blob: ef99541c1700829de67a8a93a9bf56236c626c61 [file] [log] [blame]
//===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the AArch64 target.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "aarch64-isel"
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetMachine.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===--------------------------------------------------------------------===//
/// AArch64 specific code to select AArch64 machine instructions for
/// SelectionDAG operations.
///
namespace {
class AArch64DAGToDAGISel : public SelectionDAGISel {
AArch64TargetMachine &TM;
/// Keep a pointer to the AArch64Subtarget around so that we can
/// make the right decision when generating code for different targets.
const AArch64Subtarget *Subtarget;
public:
explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
CodeGenOpt::Level OptLevel)
: SelectionDAGISel(tm, OptLevel), TM(tm),
Subtarget(&TM.getSubtarget<AArch64Subtarget>()) {
}
virtual const char *getPassName() const {
return "AArch64 Instruction Selection";
}
// Include the pieces autogenerated from the target description.
#include "AArch64GenDAGISel.inc"
template<unsigned MemSize>
bool SelectOffsetUImm12(SDValue N, SDValue &UImm12) {
const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
if (!CN || CN->getZExtValue() % MemSize != 0
|| CN->getZExtValue() / MemSize > 0xfff)
return false;
UImm12 = CurDAG->getTargetConstant(CN->getZExtValue() / MemSize, MVT::i64);
return true;
}
template<unsigned RegWidth>
bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
}
/// Used for pre-lowered address-reference nodes, so we already know
/// the fields match. This operand's job is simply to add an
/// appropriate shift operand to the MOVZ/MOVK instruction.
template<unsigned LogShift>
bool SelectMOVWAddressRef(SDValue N, SDValue &Imm, SDValue &Shift) {
Imm = N;
Shift = CurDAG->getTargetConstant(LogShift, MVT::i32);
return true;
}
bool SelectFPZeroOperand(SDValue N, SDValue &Dummy);
bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
unsigned RegWidth);
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
char ConstraintCode,
std::vector<SDValue> &OutOps);
bool SelectLogicalImm(SDValue N, SDValue &Imm);
template<unsigned RegWidth>
bool SelectTSTBOperand(SDValue N, SDValue &FixedPos) {
return SelectTSTBOperand(N, FixedPos, RegWidth);
}
bool SelectTSTBOperand(SDValue N, SDValue &FixedPos, unsigned RegWidth);
SDNode *SelectAtomic(SDNode *N, unsigned Op8, unsigned Op16, unsigned Op32,
unsigned Op64);
/// Put the given constant into a pool and return a DAG which will give its
/// address.
SDValue getConstantPoolItemAddress(SDLoc DL, const Constant *CV);
SDNode *TrySelectToMoveImm(SDNode *N);
SDNode *LowerToFPLitPool(SDNode *Node);
SDNode *SelectToLitPool(SDNode *N);
SDNode* Select(SDNode*);
private:
/// Get the opcode for table lookup instruction
unsigned getTBLOpc(bool IsExt, bool Is64Bit, unsigned NumOfVec);
/// Select NEON table lookup intrinsics. NumVecs should be 1, 2, 3 or 4.
/// IsExt is to indicate if the result will be extended with an argument.
SDNode *SelectVTBL(SDNode *N, unsigned NumVecs, bool IsExt);
/// Select NEON load intrinsics. NumVecs should be 1, 2, 3 or 4.
SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
const uint16_t *Opcode);
/// Select NEON store intrinsics. NumVecs should be 1, 2, 3 or 4.
SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
const uint16_t *Opcodes);
/// Form sequences of consecutive 64/128-bit registers for use in NEON
/// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
/// between 1 and 4 elements. If it contains a single element that is returned
/// unchanged; otherwise a REG_SEQUENCE value is returned.
SDValue createDTuple(ArrayRef<SDValue> Vecs);
SDValue createQTuple(ArrayRef<SDValue> Vecs);
/// Generic helper for the createDTuple/createQTuple
/// functions. Those should almost always be called instead.
SDValue createTuple(ArrayRef<SDValue> Vecs, unsigned RegClassIDs[],
unsigned SubRegs[]);
/// Select NEON load-duplicate intrinsics. NumVecs should be 2, 3 or 4.
/// The opcode array specifies the instructions used for load.
SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
const uint16_t *Opcodes);
/// Select NEON load/store lane intrinsics. NumVecs should be 2, 3 or 4.
/// The opcode arrays specify the instructions used for load/store.
SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
unsigned NumVecs, const uint16_t *Opcodes);
SDValue getTargetSubregToReg(int SRIdx, SDLoc DL, EVT VT, EVT VTD,
SDValue Operand);
};
}
bool
AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
unsigned RegWidth) {
const ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
if (!CN) return false;
// An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
// is between 1 and 32 for a destination w-register, or 1 and 64 for an
// x-register.
//
// By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
// want THIS_NODE to be 2^fbits. This is much easier to deal with using
// integers.
bool IsExact;
// fbits is between 1 and 64 in the worst-case, which means the fmul
// could have 2^64 as an actual operand. Need 65 bits of precision.
APSInt IntVal(65, true);
CN->getValueAPF().convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
// N.b. isPowerOf2 also checks for > 0.
if (!IsExact || !IntVal.isPowerOf2()) return false;
unsigned FBits = IntVal.logBase2();
// Checks above should have guaranteed that we haven't lost information in
// finding FBits, but it must still be in range.
if (FBits == 0 || FBits > RegWidth) return false;
FixedPos = CurDAG->getTargetConstant(64 - FBits, MVT::i32);
return true;
}
bool
AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
char ConstraintCode,
std::vector<SDValue> &OutOps) {
switch (ConstraintCode) {
default: llvm_unreachable("Unrecognised AArch64 memory constraint");
case 'm':
// FIXME: more freedom is actually permitted for 'm'. We can go
// hunting for a base and an offset if we want. Of course, since
// we don't really know how the operand is going to be used we're
// probably restricted to the load/store pair's simm7 as an offset
// range anyway.
case 'Q':
OutOps.push_back(Op);
}
return false;
}
bool
AArch64DAGToDAGISel::SelectFPZeroOperand(SDValue N, SDValue &Dummy) {
ConstantFPSDNode *Imm = dyn_cast<ConstantFPSDNode>(N);
if (!Imm || !Imm->getValueAPF().isPosZero())
return false;
// Doesn't actually carry any information, but keeps TableGen quiet.
Dummy = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
bool AArch64DAGToDAGISel::SelectLogicalImm(SDValue N, SDValue &Imm) {
uint32_t Bits;
uint32_t RegWidth = N.getValueType().getSizeInBits();
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
if (!CN) return false;
if (!A64Imms::isLogicalImm(RegWidth, CN->getZExtValue(), Bits))
return false;
Imm = CurDAG->getTargetConstant(Bits, MVT::i32);
return true;
}
SDNode *AArch64DAGToDAGISel::TrySelectToMoveImm(SDNode *Node) {
SDNode *ResNode;
SDLoc dl(Node);
EVT DestType = Node->getValueType(0);
unsigned DestWidth = DestType.getSizeInBits();
unsigned MOVOpcode;
EVT MOVType;
int UImm16, Shift;
uint32_t LogicalBits;
uint64_t BitPat = cast<ConstantSDNode>(Node)->getZExtValue();
if (A64Imms::isMOVZImm(DestWidth, BitPat, UImm16, Shift)) {
MOVType = DestType;
MOVOpcode = DestWidth == 64 ? AArch64::MOVZxii : AArch64::MOVZwii;
} else if (A64Imms::isMOVNImm(DestWidth, BitPat, UImm16, Shift)) {
MOVType = DestType;
MOVOpcode = DestWidth == 64 ? AArch64::MOVNxii : AArch64::MOVNwii;
} else if (DestWidth == 64 && A64Imms::isMOVNImm(32, BitPat, UImm16, Shift)) {
// To get something like 0x0000_0000_ffff_1234 into a 64-bit register we can
// use a 32-bit instruction: "movn w0, 0xedbc".
