blob: 1fae26e18a44c7fb6463a48a24828fd65d0cde08 [file] [log] [blame]
//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
/// code. When passed an MCAsmStreamer it prints assembly and when passed
/// an MCObjectStreamer it outputs binary code.
//
//===----------------------------------------------------------------------===//
//
#include "AMDGPUAsmPrinter.h"
#include "AMDGPU.h"
#include "AMDKernelCodeT.h"
#include "AMDGPUSubtarget.h"
#include "R600Defines.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
#include "SIDefines.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
using namespace llvm;
// TODO: This should get the default rounding mode from the kernel. We just set
// the default here, but this could change if the OpenCL rounding mode pragmas
// are used.
//
// The denormal mode here should match what is reported by the OpenCL runtime
// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
// can also be override to flush with the -cl-denorms-are-zero compiler flag.
//
// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
// precision, and leaves single precision to flush all and does not report
// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
// CL_FP_DENORM for both.
//
// FIXME: It seems some instructions do not support single precision denormals
// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
// and sin_f32, cos_f32 on most parts).
// We want to use these instructions, and using fp32 denormals also causes
// instructions to run at the double precision rate for the device so it's
// probably best to just report no single precision denormals.
static uint32_t getFPMode(const MachineFunction &F) {
const AMDGPUSubtarget& ST = F.getTarget().getSubtarget<AMDGPUSubtarget>();
// TODO: Is there any real use for the flush in only / flush out only modes?
uint32_t FP32Denormals =
ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
uint32_t FP64Denormals =
ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
FP_DENORM_MODE_SP(FP32Denormals) |
FP_DENORM_MODE_DP(FP64Denormals);
}
static AsmPrinter *createAMDGPUAsmPrinterPass(TargetMachine &tm,
MCStreamer &Streamer) {
return new AMDGPUAsmPrinter(tm, Streamer);
}
extern "C" void LLVMInitializeR600AsmPrinter() {
TargetRegistry::RegisterAsmPrinter(TheAMDGPUTarget, createAMDGPUAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(TheGCNTarget, createAMDGPUAsmPrinterPass);
}
AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
: AsmPrinter(TM, Streamer) {
DisasmEnabled = TM.getSubtarget<AMDGPUSubtarget>().dumpCode();
}
void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) {
// This label is used to mark the end of the .text section.
const TargetLoweringObjectFile &TLOF = getObjFileLowering();
OutStreamer.SwitchSection(TLOF.getTextSection());
MCSymbol *EndOfTextLabel =
OutContext.GetOrCreateSymbol(StringRef(END_OF_TEXT_LABEL_NAME));
OutStreamer.EmitLabel(EndOfTextLabel);
}
bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
// The starting address of all shader programs must be 256 bytes aligned.
MF.setAlignment(8);
SetupMachineFunction(MF);
EmitFunctionHeader();
MCContext &Context = getObjFileLowering().getContext();
const MCSectionELF *ConfigSection = Context.getELFSection(".AMDGPU.config",
ELF::SHT_PROGBITS, 0,
SectionKind::getReadOnly());
OutStreamer.SwitchSection(ConfigSection);
const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
SIProgramInfo KernelInfo;
if (STM.isAmdHsaOS()) {
getSIProgramInfo(KernelInfo, MF);
EmitAmdKernelCodeT(MF, KernelInfo);
OutStreamer.EmitCodeAlignment(2 << (MF.getAlignment() - 1));
} else if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
getSIProgramInfo(KernelInfo, MF);
EmitProgramInfoSI(MF, KernelInfo);
} else {
EmitProgramInfoR600(MF);
}
DisasmLines.clear();
HexLines.clear();
DisasmLineMaxLen = 0;
OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
