blob: e4ccc06feb897d3c693800e6b276f93bf9886973 [file] [log] [blame]
//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 jump, return, call, and related instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
// Return instructions.
//
// The X86retflag return instructions are variadic because we may add ST0 and
// ST1 arguments when returning values on the x87 stack.
let isTerminator = 1, isReturn = 1, isBarrier = 1,
hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
def RET : I <0xC3, RawFrm, (outs), (ins variable_ops),
"ret",
[(X86retflag 0)], IIC_RET>;
def RETW : I <0xC3, RawFrm, (outs), (ins),
"ret{w}",
[], IIC_RET>, OpSize;
def RETI : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
"ret\t$amt",
[(X86retflag timm:$amt)], IIC_RET_IMM>;
def RETIW : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
"ret{w}\t$amt",
[], IIC_RET_IMM>, OpSize;
def LRETL : I <0xCB, RawFrm, (outs), (ins),
"{l}ret{l|f}", [], IIC_RET>;
def LRETW : I <0xCB, RawFrm, (outs), (ins),
"{l}ret{w|f}", [], IIC_RET>, OpSize;
def LRETQ : RI <0xCB, RawFrm, (outs), (ins),
"{l}ret{q|f}", [], IIC_RET>;
def LRETI : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
"{l}ret{l|f}\t$amt", [], IIC_RET>;
def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
"{l}ret{w|f}\t$amt", [], IIC_RET>, OpSize;
}
// Unconditional branches.
let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget:$dst),
"jmp\t$dst", [(br bb:$dst)], IIC_JMP_REL>;
let hasSideEffects = 0 in
def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
"jmp\t$dst", [], IIC_JMP_REL>;
// FIXME : Intel syntax for JMP64pcrel32 such that it is not ambiguious
// with JMP_1.
let hasSideEffects = 0 in
def JMP64pcrel32 : I<0xE9, RawFrm, (outs), (ins brtarget:$dst),
"jmpq\t$dst", [], IIC_JMP_REL>;
}
// Conditional Branches.
let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in {
multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> {
let hasSideEffects = 0 in
def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm, [],
IIC_Jcc>;
def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget:$dst), asm,
[(X86brcond bb:$dst, Cond, EFLAGS)], IIC_Jcc>, TB;
}
}
defm JO : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>;
defm JNO : ICBr<0x71, 0x81, "jno\t$dst" , X86_COND_NO>;
defm JB : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>;
defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>;
defm JE : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>;
defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>;
defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>;
defm JA : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>;
defm JS : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>;
defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>;
defm JP : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>;
defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>;
defm JL : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>;
defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>;
defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>;
defm JG : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>;
// jcx/jecx/jrcx instructions.
let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
// These are the 32-bit versions of this instruction for the asmparser. In
// 32-bit mode, the address size prefix is jcxz and the unprefixed version is
// jecxz.
let Uses = [CX] in
def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
"jcxz\t$dst", [], IIC_JCXZ>, AdSize, Requires<[In32BitMode]>;
let Uses = [ECX] in
def JECXZ_32 : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
"jecxz\t$dst", [], IIC_JCXZ>, Requires<[In32BitMode]>;
// J*CXZ instruction: 64-bit versions of this instruction for the asmparser.
// In 64-bit mode, the address size prefix is jecxz and the unprefixed version
// is jrcxz.
let Uses = [ECX] in
def JECXZ_64 : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
"jecxz\t$dst", [], IIC_JCXZ>, AdSize, Requires<[In64BitMode]>;
let Uses = [RCX] in
def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
"jrcxz\t$dst", [], IIC_JCXZ>, Requires<[In64BitMode]>;
}
// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
[(brind GR32:$dst)], IIC_JMP_REG>, Requires<[In32BitMode]>,
Sched<[WriteJump]>;
def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
[(brind (loadi32 addr:$dst))], IIC_JMP_MEM>,
Requires<[In32BitMode]>, Sched<[WriteJumpLd]>;
def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
[(brind GR64:$dst)], IIC_JMP_REG>, Requires<[In64BitMode]>,
Sched<[WriteJump]>;
def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
[(brind (loadi64 addr:$dst))], IIC_JMP_MEM>,
Requires<[In64BitMode]>, Sched<[WriteJumpLd]>;
def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs),
(ins i16imm:$off, i16imm:$seg),
"ljmp{w}\t{$seg, $off|$off, $seg}", [],
IIC_JMP_FAR_PTR>, OpSize, Sched<[WriteJump]>;
def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs),
(ins i32imm:$off, i16imm:$seg),
"ljmp{l}\t{$seg, $off|$off, $seg}", [],
IIC_JMP_FAR_PTR>, Sched<[WriteJump]>;
def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaque80mem:$dst),
"ljmp{q}\t{*}$dst", [], IIC_JMP_FAR_MEM>,
Sched<[WriteJump]>;
def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaque32mem:$dst),
"ljmp{w}\t{*}$dst", [], IIC_JMP_FAR_MEM>, OpSize,
Sched<[WriteJumpLd]>;
def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaque48mem:$dst),
"ljmp{l}\t{*}$dst", [], IIC_JMP_FAR_MEM>,
Sched<[WriteJumpLd]>;
}
// Loop instructions
let SchedRW = [WriteJump] in {
def LOOP : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", [], IIC_LOOP>;
def LOOPE : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", [], IIC_LOOPE>;
def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", [], IIC_LOOPNE>;
}
//===----------------------------------------------------------------------===//
// Call Instructions...
