2_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Src);
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addOperand(MI.getOperand(1))
.addReg(AMDGPU::EXEC);
MI.eraseFromParent();
}
void SILowerControlFlowPass::EndCf(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Reg = MI.getOperand(0).getReg();
BuildMI(MBB, MBB.getFirstNonPHI(), DL,
TII->get(AMDGPU::S_OR_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(Reg);
MI.eraseFromParent();
}
void SILowerControlFlowPass::Branch(MachineInstr &MI) {
if (MI.getOperand(0).getMBB() == MI.getParent()->getNextNode())
MI.eraseFromParent();
// If these aren't equal, this is probably an infinite loop.
}
void SILowerControlFlowPass::Kill(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
const MachineOperand &Op = MI.getOperand(0);
#ifndef NDEBUG
const SIMachineFunctionInfo *MFI
= MBB.getParent()->getInfo<SIMachineFunctionInfo>();
// Kill is only allowed in pixel / geometry shaders.
assert(MFI->getShaderType() == ShaderType::PIXEL ||
MFI->getShaderType() == ShaderType::GEOMETRY);
#endif
// Clear this thread from the exec mask if the operand is negative
if ((Op.isImm())) {
// Constant operand: Set exec mask to 0 or do nothing
if (Op.getImm() & 0x80000000) {
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
.addImm(0);
}
} else {
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMPX_LE_F32_e32), AMDGPU::VCC)
.addImm(0)
.addOperand(Op);
}
MI.eraseFromParent();
}
void SILowerControlFlowPass::LoadM0(MachineInstr &MI, MachineInstr *MovRel, int Offset) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock::iterator I = MI;
unsigned Save = MI.getOperand(1).getReg();
unsigned Idx = MI.getOperand(3).getReg();
if (AMDGPU::SReg_32RegClass.contains(Idx)) {
if (Offset) {
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
.addReg(Idx)
.addImm(Offset);
} else {
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addReg(Idx);
}
MBB.insert(I, MovRel);
} else {
assert(AMDGPU::SReg_64RegClass.contains(Save));
assert(AMDGPU::VGPR_32RegClass.contains(Idx));
// Save the EXEC mask
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), Save)
.addReg(AMDGPU::EXEC);
// Read the next variant into VCC (lower 32 bits) <- also loop target
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32),
AMDGPU::VCC_LO)
.addReg(Idx);
// Move index from VCC into M0
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addReg(AMDGPU::VCC_LO);
// Compare the just read M0 value to all possible Idx values
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e32), AMDGPU::VCC)
.addReg(AMDGPU::M0)
.addReg(Idx);
// Update EXEC, save the original EXEC value to VCC
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), AMDGPU::VCC)
.addReg(AMDGPU::VCC);
if (Offset) {
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
.addReg(AMDGPU::M0)
.addImm(Offset);
}
// Do the actual move
MBB.insert(I, MovRel);
// Update EXEC, switch all done bits to 0 and all todo bits to 1
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
.addReg(AMDGPU::EXEC)
.addReg(AMDGPU::VCC);
// Loop back to V_READFIRSTLANE_B32 if there are still variants to cover
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
.addImm(-7)
.addReg(AMDGPU::EXEC);
// Restore EXEC
BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
.addReg(Save);
}
MI.eraseFromParent();
}
/// \param @VecReg The register which holds element zero of the vector
/// being addressed into.
/// \param[out] @Reg The base register to use in the indirect addressing instruction.
/// \param[in,out] @Offset As an input, this is the constant offset part of the
// indirect Index. e.g. v0 = v[VecReg + Offset]
// As an output, this is a constant value that needs
// to be added to the value stored in M0.