EmitFunctionBody();
if (isVerbose()) {
const MCSectionELF *CommentSection
= Context.getELFSection(".AMDGPU.csdata",
ELF::SHT_PROGBITS, 0,
SectionKind::getReadOnly());
OutStreamer.SwitchSection(CommentSection);
if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
OutStreamer.emitRawComment(" Kernel info:", false);
OutStreamer.emitRawComment(" codeLenInByte = " + Twine(KernelInfo.CodeLen),
false);
OutStreamer.emitRawComment(" NumSgprs: " + Twine(KernelInfo.NumSGPR),
false);
OutStreamer.emitRawComment(" NumVgprs: " + Twine(KernelInfo.NumVGPR),
false);
OutStreamer.emitRawComment(" FloatMode: " + Twine(KernelInfo.FloatMode),
false);
OutStreamer.emitRawComment(" IeeeMode: " + Twine(KernelInfo.IEEEMode),
false);
OutStreamer.emitRawComment(" ScratchSize: " + Twine(KernelInfo.ScratchSize),
false);
} else {
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
OutStreamer.emitRawComment(
Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->StackSize)));
}
}
if (STM.dumpCode() && DisasmEnabled) {
OutStreamer.SwitchSection(Context.getELFSection(".AMDGPU.disasm",
ELF::SHT_NOTE, 0,
SectionKind::getReadOnly()));
for (size_t i = 0; i < DisasmLines.size(); ++i) {
std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
Comment += " ; " + HexLines[i] + "\n";
OutStreamer.EmitBytes(StringRef(DisasmLines[i]));
OutStreamer.EmitBytes(StringRef(Comment));
}
}
return false;
}
void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
unsigned MaxGPR = 0;
bool killPixel = false;
const R600RegisterInfo *RI = static_cast<const R600RegisterInfo *>(
TM.getSubtargetImpl()->getRegisterInfo());
const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
if (MI.getOpcode() == AMDGPU::KILLGT)
killPixel = true;
unsigned numOperands = MI.getNumOperands();
for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
const MachineOperand &MO = MI.getOperand(op_idx);
if (!MO.isReg())
continue;
unsigned HWReg = RI->getEncodingValue(MO.getReg()) & 0xff;
// Register with value > 127 aren't GPR
if (HWReg > 127)
continue;
MaxGPR = std::max(MaxGPR, HWReg);
}
}
}
unsigned RsrcReg;
if (STM.getGeneration() >= AMDGPUSubtarget::EVERGREEN) {
// Evergreen / Northern Islands
switch (MFI->getShaderType()) {
default: // Fall through
case ShaderType::COMPUTE: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break;
case ShaderType::GEOMETRY: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break;
case ShaderType::PIXEL: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break;
case ShaderType::VERTEX: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break;
}
} else {
// R600 / R700
switch (MFI->getShaderType()) {
default: // Fall through
case ShaderType::GEOMETRY: // Fall through
case ShaderType::COMPUTE: // Fall through
case ShaderType::VERTEX: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break;
case ShaderType::PIXEL: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break;
}
}
OutStreamer.EmitIntValue(RsrcReg, 4);
OutStreamer.EmitIntValue(S_NUM_GPRS(MaxGPR + 1) |
S_STACK_SIZE(MFI->StackSize), 4);
OutStreamer.EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4);
OutStreamer.EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4);
if (MFI->getShaderType() == ShaderType::COMPUTE) {
OutStreamer.EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4);
OutStreamer.EmitIntValue(RoundUpToAlignment(MFI->LDSSize, 4) >> 2, 4);
}
}
void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
const MachineFunction &MF) const {
const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
uint64_t CodeSize = 0;
unsigned MaxSGPR = 0;
unsigned MaxVGPR = 0;
bool VCCUsed = false;
bool FlatUsed = false;
const SIRegisterInfo *RI = static_cast<const SIRegisterInfo *>(
TM.getSubtargetImpl()->getRegisterInfo());
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
// TODO: CodeSize should account for multiple functions.