//
let isCall = 1 in
// All calls clobber the non-callee saved registers. ESP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead. Uses for argument
// registers are added manually.
let Uses = [ESP] in {
def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
(outs), (ins i32imm_pcrel:$dst),
"call{l}\t$dst", [], IIC_CALL_RI>,
Requires<[In32BitMode]>, Sched<[WriteJump]>;
def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
"call{l}\t{*}$dst", [(X86call GR32:$dst)], IIC_CALL_RI>,
Requires<[In32BitMode]>, Sched<[WriteJump]>;
def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
"call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))],
IIC_CALL_MEM>,
Requires<[In32BitMode,FavorMemIndirectCall]>,
Sched<[WriteJumpLd]>;
def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs),
(ins i16imm:$off, i16imm:$seg),
"lcall{w}\t{$seg, $off|$off, $seg}", [],
IIC_CALL_FAR_PTR>, OpSize, Sched<[WriteJump]>;
def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs),
(ins i32imm:$off, i16imm:$seg),
"lcall{l}\t{$seg, $off|$off, $seg}", [],
IIC_CALL_FAR_PTR>, Sched<[WriteJump]>;
def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaque32mem:$dst),
"lcall{w}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize,
Sched<[WriteJumpLd]>;
def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaque48mem:$dst),
"lcall{l}\t{*}$dst", [], IIC_CALL_FAR_MEM>,
Sched<[WriteJumpLd]>;
// callw for 16 bit code for the assembler.
let isAsmParserOnly = 1 in
def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
(outs), (ins i16imm_pcrel:$dst),
"callw\t$dst", []>, OpSize;
}
// Tail call stuff.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
let Uses = [ESP] in {
def TCRETURNdi : PseudoI<(outs),
(ins i32imm_pcrel:$dst, i32imm:$offset), []>;
def TCRETURNri : PseudoI<(outs),
(ins ptr_rc_tailcall:$dst, i32imm:$offset), []>;
let mayLoad = 1 in
def TCRETURNmi : PseudoI<(outs),
(ins i32mem_TC:$dst, i32imm:$offset), []>;
// FIXME: The should be pseudo instructions that are lowered when going to
// mcinst.
def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs),
(ins i32imm_pcrel:$dst),
"jmp\t$dst # TAILCALL",
[], IIC_JMP_REL>;
def TAILJMPr : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
"", [], IIC_JMP_REG>; // FIXME: Remove encoding when JIT is dead.
let mayLoad = 1 in
def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst),
"jmp{l}\t{*}$dst # TAILCALL", [], IIC_JMP_MEM>;
}
//===----------------------------------------------------------------------===//
// Call Instructions...
//
// RSP is marked as a use to prevent stack-pointer assignments that appear
// immediately before calls from potentially appearing dead. Uses for argument
// registers are added manually.
let isCall = 1, Uses = [RSP], SchedRW = [WriteJump] in {
// NOTE: this pattern doesn't match "X86call imm", because we do not know
// that the offset between an arbitrary immediate and the call will fit in
// the 32-bit pcrel field that we have.
def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
(outs), (ins i64i32imm_pcrel:$dst),
"call{q}\t$dst", [], IIC_CALL_RI>,
Requires<[In64BitMode]>;
def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
"call{q}\t{*}$dst", [(X86call GR64:$dst)],
IIC_CALL_RI>,
Requires<[In64BitMode]>;
def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
"call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))],
IIC_CALL_MEM>,
Requires<[In64BitMode,FavorMemIndirectCall]>;
def FARCALL64 : RI<0xFF, MRM3m, (outs), (ins opaque80mem:$dst),
"lcall{q}\t{*}$dst", [], IIC_CALL_FAR_MEM>;
}
let isCall = 1, isCodeGenOnly = 1 in
// __chkstk(MSVC): clobber R10, R11 and EFLAGS.
// ___chkstk(Mingw64): clobber R10, R11, RAX and EFLAGS, and update RSP.
let Defs = [RAX, R10, R11, RSP, EFLAGS],
Uses = [RSP] in {
def W64ALLOCA : Ii32PCRel<0xE8, RawFrm,
(outs), (ins i64i32imm_pcrel:$dst),
"call{q}\t$dst", [], IIC_CALL_RI>,
Requires<[IsWin64]>, Sched<[WriteJump]>;
}
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
isCodeGenOnly = 1, Uses = [RSP], usesCustomInserter = 1,
SchedRW = [WriteJump] in {
def TCRETURNdi64 : PseudoI<(outs),
(ins i64i32imm_pcrel:$dst, i32imm:$offset),
[]>;
def TCRETURNri64 : PseudoI<(outs),
(ins ptr_rc_tailcall:$dst, i32imm:$offset), []>;
let mayLoad = 1 in
def TCRETURNmi64 : PseudoI<(outs),
(ins i64mem_TC:$dst, i32imm:$offset), []>;
def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs),
(ins i64i32imm_pcrel:$dst),
"jmp\t$dst # TAILCALL", [], IIC_JMP_REL>;
def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
"jmp{q}\t{*}$dst # TAILCALL", [], IIC_JMP_MEM>;
let mayLoad = 1 in
def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
"jmp{q}\t{*}$dst # TAILCALL", [], IIC_JMP_MEM>;
}