void SILowerControlFlowPass::computeIndirectRegAndOffset(unsigned VecReg,
unsigned &Reg,
int &Offset) {
unsigned SubReg = TRI->getSubReg(VecReg, AMDGPU::sub0);
if (!SubReg)
SubReg = VecReg;
const TargetRegisterClass *RC = TRI->getPhysRegClass(SubReg);
int RegIdx = TRI->getHWRegIndex(SubReg) + Offset;
if (RegIdx < 0) {
Offset = RegIdx;
RegIdx = 0;
} else {
Offset = 0;
}
Reg = RC->getRegister(RegIdx);
}
void SILowerControlFlowPass::IndirectSrc(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
unsigned Vec = MI.getOperand(2).getReg();
int Off = MI.getOperand(4).getImm();
unsigned Reg;
computeIndirectRegAndOffset(Vec, Reg, Off);
MachineInstr *MovRel =
BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
.addReg(Reg)
.addReg(AMDGPU::M0, RegState::Implicit)
.addReg(Vec, RegState::Implicit);
LoadM0(MI, MovRel, Off);
}
void SILowerControlFlowPass::IndirectDst(MachineInstr &MI) {
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MI.getDebugLoc();
unsigned Dst = MI.getOperand(0).getReg();
int Off = MI.getOperand(4).getImm();
unsigned Val = MI.getOperand(5).getReg();
unsigned Reg;
computeIndirectRegAndOffset(Dst, Reg, Off);
MachineInstr *MovRel =
BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELD_B32_e32))
.addReg(Reg, RegState::Define)
.addReg(Val)
.addReg(AMDGPU::M0, RegState::Implicit)
.addReg(Dst, RegState::Implicit);
LoadM0(MI, MovRel, Off);
}
bool SILowerControlFlowPass::runOnMachineFunction(MachineFunction &MF) {
TII = static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
TRI =
static_cast<const SIRegisterInfo *>(MF.getSubtarget().getRegisterInfo());
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
bool HaveKill = false;
bool NeedWQM = false;
bool NeedFlat = false;
unsigned Depth = 0;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
MachineBasicBlock::iterator I, Next;
for (I = MBB.begin(); I != MBB.end(); I = Next) {
Next = std::next(I);
MachineInstr &MI = *I;
if (TII->isWQM(MI.getOpcode()) || TII->isDS(MI.getOpcode()))
NeedWQM = true;
// Flat uses m0 in case it needs to access LDS.
if (TII->isFLAT(MI.getOpcode()))
NeedFlat = true;
switch (MI.getOpcode()) {
default: break;
case AMDGPU::SI_IF:
++Depth;
If(MI);
break;
case AMDGPU::SI_ELSE:
Else(MI);
break;
case AMDGPU::SI_BREAK:
Break(MI);
break;
case AMDGPU::SI_IF_BREAK:
IfBreak(MI);
break;
case AMDGPU::SI_ELSE_BREAK:
ElseBreak(MI);
break;
case AMDGPU::SI_LOOP:
++Depth;
Loop(MI);
break;
case AMDGPU::SI_END_CF:
if (--Depth == 0 && HaveKill) {
SkipIfDead(MI);
HaveKill = false;
}
EndCf(MI);
break;
case AMDGPU::SI_KILL:
if (Depth == 0)
SkipIfDead(MI);
else
HaveKill = true;
Kill(MI);
break;
case AMDGPU::S_BRANCH:
Branch(MI);
break;
case AMDGPU::SI_INDIRECT_SRC:
IndirectSrc(MI);
break;
case AMDGPU::SI_INDIRECT_DST_V1:
case AMDGPU::SI_INDIRECT_DST_V2:
case AMDGPU::SI_INDIRECT_DST_V4:
case AMDGPU::SI_INDIRECT_DST_V8:
case AMDGPU::SI_INDIRECT_DST_V16:
IndirectDst(MI);
break;
}
}
}
if (NeedWQM && MFI->getShaderType() == ShaderType::PIXEL) {
MachineBasicBlock &MBB = MF.front();
BuildMI(MBB, MBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
AMDGPU::EXEC).addReg(AMDGPU::EXEC);
}
// FIXME: This seems inappropriate to do here.
if (NeedFlat && MFI->IsKernel) {
// Insert the prologue initializing the SGPRs pointing to the scratch space
// for flat accesses.
const MachineFrameInfo *FrameInfo = MF.getFrameInfo();
// TODO: What to use with function calls?
// FIXME: This is reporting stack size that is used in a scratch buffer
// rather than registers as well.
uint64_t StackSizeBytes = FrameInfo->getStackSize();
int IndirectBegin
= static_cast<const AMDGPUInstrInfo*>(TII)->getIndirectIndexBegin(MF);
// Convert register index to 256-byte unit.
uint64_t StackOffset = IndirectBegin < 0 ? 0 : (4 * IndirectBegin / 256);
assert((StackSizeBytes < 0xffff) && StackOffset < 0xffff &&
"Stack limits should be smaller than 16-bits");
// Initialize the flat scratch register pair.
// TODO: Can we use one s_mov_b64 here?
// Offset is in units of 256-bytes.
MachineBasicBlock &MBB = MF.front();
DebugLoc NoDL;
MachineBasicBlock::iterator Start = MBB.getFirstNonPHI();
const MCInstrDesc &SMovK = TII->get(AMDGPU::S_MOVK_I32);
assert(isInt<16>(StackOffset) && isInt<16>(StackSizeBytes));
BuildMI(MBB, Start, NoDL, SMovK, AMDGPU::FLAT_SCR_LO)
.addImm(StackOffset);
// Documentation says size is "per-thread scratch size in bytes"
BuildMI(MBB, Start, NoDL, SMovK, AMDGPU::FLAT_SCR_HI)
.addImm(StackSizeBytes);
}
return true;
}