MOVType = MVT::i32;
MOVOpcode = AArch64::MOVNwii;
} else if (A64Imms::isLogicalImm(DestWidth, BitPat, LogicalBits)) {
MOVOpcode = DestWidth == 64 ? AArch64::ORRxxi : AArch64::ORRwwi;
uint16_t ZR = DestWidth == 64 ? AArch64::XZR : AArch64::WZR;
return CurDAG->getMachineNode(MOVOpcode, dl, DestType,
CurDAG->getRegister(ZR, DestType),
CurDAG->getTargetConstant(LogicalBits, MVT::i32));
} else {
// Can't handle it in one instruction. There's scope for permitting two (or
// more) instructions, but that'll need more thought.
return NULL;
}
ResNode = CurDAG->getMachineNode(MOVOpcode, dl, MOVType,
CurDAG->getTargetConstant(UImm16, MVT::i32),
CurDAG->getTargetConstant(Shift, MVT::i32));
if (MOVType != DestType) {
ResNode = CurDAG->getMachineNode(TargetOpcode::SUBREG_TO_REG, dl,
MVT::i64, MVT::i32, MVT::Other,
CurDAG->getTargetConstant(0, MVT::i64),
SDValue(ResNode, 0),
CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32));
}
return ResNode;
}
SDValue
AArch64DAGToDAGISel::getConstantPoolItemAddress(SDLoc DL,
const Constant *CV) {
EVT PtrVT = getTargetLowering()->getPointerTy();
switch (getTargetLowering()->getTargetMachine().getCodeModel()) {
case CodeModel::Small: {
unsigned Alignment =
getTargetLowering()->getDataLayout()->getABITypeAlignment(CV->getType());
return CurDAG->getNode(
AArch64ISD::WrapperSmall, DL, PtrVT,
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_NO_FLAG),
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_LO12),
CurDAG->getConstant(Alignment, MVT::i32));
}
case CodeModel::Large: {
SDNode *LitAddr;
LitAddr = CurDAG->getMachineNode(
AArch64::MOVZxii, DL, PtrVT,
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G3),
CurDAG->getTargetConstant(3, MVT::i32));
LitAddr = CurDAG->getMachineNode(
AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G2_NC),
CurDAG->getTargetConstant(2, MVT::i32));
LitAddr = CurDAG->getMachineNode(
AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G1_NC),
CurDAG->getTargetConstant(1, MVT::i32));
LitAddr = CurDAG->getMachineNode(
AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G0_NC),
CurDAG->getTargetConstant(0, MVT::i32));
return SDValue(LitAddr, 0);
}
default:
llvm_unreachable("Only small and large code models supported now");
}
}
SDNode *AArch64DAGToDAGISel::SelectToLitPool(SDNode *Node) {
SDLoc DL(Node);
uint64_t UnsignedVal = cast<ConstantSDNode>(Node)->getZExtValue();
int64_t SignedVal = cast<ConstantSDNode>(Node)->getSExtValue();
EVT DestType = Node->getValueType(0);
// Since we may end up loading a 64-bit constant from a 32-bit entry the
// constant in the pool may have a different type to the eventual node.
ISD::LoadExtType Extension;
EVT MemType;
assert((DestType == MVT::i64 || DestType == MVT::i32)
&& "Only expect integer constants at the moment");
if (DestType == MVT::i32) {
Extension = ISD::NON_EXTLOAD;
MemType = MVT::i32;
} else if (UnsignedVal <= UINT32_MAX) {
Extension = ISD::ZEXTLOAD;
MemType = MVT::i32;
} else if (SignedVal >= INT32_MIN && SignedVal <= INT32_MAX) {
Extension = ISD::SEXTLOAD;
MemType = MVT::i32;
} else {
Extension = ISD::NON_EXTLOAD;
MemType = MVT::i64;
}
Constant *CV = ConstantInt::get(Type::getIntNTy(*CurDAG->getContext(),
MemType.getSizeInBits()),
UnsignedVal);
SDValue PoolAddr = getConstantPoolItemAddress(DL, CV);
unsigned Alignment =
getTargetLowering()->getDataLayout()->getABITypeAlignment(CV->getType());
return CurDAG->getExtLoad(Extension, DL, DestType, CurDAG->getEntryNode(),
PoolAddr,
MachinePointerInfo::getConstantPool(), MemType,
/* isVolatile = */ false,
/* isNonTemporal = */ false,
Alignment).getNode();
}
SDNode *AArch64DAGToDAGISel::LowerToFPLitPool(SDNode *Node) {
SDLoc DL(Node);
const ConstantFP *FV = cast<ConstantFPSDNode>(Node)->getConstantFPValue();
EVT DestType = Node->getValueType(0);
unsigned Alignment =
getTargetLowering()->getDataLayout()->getABITypeAlignment(FV->getType());
SDValue PoolAddr = getConstantPoolItemAddress(DL, FV);
return CurDAG->getLoad(DestType, DL, CurDAG->getEntryNode(), PoolAddr,
MachinePointerInfo::getConstantPool(),
/* isVolatile = */ false,
/* isNonTemporal = */ false,
/* isInvariant = */ true,
Alignment).getNode();
}
bool
AArch64DAGToDAGISel::SelectTSTBOperand(SDValue N, SDValue &FixedPos,
unsigned RegWidth) {
const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
if (!CN) return false;
uint64_t Val = CN->getZExtValue();
if (!isPowerOf2_64(Val)) return false;
unsigned TestedBit = Log2_64(Val);
// Checks above should have guaranteed that we haven't lost information in
// finding TestedBit, but it must still be in range.
if (TestedBit >= RegWidth) return false;
FixedPos = CurDAG->getTargetConstant(TestedBit, MVT::i64);
return true;
}
SDNode *AArch64DAGToDAGISel::SelectAtomic(SDNode *Node, unsigned Op8,
unsigned Op16,unsigned Op32,
unsigned Op64) {
// Mostly direct translation to the given operations, except that we preserve
// the AtomicOrdering for use later on.
AtomicSDNode *AN = cast<AtomicSDNode>(Node);
EVT VT = AN->getMemoryVT();
unsigned Op;
if (VT == MVT::i8)
Op = Op8;
else if (VT == MVT::i16)
Op = Op16;
else if (VT == MVT::i32)
Op = Op32;
else if (VT == MVT::i64)
Op = Op64;
else
llvm_unreachable("Unexpected atomic operation");
SmallVector<SDValue, 4> Ops;
for (unsigned i = 1; i < AN->getNumOperands(); ++i)
Ops.push_back(AN->getOperand(i));
Ops.push_back(CurDAG->getTargetConstant(AN->getOrdering(), MVT::i32));
Ops.push_back(AN->getOperand(0)); // Chain moves to the end
return CurDAG->SelectNodeTo(Node, Op,
AN->getValueType(0), MVT::Other,
&Ops[0], Ops.size());
}
SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
static unsigned RegClassIDs[] = { AArch64::DPairRegClassID,
AArch64::DTripleRegClassID,
AArch64::DQuadRegClassID };
static unsigned SubRegs[] = { AArch64::dsub_0, AArch64::dsub_1,
AArch64::dsub_2, AArch64::dsub_3 };
return createTuple(Regs, RegClassIDs, SubRegs);
}
SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
static unsigned RegClassIDs[] = { AArch64::QPairRegClassID,
AArch64::QTripleRegClassID,
AArch64::QQuadRegClassID };
static unsigned SubRegs[] = { AArch64::qsub_0, AArch64::qsub_1,
AArch64::qsub_2, AArch64::qsub_3 };
return createTuple(Regs, RegClassIDs, SubRegs);
}
SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
unsigned RegClassIDs[],
unsigned SubRegs[]) {
// There's no special register-class for a vector-list of 1 element: it's just
// a vector.
if (Regs.size() == 1)
return Regs[0];
assert(Regs.size() >= 2 && Regs.size() <= 4);
SDLoc DL(Regs[0].getNode());
SmallVector<SDValue, 4> Ops;
// First operand of REG_SEQUENCE is the desired RegClass.