CodeSize += MI.getDesc().Size;
unsigned numOperands = MI.getNumOperands();
for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
const MachineOperand &MO = MI.getOperand(op_idx);
unsigned width = 0;
bool isSGPR = false;
if (!MO.isReg()) {
continue;
}
unsigned reg = MO.getReg();
if (reg == AMDGPU::VCC || reg == AMDGPU::VCC_LO ||
reg == AMDGPU::VCC_HI) {
VCCUsed = true;
continue;
} else if (reg == AMDGPU::FLAT_SCR ||
reg == AMDGPU::FLAT_SCR_LO ||
reg == AMDGPU::FLAT_SCR_HI) {
FlatUsed = true;
continue;
}
switch (reg) {
default: break;
case AMDGPU::SCC:
case AMDGPU::EXEC:
case AMDGPU::M0:
continue;
}
if (AMDGPU::SReg_32RegClass.contains(reg)) {
isSGPR = true;
width = 1;
} else if (AMDGPU::VGPR_32RegClass.contains(reg)) {
isSGPR = false;
width = 1;
} else if (AMDGPU::SReg_64RegClass.contains(reg)) {
isSGPR = true;
width = 2;
} else if (AMDGPU::VReg_64RegClass.contains(reg)) {
isSGPR = false;
width = 2;
} else if (AMDGPU::VReg_96RegClass.contains(reg)) {
isSGPR = false;
width = 3;
} else if (AMDGPU::SReg_128RegClass.contains(reg)) {
isSGPR = true;
width = 4;
} else if (AMDGPU::VReg_128RegClass.contains(reg)) {
isSGPR = false;
width = 4;
} else if (AMDGPU::SReg_256RegClass.contains(reg)) {
isSGPR = true;
width = 8;
} else if (AMDGPU::VReg_256RegClass.contains(reg)) {
isSGPR = false;
width = 8;
} else if (AMDGPU::SReg_512RegClass.contains(reg)) {
isSGPR = true;
width = 16;
} else if (AMDGPU::VReg_512RegClass.contains(reg)) {
isSGPR = false;
width = 16;
} else {
llvm_unreachable("Unknown register class");
}
unsigned hwReg = RI->getEncodingValue(reg) & 0xff;
unsigned maxUsed = hwReg + width - 1;
if (isSGPR) {
MaxSGPR = maxUsed > MaxSGPR ? maxUsed : MaxSGPR;
} else {
MaxVGPR = maxUsed > MaxVGPR ? maxUsed : MaxVGPR;
}
}
}
}
if (VCCUsed)
MaxSGPR += 2;
if (FlatUsed)
MaxSGPR += 2;
// We found the maximum register index. They start at 0, so add one to get the
// number of registers.
ProgInfo.NumVGPR = MaxVGPR + 1;
ProgInfo.NumSGPR = MaxSGPR + 1;
if (STM.hasSGPRInitBug()) {
if (ProgInfo.NumSGPR > AMDGPUSubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG)
llvm_unreachable("Too many SGPRs used with the SGPR init bug");
ProgInfo.NumSGPR = AMDGPUSubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG;
}
ProgInfo.VGPRBlocks = (ProgInfo.NumVGPR - 1) / 4;
ProgInfo.SGPRBlocks = (ProgInfo.NumSGPR - 1) / 8;
// Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
// register.
ProgInfo.FloatMode = getFPMode(MF);
// XXX: Not quite sure what this does, but sc seems to unset this.
ProgInfo.IEEEMode = 0;
// Do not clamp NAN to 0.
ProgInfo.DX10Clamp = 0;
const MachineFrameInfo *FrameInfo = MF.getFrameInfo();
ProgInfo.ScratchSize = FrameInfo->estimateStackSize(MF);
ProgInfo.FlatUsed = FlatUsed;
ProgInfo.VCCUsed = VCCUsed;
ProgInfo.CodeLen = CodeSize;
unsigned LDSAlignShift;
if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
// LDS is allocated in 64 dword blocks.
LDSAlignShift = 8;
} else {
// LDS is allocated in 128 dword blocks.
LDSAlignShift = 9;
}
unsigned LDSSpillSize = MFI->LDSWaveSpillSize *
MFI->getMaximumWorkGroupSize(MF);
ProgInfo.LDSSize = MFI->LDSSize + LDSSpillSize;
ProgInfo.LDSBlocks =
RoundUpToAlignment(ProgInfo.LDSSize, 1 << LDSAlignShift) >> LDSAlignShift;
// Scratch is allocated in 256 dword blocks.
unsigned ScratchAlignShift = 10;
// We need to program the hardware with the amount of scratch memory that
// is used by the entire wave. ProgInfo.ScratchSize is the amount of
// scratch memory used per thread.
ProgInfo.ScratchBlocks =
RoundUpToAlignment(ProgInfo.ScratchSize * STM.getWavefrontSize(),
1 << ScratchAlignShift) >> ScratchAlignShift;
ProgInfo.ComputePGMRSrc1 =
S_00B848_VGPRS(ProgInfo.VGPRBlocks) |
S_00B848_SGPRS(ProgInfo.SGPRBlocks) |
S_00B848_PRIORITY(ProgInfo.Priority) |
S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
S_00B848_PRIV(ProgInfo.Priv) |
S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) |
S_00B848_IEEE_MODE(ProgInfo.DebugMode) |
S_00B848_IEEE_MODE(ProgInfo.IEEEMode);
ProgInfo.ComputePGMRSrc2 =
S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
S_00B84C_USER_SGPR(MFI->NumUserSGPRs) |
S_00B84C_TGID_X_EN(1) |
S_00B84C_TGID_Y_EN(1) |
S_00B84C_TGID_Z_EN(1) |
S_00B84C_TG_SIZE_EN(1) |
S_00B84C_TIDIG_COMP_CNT(2) |
S_00B84C_LDS_SIZE(ProgInfo.LDSBlocks);
}
static unsigned getRsrcReg(unsigned ShaderType) {
switch (ShaderType) {
default: // Fall through
case ShaderType::COMPUTE: return R_00B848_COMPUTE_PGM_RSRC1;
case ShaderType::GEOMETRY: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
case ShaderType::PIXEL: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
case ShaderType::VERTEX: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
}
}
void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
const SIProgramInfo &KernelInfo) {
const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned RsrcReg = getRsrcReg(MFI->getShaderType());
if (MFI->getShaderType() == ShaderType::COMPUTE) {
OutStreamer.EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);
OutStreamer.EmitIntValue(KernelInfo.ComputePGMRSrc1, 4);
OutStreamer.EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
OutStreamer.EmitIntValue(KernelInfo.ComputePGMRSrc2, 4);
OutStreamer.EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
OutStreamer.EmitIntValue(S_00B860_WAVESIZE(KernelInfo.ScratchBlocks), 4);
// TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
// 0" comment but I don't see a corresponding field in the register spec.
} else {
OutStreamer.EmitIntValue(RsrcReg, 4);
OutStreamer.EmitIntValue(S_00B028_VGPRS(KernelInfo.VGPRBlocks) |
S_00B028_SGPRS(KernelInfo.SGPRBlocks), 4);
if (STM.isVGPRSpillingEnabled(MFI)) {
OutStreamer.EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4);
OutStreamer.EmitIntValue(S_0286E8_WAVESIZE(KernelInfo.ScratchBlocks), 4);
}
}
if (MFI->getShaderType() == ShaderType::PIXEL) {
OutStreamer.EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4);
OutStreamer.EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(KernelInfo.LDSBlocks), 4);
OutStreamer.EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
OutStreamer.EmitIntValue(MFI->PSInputAddr, 4);
}
}
void AMDGPUAsmPrinter::EmitAmdKernelCodeT(const MachineFunction &MF,
const SIProgramInfo &KernelInfo) const {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
amd_kernel_code_t header;
memset(&header, 0, sizeof(header));
header.amd_code_version_major = AMD_CODE_VERSION_MAJOR;
header.amd_code_version_minor = AMD_CODE_VERSION_MINOR;
header.struct_byte_size = sizeof(amd_kernel_code_t);
header.target_chip = STM.getAmdKernelCodeChipID();
header.kernel_code_entry_byte_offset = (1ULL << MF.getAlignment());
header.compute_pgm_resource_registers =
KernelInfo.ComputePGMRSrc1 |
(KernelInfo.ComputePGMRSrc2 << 32);
// Code Properties:
header.code_properties = AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR |
AMD_CODE_PROPERTY_IS_PTR64;
if (KernelInfo.FlatUsed)
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
if (KernelInfo.ScratchBlocks)
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE;
header.workitem_private_segment_byte_size = KernelInfo.ScratchSize;
header.workgroup_group_segment_byte_size = KernelInfo.LDSSize;
// MFI->ABIArgOffset is the number of bytes for the kernel arguments
// plus 36. 36 is the number of bytes reserved at the begining of the
// input buffer to store work-group size information.