Ops.push_back(
CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], MVT::i32));
// Then we get pairs of source & subregister-position for the components.
for (unsigned i = 0; i < Regs.size(); ++i) {
Ops.push_back(Regs[i]);
Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], MVT::i32));
}
SDNode *N =
CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
return SDValue(N, 0);
}
// Get the register stride update opcode of a VLD/VST instruction that
// is otherwise equivalent to the given fixed stride updating instruction.
static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
switch (Opc) {
default: break;
case AArch64::LD1WB_8B_fixed: return AArch64::LD1WB_8B_register;
case AArch64::LD1WB_4H_fixed: return AArch64::LD1WB_4H_register;
case AArch64::LD1WB_2S_fixed: return AArch64::LD1WB_2S_register;
case AArch64::LD1WB_1D_fixed: return AArch64::LD1WB_1D_register;
case AArch64::LD1WB_16B_fixed: return AArch64::LD1WB_16B_register;
case AArch64::LD1WB_8H_fixed: return AArch64::LD1WB_8H_register;
case AArch64::LD1WB_4S_fixed: return AArch64::LD1WB_4S_register;
case AArch64::LD1WB_2D_fixed: return AArch64::LD1WB_2D_register;
case AArch64::LD2WB_8B_fixed: return AArch64::LD2WB_8B_register;
case AArch64::LD2WB_4H_fixed: return AArch64::LD2WB_4H_register;
case AArch64::LD2WB_2S_fixed: return AArch64::LD2WB_2S_register;
case AArch64::LD2WB_16B_fixed: return AArch64::LD2WB_16B_register;
case AArch64::LD2WB_8H_fixed: return AArch64::LD2WB_8H_register;
case AArch64::LD2WB_4S_fixed: return AArch64::LD2WB_4S_register;
case AArch64::LD2WB_2D_fixed: return AArch64::LD2WB_2D_register;
case AArch64::LD3WB_8B_fixed: return AArch64::LD3WB_8B_register;
case AArch64::LD3WB_4H_fixed: return AArch64::LD3WB_4H_register;
case AArch64::LD3WB_2S_fixed: return AArch64::LD3WB_2S_register;
case AArch64::LD3WB_16B_fixed: return AArch64::LD3WB_16B_register;
case AArch64::LD3WB_8H_fixed: return AArch64::LD3WB_8H_register;
case AArch64::LD3WB_4S_fixed: return AArch64::LD3WB_4S_register;
case AArch64::LD3WB_2D_fixed: return AArch64::LD3WB_2D_register;
case AArch64::LD4WB_8B_fixed: return AArch64::LD4WB_8B_register;
case AArch64::LD4WB_4H_fixed: return AArch64::LD4WB_4H_register;
case AArch64::LD4WB_2S_fixed: return AArch64::LD4WB_2S_register;
case AArch64::LD4WB_16B_fixed: return AArch64::LD4WB_16B_register;
case AArch64::LD4WB_8H_fixed: return AArch64::LD4WB_8H_register;
case AArch64::LD4WB_4S_fixed: return AArch64::LD4WB_4S_register;
case AArch64::LD4WB_2D_fixed: return AArch64::LD4WB_2D_register;
case AArch64::LD1x2WB_8B_fixed: return AArch64::LD1x2WB_8B_register;
case AArch64::LD1x2WB_4H_fixed: return AArch64::LD1x2WB_4H_register;
case AArch64::LD1x2WB_2S_fixed: return AArch64::LD1x2WB_2S_register;
case AArch64::LD1x2WB_1D_fixed: return AArch64::LD1x2WB_1D_register;
case AArch64::LD1x2WB_16B_fixed: return AArch64::LD1x2WB_16B_register;
case AArch64::LD1x2WB_8H_fixed: return AArch64::LD1x2WB_8H_register;
case AArch64::LD1x2WB_4S_fixed: return AArch64::LD1x2WB_4S_register;
case AArch64::LD1x2WB_2D_fixed: return AArch64::LD1x2WB_2D_register;
case AArch64::LD1x3WB_8B_fixed: return AArch64::LD1x3WB_8B_register;
case AArch64::LD1x3WB_4H_fixed: return AArch64::LD1x3WB_4H_register;
case AArch64::LD1x3WB_2S_fixed: return AArch64::LD1x3WB_2S_register;
case AArch64::LD1x3WB_1D_fixed: return AArch64::LD1x3WB_1D_register;
case AArch64::LD1x3WB_16B_fixed: return AArch64::LD1x3WB_16B_register;
case AArch64::LD1x3WB_8H_fixed: return AArch64::LD1x3WB_8H_register;
case AArch64::LD1x3WB_4S_fixed: return AArch64::LD1x3WB_4S_register;
case AArch64::LD1x3WB_2D_fixed: return AArch64::LD1x3WB_2D_register;
case AArch64::LD1x4WB_8B_fixed: return AArch64::LD1x4WB_8B_register;
case AArch64::LD1x4WB_4H_fixed: return AArch64::LD1x4WB_4H_register;
case AArch64::LD1x4WB_2S_fixed: return AArch64::LD1x4WB_2S_register;
case AArch64::LD1x4WB_1D_fixed: return AArch64::LD1x4WB_1D_register;
case AArch64::LD1x4WB_16B_fixed: return AArch64::LD1x4WB_16B_register;
case AArch64::LD1x4WB_8H_fixed: return AArch64::LD1x4WB_8H_register;
case AArch64::LD1x4WB_4S_fixed: return AArch64::LD1x4WB_4S_register;
case AArch64::LD1x4WB_2D_fixed: return AArch64::LD1x4WB_2D_register;
case AArch64::ST1WB_8B_fixed: return AArch64::ST1WB_8B_register;
case AArch64::ST1WB_4H_fixed: return AArch64::ST1WB_4H_register;
case AArch64::ST1WB_2S_fixed: return AArch64::ST1WB_2S_register;
case AArch64::ST1WB_1D_fixed: return AArch64::ST1WB_1D_register;
case AArch64::ST1WB_16B_fixed: return AArch64::ST1WB_16B_register;
case AArch64::ST1WB_8H_fixed: return AArch64::ST1WB_8H_register;
case AArch64::ST1WB_4S_fixed: return AArch64::ST1WB_4S_register;
case AArch64::ST1WB_2D_fixed: return AArch64::ST1WB_2D_register;
case AArch64::ST2WB_8B_fixed: return AArch64::ST2WB_8B_register;
case AArch64::ST2WB_4H_fixed: return AArch64::ST2WB_4H_register;
case AArch64::ST2WB_2S_fixed: return AArch64::ST2WB_2S_register;
case AArch64::ST2WB_16B_fixed: return AArch64::ST2WB_16B_register;
case AArch64::ST2WB_8H_fixed: return AArch64::ST2WB_8H_register;
case AArch64::ST2WB_4S_fixed: return AArch64::ST2WB_4S_register;
case AArch64::ST2WB_2D_fixed: return AArch64::ST2WB_2D_register;
case AArch64::ST3WB_8B_fixed: return AArch64::ST3WB_8B_register;
case AArch64::ST3WB_4H_fixed: return AArch64::ST3WB_4H_register;
case AArch64::ST3WB_2S_fixed: return AArch64::ST3WB_2S_register;
case AArch64::ST3WB_16B_fixed: return AArch64::ST3WB_16B_register;
case AArch64::ST3WB_8H_fixed: return AArch64::ST3WB_8H_register;
case AArch64::ST3WB_4S_fixed: return AArch64::ST3WB_4S_register;
case AArch64::ST3WB_2D_fixed: return AArch64::ST3WB_2D_register;
case AArch64::ST4WB_8B_fixed: return AArch64::ST4WB_8B_register;
case AArch64::ST4WB_4H_fixed: return AArch64::ST4WB_4H_register;
case AArch64::ST4WB_2S_fixed: return AArch64::ST4WB_2S_register;
case AArch64::ST4WB_16B_fixed: return AArch64::ST4WB_16B_register;
case AArch64::ST4WB_8H_fixed: return AArch64::ST4WB_8H_register;
case AArch64::ST4WB_4S_fixed: return AArch64::ST4WB_4S_register;
case AArch64::ST4WB_2D_fixed: return AArch64::ST4WB_2D_register;
case AArch64::ST1x2WB_8B_fixed: return AArch64::ST1x2WB_8B_register;
case AArch64::ST1x2WB_4H_fixed: return AArch64::ST1x2WB_4H_register;
case AArch64::ST1x2WB_2S_fixed: return AArch64::ST1x2WB_2S_register;
case AArch64::ST1x2WB_1D_fixed: return AArch64::ST1x2WB_1D_register;
case AArch64::ST1x2WB_16B_fixed: return AArch64::ST1x2WB_16B_register;
case AArch64::ST1x2WB_8H_fixed: return AArch64::ST1x2WB_8H_register;
case AArch64::ST1x2WB_4S_fixed: return AArch64::ST1x2WB_4S_register;
case AArch64::ST1x2WB_2D_fixed: return AArch64::ST1x2WB_2D_register;
case AArch64::ST1x3WB_8B_fixed: return AArch64::ST1x3WB_8B_register;
case AArch64::ST1x3WB_4H_fixed: return AArch64::ST1x3WB_4H_register;
case AArch64::ST1x3WB_2S_fixed: return AArch64::ST1x3WB_2S_register;
case AArch64::ST1x3WB_1D_fixed: return AArch64::ST1x3WB_1D_register;
case AArch64::ST1x3WB_16B_fixed: return AArch64::ST1x3WB_16B_register;
case AArch64::ST1x3WB_8H_fixed: return AArch64::ST1x3WB_8H_register;
case AArch64::ST1x3WB_4S_fixed: return AArch64::ST1x3WB_4S_register;
case AArch64::ST1x3WB_2D_fixed: return AArch64::ST1x3WB_2D_register;
case AArch64::ST1x4WB_8B_fixed: return AArch64::ST1x4WB_8B_register;
case AArch64::ST1x4WB_4H_fixed: return AArch64::ST1x4WB_4H_register;
case AArch64::ST1x4WB_2S_fixed: return AArch64::ST1x4WB_2S_register;
case AArch64::ST1x4WB_1D_fixed: return AArch64::ST1x4WB_1D_register;
case AArch64::ST1x4WB_16B_fixed: return AArch64::ST1x4WB_16B_register;
case AArch64::ST1x4WB_8H_fixed: return AArch64::ST1x4WB_8H_register;
case AArch64::ST1x4WB_4S_fixed: return AArch64::ST1x4WB_4S_register;
case AArch64::ST1x4WB_2D_fixed: return AArch64::ST1x4WB_2D_register;
// Post-index of duplicate loads
case AArch64::LD2R_WB_8B_fixed: return AArch64::LD2R_WB_8B_register;
case AArch64::LD2R_WB_4H_fixed: return AArch64::LD2R_WB_4H_register;
case AArch64::LD2R_WB_2S_fixed: return AArch64::LD2R_WB_2S_register;
case AArch64::LD2R_WB_1D_fixed: return AArch64::LD2R_WB_1D_register;
case AArch64::LD2R_WB_16B_fixed: return AArch64::LD2R_WB_16B_register;
case AArch64::LD2R_WB_8H_fixed: return AArch64::LD2R_WB_8H_register;
case AArch64::LD2R_WB_4S_fixed: return AArch64::LD2R_WB_4S_register;
case AArch64::LD2R_WB_2D_fixed: return AArch64::LD2R_WB_2D_register;
case AArch64::LD3R_WB_8B_fixed: return AArch64::LD3R_WB_8B_register;
case AArch64::LD3R_WB_4H_fixed: return AArch64::LD3R_WB_4H_register;
case AArch64::LD3R_WB_2S_fixed: return AArch64::LD3R_WB_2S_register;
case AArch64::LD3R_WB_1D_fixed: return AArch64::LD3R_WB_1D_register;
case AArch64::LD3R_WB_16B_fixed: return AArch64::LD3R_WB_16B_register;
case AArch64::LD3R_WB_8H_fixed: return AArch64::LD3R_WB_8H_register;
case AArch64::LD3R_WB_4S_fixed: return AArch64::LD3R_WB_4S_register;
case AArch64::LD3R_WB_2D_fixed: return AArch64::LD3R_WB_2D_register;
case AArch64::LD4R_WB_8B_fixed: return AArch64::LD4R_WB_8B_register;
case AArch64::LD4R_WB_4H_fixed: return AArch64::LD4R_WB_4H_register;
case AArch64::LD4R_WB_2S_fixed: return AArch64::LD4R_WB_2S_register;
case AArch64::LD4R_WB_1D_fixed: return AArch64::LD4R_WB_1D_register;
case AArch64::LD4R_WB_16B_fixed: return AArch64::LD4R_WB_16B_register;
case AArch64::LD4R_WB_8H_fixed: return AArch64::LD4R_WB_8H_register;
case AArch64::LD4R_WB_4S_fixed: return AArch64::LD4R_WB_4S_register;
case AArch64::LD4R_WB_2D_fixed: return AArch64::LD4R_WB_2D_register;
// Post-index of lane loads
case AArch64::LD2LN_WB_B_fixed: return AArch64::LD2LN_WB_B_register;
case AArch64::LD2LN_WB_H_fixed: return AArch64::LD2LN_WB_H_register;
case AArch64::LD2LN_WB_S_fixed: return AArch64::LD2LN_WB_S_register;
case AArch64::LD2LN_WB_D_fixed: return AArch64::LD2LN_WB_D_register;
case AArch64::LD3LN_WB_B_fixed: return AArch64::LD3LN_WB_B_register;
case AArch64::LD3LN_WB_H_fixed: return AArch64::LD3LN_WB_H_register;
case AArch64::LD3LN_WB_S_fixed: return AArch64::LD3LN_WB_S_register;
case AArch64::LD3LN_WB_D_fixed: return AArch64::LD3LN_WB_D_register;
case AArch64::LD4LN_WB_B_fixed: return AArch64::LD4LN_WB_B_register;
case AArch64::LD4LN_WB_H_fixed: return AArch64::LD4LN_WB_H_register;
case AArch64::LD4LN_WB_S_fixed: return AArch64::LD4LN_WB_S_register;
case AArch64::LD4LN_WB_D_fixed: return AArch64::LD4LN_WB_D_register;
// Post-index of lane stores
case AArch64::ST2LN_WB_B_fixed: return AArch64::ST2LN_WB_B_register;
case AArch64::ST2LN_WB_H_fixed: return AArch64::ST2LN_WB_H_register;
case AArch64::ST2LN_WB_S_fixed: return AArch64::ST2LN_WB_S_register;
case AArch64::ST2LN_WB_D_fixed: return AArch64::ST2LN_WB_D_register;
case AArch64::ST3LN_WB_B_fixed: return AArch64::ST3LN_WB_B_register;
case AArch64::ST3LN_WB_H_fixed: return AArch64::ST3LN_WB_H_register;
case AArch64::ST3LN_WB_S_fixed: return AArch64::ST3LN_WB_S_register;
case AArch64::ST3LN_WB_D_fixed: return AArch64::ST3LN_WB_D_register;
case AArch64::ST4LN_WB_B_fixed: return AArch64::ST4LN_WB_B_register;
case AArch64::ST4LN_WB_H_fixed: return AArch64::ST4LN_WB_H_register;
case AArch64::ST4LN_WB_S_fixed: return AArch64::ST4LN_WB_S_register;
case AArch64::ST4LN_WB_D_fixed: return AArch64::ST4LN_WB_D_register;
}
return Opc; // If not one we handle, return it unchanged.