// FIXME: We should be adding the size of the implicit arguments
// to this value.
header.kernarg_segment_byte_size = MFI->ABIArgOffset;
header.wavefront_sgpr_count = KernelInfo.NumSGPR;
header.workitem_vgpr_count = KernelInfo.NumVGPR;
// FIXME: What values do I put for these alignments
header.kernarg_segment_alignment = 0;
header.group_segment_alignment = 0;
header.private_segment_alignment = 0;
header.code_type = 1; // HSA_EXT_CODE_KERNEL
header.wavefront_size = STM.getWavefrontSize();
const MCSectionELF *VersionSection = OutContext.getELFSection(".hsa.version",
ELF::SHT_PROGBITS, 0, SectionKind::getReadOnly());
OutStreamer.SwitchSection(VersionSection);
OutStreamer.EmitBytes(Twine("HSA Code Unit:" +
Twine(header.hsail_version_major) + "." +
Twine(header.hsail_version_minor) + ":" +
"AMD:" +
Twine(header.amd_code_version_major) + "." +
Twine(header.amd_code_version_minor) + ":" +
"GFX8.1:0").str());
OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
if (isVerbose()) {
OutStreamer.emitRawComment("amd_code_version_major = " +
Twine(header.amd_code_version_major), false);
OutStreamer.emitRawComment("amd_code_version_minor = " +
Twine(header.amd_code_version_minor), false);
OutStreamer.emitRawComment("struct_byte_size = " +
Twine(header.struct_byte_size), false);
OutStreamer.emitRawComment("target_chip = " +
Twine(header.target_chip), false);
OutStreamer.emitRawComment(" compute_pgm_rsrc1: " +
Twine::utohexstr(KernelInfo.ComputePGMRSrc1), false);
OutStreamer.emitRawComment(" compute_pgm_rsrc2: " +
Twine::utohexstr(KernelInfo.ComputePGMRSrc2), false);
OutStreamer.emitRawComment("enable_sgpr_private_segment_buffer = " +
Twine((bool)(header.code_properties &
AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE)), false);
OutStreamer.emitRawComment("enable_sgpr_kernarg_segment_ptr = " +
Twine((bool)(header.code_properties &
AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR)), false);
OutStreamer.emitRawComment("private_element_size = 2 ", false);
OutStreamer.emitRawComment("is_ptr64 = " +
Twine((bool)(header.code_properties & AMD_CODE_PROPERTY_IS_PTR64)), false);
OutStreamer.emitRawComment("workitem_private_segment_byte_size = " +
Twine(header.workitem_private_segment_byte_size),
false);
OutStreamer.emitRawComment("workgroup_group_segment_byte_size = " +
Twine(header.workgroup_group_segment_byte_size),
false);
OutStreamer.emitRawComment("gds_segment_byte_size = " +
Twine(header.gds_segment_byte_size), false);
OutStreamer.emitRawComment("kernarg_segment_byte_size = " +
Twine(header.kernarg_segment_byte_size), false);
OutStreamer.emitRawComment("wavefront_sgpr_count = " +
Twine(header.wavefront_sgpr_count), false);
OutStreamer.emitRawComment("workitem_vgpr_count = " +
Twine(header.workitem_vgpr_count), false);
OutStreamer.emitRawComment("code_type = " + Twine(header.code_type), false);
OutStreamer.emitRawComment("wavefront_size = " +
Twine((int)header.wavefront_size), false);
OutStreamer.emitRawComment("optimization_level = " +
Twine(header.optimization_level), false);
OutStreamer.emitRawComment("hsail_profile = " +
Twine(header.hsail_profile), false);
OutStreamer.emitRawComment("hsail_machine_model = " +
Twine(header.hsail_machine_model), false);
OutStreamer.emitRawComment("hsail_version_major = " +
Twine(header.hsail_version_major), false);
OutStreamer.emitRawComment("hsail_version_minor = " +
Twine(header.hsail_version_minor), false);
}
OutStreamer.EmitBytes(StringRef((char*)&header, sizeof(header)));
}