}
SDNode *AArch64DAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating,
unsigned NumVecs,
const uint16_t *Opcodes) {
assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
EVT VT = N->getValueType(0);
unsigned OpcodeIndex;
bool is64BitVector = VT.is64BitVector();
switch (VT.getScalarType().getSizeInBits()) {
case 8: OpcodeIndex = is64BitVector ? 0 : 4; break;
case 16: OpcodeIndex = is64BitVector ? 1 : 5; break;
case 32: OpcodeIndex = is64BitVector ? 2 : 6; break;
case 64: OpcodeIndex = is64BitVector ? 3 : 7; break;
default: llvm_unreachable("unhandled vector load type");
}
unsigned Opc = Opcodes[OpcodeIndex];
SmallVector<SDValue, 2> Ops;
unsigned AddrOpIdx = isUpdating ? 1 : 2;
Ops.push_back(N->getOperand(AddrOpIdx)); // Push back the Memory Address
if (isUpdating) {
SDValue Inc = N->getOperand(AddrOpIdx + 1);
if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
Opc = getVLDSTRegisterUpdateOpcode(Opc);
Ops.push_back(Inc);
}
Ops.push_back(N->getOperand(0)); // Push back the Chain
SmallVector<EVT, 3> ResTys;
// Push back the type of return super register
if (NumVecs == 1)
ResTys.push_back(VT);
else if (NumVecs == 3)
ResTys.push_back(MVT::Untyped);
else {
EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,
is64BitVector ? NumVecs : NumVecs * 2);
ResTys.push_back(ResTy);
}
if (isUpdating)
ResTys.push_back(MVT::i64); // Type of the updated register
ResTys.push_back(MVT::Other); // Type of the Chain
SDLoc dl(N);
SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
// Transfer memoperands.
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
if (NumVecs == 1)
return VLd;
// If NumVecs > 1, the return result is a super register containing 2-4
// consecutive vector registers.
SDValue SuperReg = SDValue(VLd, 0);
unsigned Sub0 = is64BitVector ? AArch64::dsub_0 : AArch64::qsub_0;
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
ReplaceUses(SDValue(N, Vec),
CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
// Update users of the Chain
ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
if (isUpdating)
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
return NULL;
}
SDNode *AArch64DAGToDAGISel::SelectVST(SDNode *N, bool isUpdating,
unsigned NumVecs,
const uint16_t *Opcodes) {
assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
SDLoc dl(N);
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
unsigned AddrOpIdx = isUpdating ? 1 : 2;
unsigned Vec0Idx = 3;
EVT VT = N->getOperand(Vec0Idx).getValueType();
unsigned OpcodeIndex;
bool is64BitVector = VT.is64BitVector();
switch (VT.getScalarType().getSizeInBits()) {
case 8: OpcodeIndex = is64BitVector ? 0 : 4; break;
case 16: OpcodeIndex = is64BitVector ? 1 : 5; break;
case 32: OpcodeIndex = is64BitVector ? 2 : 6; break;
case 64: OpcodeIndex = is64BitVector ? 3 : 7; break;
default: llvm_unreachable("unhandled vector store type");
}
unsigned Opc = Opcodes[OpcodeIndex];
SmallVector<EVT, 2> ResTys;
if (isUpdating)
ResTys.push_back(MVT::i64);
ResTys.push_back(MVT::Other); // Type for the Chain
SmallVector<SDValue, 6> Ops;
Ops.push_back(N->getOperand(AddrOpIdx)); // Push back the Memory Address
if (isUpdating) {
SDValue Inc = N->getOperand(AddrOpIdx + 1);
if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
Opc = getVLDSTRegisterUpdateOpcode(Opc);
Ops.push_back(Inc);
}
SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Idx,
N->op_begin() + Vec0Idx + NumVecs);
SDValue SrcReg = is64BitVector ? createDTuple(Regs) : createQTuple(Regs);
Ops.push_back(SrcReg);
// Push back the Chain
Ops.push_back(N->getOperand(0));
// Transfer memoperands.
SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
return VSt;
}
SDValue
AArch64DAGToDAGISel::getTargetSubregToReg(int SRIdx, SDLoc DL, EVT VT, EVT VTD,
SDValue Operand) {
SDNode *Reg = CurDAG->getMachineNode(TargetOpcode::SUBREG_TO_REG, DL,
VT, VTD, MVT::Other,
CurDAG->getTargetConstant(0, MVT::i64),
Operand,
CurDAG->getTargetConstant(AArch64::sub_64, MVT::i32));
return SDValue(Reg, 0);
}
SDNode *AArch64DAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
unsigned NumVecs,
const uint16_t *Opcodes) {
assert(NumVecs >=2 && NumVecs <= 4 && "Load Dup NumVecs out-of-range");
SDLoc dl(N);
EVT VT = N->getValueType(0);
unsigned OpcodeIndex;
bool is64BitVector = VT.is64BitVector();
switch (VT.getScalarType().getSizeInBits()) {
case 8: OpcodeIndex = is64BitVector ? 0 : 4; break;
case 16: OpcodeIndex = is64BitVector ? 1 : 5; break;
case 32: OpcodeIndex = is64BitVector ? 2 : 6; break;
case 64: OpcodeIndex = is64BitVector ? 3 : 7; break;
default: llvm_unreachable("unhandled vector duplicate lane load type");
}
unsigned Opc = Opcodes[OpcodeIndex];
SDValue SuperReg;
SmallVector<SDValue, 6> Ops;
Ops.push_back(N->getOperand(1)); // Push back the Memory Address
if (isUpdating) {
SDValue Inc = N->getOperand(2);
if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
Opc = getVLDSTRegisterUpdateOpcode(Opc);
Ops.push_back(Inc);
}
Ops.push_back(N->getOperand(0)); // Push back the Chain
SmallVector<EVT, 3> ResTys;
// Push back the type of return super register
if (NumVecs == 3)
ResTys.push_back(MVT::Untyped);
else {
EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,
is64BitVector ? NumVecs : NumVecs * 2);
ResTys.push_back(ResTy);
}
if (isUpdating)
ResTys.push_back(MVT::i64); // Type of the updated register
ResTys.push_back(MVT::Other); // Type of the Chain
SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
// Transfer memoperands.
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
SuperReg = SDValue(VLdDup, 0);
unsigned Sub0 = is64BitVector ? AArch64::dsub_0 : AArch64::qsub_0;
// Update uses of each registers in super register
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
ReplaceUses(SDValue(N, Vec),
CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
// Update uses of the Chain
ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
if (isUpdating)
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
return NULL;
}
// We only have 128-bit vector type of load/store lane instructions.
// If it is 64-bit vector, we also select it to the 128-bit instructions.
// Just use SUBREG_TO_REG to adapt the input to 128-bit vector and
// EXTRACT_SUBREG to get the 64-bit vector from the 128-bit vector output.
SDNode *AArch64DAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
bool isUpdating, unsigned NumVecs,
const uint16_t *Opcodes) {
assert(NumVecs >= 2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
SDLoc dl(N);
unsigned AddrOpIdx = isUpdating ? 1 : 2;
unsigned Vec0Idx = 3;
SDValue Chain = N->getOperand(0);
unsigned Lane =
cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
EVT VT = N->getOperand(Vec0Idx).getValueType();
bool is64BitVector = VT.is64BitVector();
EVT VT64; // 64-bit Vector Type
if (is64BitVector) {
VT64 = VT;
VT = EVT::getVectorVT(*CurDAG->getContext(), VT.getVectorElementType(),
VT.getVectorNumElements() * 2);
}
unsigned OpcodeIndex;
switch (VT.getScalarType().getSizeInBits()) {
case 8: OpcodeIndex = 0; break;
case 16: OpcodeIndex = 1; break;
case 32: OpcodeIndex = 2; break;
case 64: OpcodeIndex = 3; break;
default: llvm_unreachable("unhandled vector lane load/store type");
}
unsigned Opc = Opcodes[OpcodeIndex];
SmallVector<EVT, 3> ResTys;
if (IsLoad) {
// Push back the type of return super register
if (NumVecs == 3)
ResTys.push_back(MVT::Untyped);
else {
EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,
is64BitVector ? NumVecs : NumVecs * 2);
ResTys.push_back(ResTy);
}
}
if (isUpdating)
ResTys.push_back(MVT::i64); // Type of the updated register
ResTys.push_back(MVT::Other); // Type of Chain
SmallVector<SDValue, 5> Ops;
Ops.push_back(N->getOperand(AddrOpIdx)); // Push back the Memory Address
if (isUpdating) {
SDValue Inc = N->getOperand(AddrOpIdx + 1);
if (!isa<ConstantSDNode>(Inc.getNode())) // Increment in Register
Opc = getVLDSTRegisterUpdateOpcode(Opc);
Ops.push_back(Inc);
}
SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Idx,
N->op_begin() + Vec0Idx + NumVecs);
if (is64BitVector)
for (unsigned i = 0; i < Regs.size(); i++)
Regs[i] = getTargetSubregToReg(AArch64::sub_64, dl, VT, VT64, Regs[i]);
SDValue SuperReg = createQTuple(Regs);
Ops.push_back(SuperReg); // Source Reg
SDValue LaneValue = CurDAG->getTargetConstant(Lane, MVT::i32);
Ops.push_back(LaneValue);
Ops.push_back(Chain); // Push back the Chain
SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
if (!IsLoad)
return VLdLn;
// Extract the subregisters.
SuperReg = SDValue(VLdLn, 0);
unsigned Sub0 = AArch64::qsub_0;
// Update uses of each registers in super register
for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
SDValue SUB0 = CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg);
if (is64BitVector) {
SUB0 = CurDAG->getTargetExtractSubreg(AArch64::sub_64, dl, VT64, SUB0);
}
ReplaceUses(SDValue(N, Vec), SUB0);
}
ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
if (isUpdating)
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
return NULL;
}
unsigned AArch64DAGToDAGISel::getTBLOpc(bool IsExt, bool Is64Bit,
unsigned NumOfVec) {
assert(NumOfVec >= 1 && NumOfVec <= 4 && "VST NumVecs out-of-range");
unsigned Opc = 0;
switch (NumOfVec) {
default:
break;
case 1:
if (IsExt)
Opc = Is64Bit ? AArch64::TBX1_8b : AArch64::TBX1_16b;
else
Opc = Is64Bit ? AArch64::TBL1_8b : AArch64::TBL1_16b;
break;
case 2:
if (IsExt)
Opc = Is64Bit ? AArch64::TBX2_8b : AArch64::TBX2_16b;
else
Opc = Is64Bit ? AArch64::TBL2_8b : AArch64::TBL2_16b;
break;
case 3:
if (IsExt)
Opc = Is64Bit ? AArch64::TBX3_8b : AArch64::TBX3_16b;
else
Opc = Is64Bit ? AArch64::TBL3_8b : AArch64::TBL3_16b;
break;
case 4:
if (IsExt)
Opc = Is64Bit ? AArch64::TBX4_8b : AArch64::TBX4_16b;
else
Opc = Is64Bit ? AArch64::TBL4_8b : AArch64::TBL4_16b;
break;
}
return Opc;
}
SDNode *AArch64DAGToDAGISel::SelectVTBL(SDNode *N, unsigned NumVecs,
bool IsExt) {
assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
SDLoc dl(N);
// Check the element of look up table is 64-bit or not
unsigned Vec0Idx = IsExt ? 2 : 1;
assert(!N->getOperand(Vec0Idx + 0).getValueType().is64BitVector() &&
"The element of lookup table for vtbl and vtbx must be 128-bit");
// Check the return value type is 64-bit or not
EVT ResVT = N->getValueType(0);
bool is64BitRes = ResVT.is64BitVector();
// Create new SDValue for vector list
SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Idx,
N->op_begin() + Vec0Idx + NumVecs);
SDValue TblReg = createQTuple(Regs);
unsigned Opc = getTBLOpc(IsExt, is64BitRes, NumVecs);
SmallVector<SDValue, 3> Ops;
if (IsExt)
Ops.push_back(N->getOperand(1));
Ops.push_back(TblReg);
Ops.push_back(N->getOperand(Vec0Idx + NumVecs));
return CurDAG->getMachineNode(Opc, dl, ResVT, Ops);
}
SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
// Dump information about the Node being selected
DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << "\n");
if (Node->isMachineOpcode()) {
DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n");
Node->setNodeId(-1);
return NULL;
}
switch (Node->getOpcode()) {
case ISD::ATOMIC_LOAD_ADD:
return SelectAtomic(Node,
AArch64::ATOMIC_LOAD_ADD_I8,
AArch64::ATOMIC_LOAD_ADD_I16,
AArch64::ATOMIC_LOAD_ADD_I32,
AArch64::ATOMIC_LOAD_ADD_I64);
case ISD::ATOMIC_LOAD_SUB:
return SelectAtomic(Node,
AArch64::ATOMIC_LOAD_SUB_I8,
AArch64::ATOMIC_LOAD_SUB_I16,
AArch64::ATOMIC_LOAD_SUB_I32,
AArch64::ATOMIC_LOAD_SUB_I64);
case ISD::ATOMIC_LOAD_AND:
return SelectAtomic(Node,
AArch64::ATOMIC_LOAD_AND_I8,
AArch64::ATOMIC_LOAD_AND_I16,
AArch64::ATOMIC_LOAD_AND_I32,
AArch64::ATOMIC_LOAD_AND_I64);
case ISD::ATOMIC_LOAD_OR:
return SelectAtomic(Node,
AArch64::ATOMIC_LOAD_OR_I8,
AArch64::ATOMIC_LOAD_OR_I16,
AArch64::ATOMIC_LOAD_OR_I32,
AArch64::ATOMIC_LOAD_OR_I64);
case ISD::ATOMIC_LOAD_XOR:
return SelectAtomic(Node,
AArch64::ATOMIC_LOAD_XOR_I8,
AArch64::ATOMIC_LOAD_XOR_I16,
AArch64::ATOMIC_LOAD_XOR_I32,
AArch64::ATOMIC_LOAD_XOR_I64);
case ISD::ATOMIC_LOAD_NAND:
return SelectAtomic(Node,
AArch64::ATOMIC_LOAD_NAND_I8,
AArch64::ATOMIC_LOAD_NAND_I16,
AArch64::ATOMIC_LOAD_NAND_I32,
AArch64::ATOMIC_LOAD_NAND_I64);
case ISD::ATOMIC_LOAD_MIN:
return SelectAtomic(Node,
AArch64::ATOMIC_LOAD_MIN_I8,
AArch64::ATOMIC_LOAD_MIN_I16,
AArch64::ATOMIC_LOAD_MIN_I32,
AArch64::ATOMIC_LOAD_MIN_I64);
case ISD::ATOMIC_LOAD_MAX:
return SelectAtomic(Node,
AArch64::ATOMIC_LOAD_MAX_I8,
AArch64::ATOMIC_LOAD_MAX_I16,
AArch64::ATOMIC_LOAD_MAX_I32,
AArch64::ATOMIC_LOAD_MAX_I64);
case ISD::ATOMIC_LOAD_UMIN:
return SelectAtomic(Node,
AArch64::ATOMIC_LOAD_UMIN_I8,
AArch64::ATOMIC_LOAD_UMIN_I16,
AArch64::ATOMIC_LOAD_UMIN_I32,
AArch64::ATOMIC_LOAD_UMIN_I64);
case ISD::ATOMIC_LOAD_UMAX:
return SelectAtomic(Node,
AArch64::ATOMIC_LOAD_UMAX_I8,
AArch64::ATOMIC_LOAD_UMAX_I16,
AArch64::ATOMIC_LOAD_UMAX_I32,
AArch64::ATOMIC_LOAD_UMAX_I64);
case ISD::ATOMIC_SWAP:
return SelectAtomic(Node,
AArch64::ATOMIC_SWAP_I8,
AArch64::ATOMIC_SWAP_I16,
AArch64::ATOMIC_SWAP_I32,
AArch64::ATOMIC_SWAP_I64);
case ISD::ATOMIC_CMP_SWAP:
return SelectAtomic(Node,
AArch64::ATOMIC_CMP_SWAP_I8,
AArch64::ATOMIC_CMP_SWAP_I16,
AArch64::ATOMIC_CMP_SWAP_I32,
AArch64::ATOMIC_CMP_SWAP_I64);
case ISD::FrameIndex: {
int FI = cast<FrameIndexSDNode>(Node)->getIndex();
EVT PtrTy = getTargetLowering()->getPointerTy();
SDValue TFI = CurDAG->getTargetFrameIndex(FI, PtrTy);
return CurDAG->SelectNodeTo(Node, AArch64::ADDxxi_lsl0_s, PtrTy,
TFI, CurDAG->getTargetConstant(0, PtrTy));
}
case ISD::ConstantPool: {
// Constant pools are fine, just create a Target entry.
ConstantPoolSDNode *CN = cast<ConstantPoolSDNode>(Node);
const Constant *C = CN->getConstVal();
SDValue CP = CurDAG->getTargetConstantPool(C, CN->getValueType(0));
ReplaceUses(SDValue(Node, 0), CP);
return NULL;
}
case ISD::Constant: {
SDNode *ResNode = 0;
if (cast<ConstantSDNode>(Node)->getZExtValue() == 0) {
// XZR and WZR are probably even better than an actual move: most of the
// time they can be folded into another instruction with *no* cost.
EVT Ty = Node->getValueType(0);
assert((Ty == MVT::i32 || Ty == MVT::i64) && "unexpected type");
uint16_t Register = Ty == MVT::i32 ? AArch64::WZR : AArch64::XZR;
ResNode = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
SDLoc(Node),
Register, Ty).getNode();
}
// Next best option is a move-immediate, see if we can do that.
if (!ResNode) {
ResNode = TrySelectToMoveImm(Node);
}
if (ResNode)
return ResNode;
// If even that fails we fall back to a lit-pool entry at the moment. Future
// tuning may change this to a sequence of MOVZ/MOVN/MOVK instructions.
ResNode = SelectToLitPool(Node);
assert(ResNode && "We need *some* way to materialise a constant");
// We want to continue selection at this point since the litpool access
// generated used generic nodes for simplicity.
ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
Node = ResNode;
break;
}
case ISD::ConstantFP: {
if (A64Imms::isFPImm(cast<ConstantFPSDNode>(Node)->getValueAPF())) {
// FMOV will take care of it from TableGen
break;
}
SDNode *ResNode = LowerToFPLitPool(Node);
ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
// We want to continue selection at this point since the litpool access
// generated used generic nodes for simplicity.
Node = ResNode;
break;
}
case AArch64ISD::NEON_LD1_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD1WB_8B_fixed, AArch64::LD1WB_4H_fixed,
AArch64::LD1WB_2S_fixed, AArch64::LD1WB_1D_fixed,
AArch64::LD1WB_16B_fixed, AArch64::LD1WB_8H_fixed,
AArch64::LD1WB_4S_fixed, AArch64::LD1WB_2D_fixed
};
return SelectVLD(Node, true, 1, Opcodes);
}
case AArch64ISD::NEON_LD2_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD2WB_8B_fixed, AArch64::LD2WB_4H_fixed,
AArch64::LD2WB_2S_fixed, AArch64::LD1x2WB_1D_fixed,
AArch64::LD2WB_16B_fixed, AArch64::LD2WB_8H_fixed,
AArch64::LD2WB_4S_fixed, AArch64::LD2WB_2D_fixed
};
return SelectVLD(Node, true, 2, Opcodes);
}
case AArch64ISD::NEON_LD3_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD3WB_8B_fixed, AArch64::LD3WB_4H_fixed,
AArch64::LD3WB_2S_fixed, AArch64::LD1x3WB_1D_fixed,
AArch64::LD3WB_16B_fixed, AArch64::LD3WB_8H_fixed,
AArch64::LD3WB_4S_fixed, AArch64::LD3WB_2D_fixed
};
return SelectVLD(Node, true, 3, Opcodes);
}
case AArch64ISD::NEON_LD4_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD4WB_8B_fixed, AArch64::LD4WB_4H_fixed,
AArch64::LD4WB_2S_fixed, AArch64::LD1x4WB_1D_fixed,
AArch64::LD4WB_16B_fixed, AArch64::LD4WB_8H_fixed,
AArch64::LD4WB_4S_fixed, AArch64::LD4WB_2D_fixed
};
return SelectVLD(Node, true, 4, Opcodes);
}
case AArch64ISD::NEON_LD1x2_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD1x2WB_8B_fixed, AArch64::LD1x2WB_4H_fixed,
AArch64::LD1x2WB_2S_fixed, AArch64::LD1x2WB_1D_fixed,
AArch64::LD1x2WB_16B_fixed, AArch64::LD1x2WB_8H_fixed,
AArch64::LD1x2WB_4S_fixed, AArch64::LD1x2WB_2D_fixed
};
return SelectVLD(Node, true, 2, Opcodes);
}
case AArch64ISD::NEON_LD1x3_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD1x3WB_8B_fixed, AArch64::LD1x3WB_4H_fixed,
AArch64::LD1x3WB_2S_fixed, AArch64::LD1x3WB_1D_fixed,
AArch64::LD1x3WB_16B_fixed, AArch64::LD1x3WB_8H_fixed,
AArch64::LD1x3WB_4S_fixed, AArch64::LD1x3WB_2D_fixed
};
return SelectVLD(Node, true, 3, Opcodes);
}
case AArch64ISD::NEON_LD1x4_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD1x4WB_8B_fixed, AArch64::LD1x4WB_4H_fixed,
AArch64::LD1x4WB_2S_fixed, AArch64::LD1x4WB_1D_fixed,
AArch64::LD1x4WB_16B_fixed, AArch64::LD1x4WB_8H_fixed,
AArch64::LD1x4WB_4S_fixed, AArch64::LD1x4WB_2D_fixed
};
return SelectVLD(Node, true, 4, Opcodes);
}
case AArch64ISD::NEON_ST1_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST1WB_8B_fixed, AArch64::ST1WB_4H_fixed,
AArch64::ST1WB_2S_fixed, AArch64::ST1WB_1D_fixed,
AArch64::ST1WB_16B_fixed, AArch64::ST1WB_8H_fixed,
AArch64::ST1WB_4S_fixed, AArch64::ST1WB_2D_fixed
};
return SelectVST(Node, true, 1, Opcodes);
}
case AArch64ISD::NEON_ST2_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST2WB_8B_fixed, AArch64::ST2WB_4H_fixed,
AArch64::ST2WB_2S_fixed, AArch64::ST1x2WB_1D_fixed,
AArch64::ST2WB_16B_fixed, AArch64::ST2WB_8H_fixed,
AArch64::ST2WB_4S_fixed, AArch64::ST2WB_2D_fixed
};
return SelectVST(Node, true, 2, Opcodes);
}
case AArch64ISD::NEON_ST3_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST3WB_8B_fixed, AArch64::ST3WB_4H_fixed,
AArch64::ST3WB_2S_fixed, AArch64::ST1x3WB_1D_fixed,
AArch64::ST3WB_16B_fixed, AArch64::ST3WB_8H_fixed,
AArch64::ST3WB_4S_fixed, AArch64::ST3WB_2D_fixed
};
return SelectVST(Node, true, 3, Opcodes);
}
case AArch64ISD::NEON_ST4_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST4WB_8B_fixed, AArch64::ST4WB_4H_fixed,
AArch64::ST4WB_2S_fixed, AArch64::ST1x4WB_1D_fixed,
AArch64::ST4WB_16B_fixed, AArch64::ST4WB_8H_fixed,
AArch64::ST4WB_4S_fixed, AArch64::ST4WB_2D_fixed
};
return SelectVST(Node, true, 4, Opcodes);
}
case AArch64ISD::NEON_LD2DUP: {
static const uint16_t Opcodes[] = {
AArch64::LD2R_8B, AArch64::LD2R_4H, AArch64::LD2R_2S,
AArch64::LD2R_1D, AArch64::LD2R_16B, AArch64::LD2R_8H,
AArch64::LD2R_4S, AArch64::LD2R_2D
};
return SelectVLDDup(Node, false, 2, Opcodes);
}
case AArch64ISD::NEON_LD3DUP: {
static const uint16_t Opcodes[] = {
AArch64::LD3R_8B, AArch64::LD3R_4H, AArch64::LD3R_2S,
AArch64::LD3R_1D, AArch64::LD3R_16B, AArch64::LD3R_8H,
AArch64::LD3R_4S, AArch64::LD3R_2D
};
return SelectVLDDup(Node, false, 3, Opcodes);
}
case AArch64ISD::NEON_LD4DUP: {
static const uint16_t Opcodes[] = {
AArch64::LD4R_8B, AArch64::LD4R_4H, AArch64::LD4R_2S,
AArch64::LD4R_1D, AArch64::LD4R_16B, AArch64::LD4R_8H,
AArch64::LD4R_4S, AArch64::LD4R_2D
};
return SelectVLDDup(Node, false, 4, Opcodes);
}
case AArch64ISD::NEON_LD2DUP_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD2R_WB_8B_fixed, AArch64::LD2R_WB_4H_fixed,
AArch64::LD2R_WB_2S_fixed, AArch64::LD2R_WB_1D_fixed,
AArch64::LD2R_WB_16B_fixed, AArch64::LD2R_WB_8H_fixed,
AArch64::LD2R_WB_4S_fixed, AArch64::LD2R_WB_2D_fixed
};
return SelectVLDDup(Node, true, 2, Opcodes);
}
case AArch64ISD::NEON_LD3DUP_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD3R_WB_8B_fixed, AArch64::LD3R_WB_4H_fixed,
AArch64::LD3R_WB_2S_fixed, AArch64::LD3R_WB_1D_fixed,
AArch64::LD3R_WB_16B_fixed, AArch64::LD3R_WB_8H_fixed,
AArch64::LD3R_WB_4S_fixed, AArch64::LD3R_WB_2D_fixed
};
return SelectVLDDup(Node, true, 3, Opcodes);
}
case AArch64ISD::NEON_LD4DUP_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD4R_WB_8B_fixed, AArch64::LD4R_WB_4H_fixed,
AArch64::LD4R_WB_2S_fixed, AArch64::LD4R_WB_1D_fixed,
AArch64::LD4R_WB_16B_fixed, AArch64::LD4R_WB_8H_fixed,
AArch64::LD4R_WB_4S_fixed, AArch64::LD4R_WB_2D_fixed
};
return SelectVLDDup(Node, true, 4, Opcodes);
}
case AArch64ISD::NEON_LD2LN_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD2LN_WB_B_fixed, AArch64::LD2LN_WB_H_fixed,
AArch64::LD2LN_WB_S_fixed, AArch64::LD2LN_WB_D_fixed
};
return SelectVLDSTLane(Node, true, true, 2, Opcodes);
}
case AArch64ISD::NEON_LD3LN_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD3LN_WB_B_fixed, AArch64::LD3LN_WB_H_fixed,
AArch64::LD3LN_WB_S_fixed, AArch64::LD3LN_WB_D_fixed
};
return SelectVLDSTLane(Node, true, true, 3, Opcodes);
}
case AArch64ISD::NEON_LD4LN_UPD: {
static const uint16_t Opcodes[] = {
AArch64::LD4LN_WB_B_fixed, AArch64::LD4LN_WB_H_fixed,
AArch64::LD4LN_WB_S_fixed, AArch64::LD4LN_WB_D_fixed
};
return SelectVLDSTLane(Node, true, true, 4, Opcodes);
}
case AArch64ISD::NEON_ST2LN_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST2LN_WB_B_fixed, AArch64::ST2LN_WB_H_fixed,
AArch64::ST2LN_WB_S_fixed, AArch64::ST2LN_WB_D_fixed
};
return SelectVLDSTLane(Node, false, true, 2, Opcodes);
}
case AArch64ISD::NEON_ST3LN_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST3LN_WB_B_fixed, AArch64::ST3LN_WB_H_fixed,
AArch64::ST3LN_WB_S_fixed, AArch64::ST3LN_WB_D_fixed
};
return SelectVLDSTLane(Node, false, true, 3, Opcodes);
}
case AArch64ISD::NEON_ST4LN_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST4LN_WB_B_fixed, AArch64::ST4LN_WB_H_fixed,
AArch64::ST4LN_WB_S_fixed, AArch64::ST4LN_WB_D_fixed
};
return SelectVLDSTLane(Node, false, true, 4, Opcodes);
}
case AArch64ISD::NEON_ST1x2_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST1x2WB_8B_fixed, AArch64::ST1x2WB_4H_fixed,
AArch64::ST1x2WB_2S_fixed, AArch64::ST1x2WB_1D_fixed,
AArch64::ST1x2WB_16B_fixed, AArch64::ST1x2WB_8H_fixed,
AArch64::ST1x2WB_4S_fixed, AArch64::ST1x2WB_2D_fixed
};
return SelectVST(Node, true, 2, Opcodes);
}
case AArch64ISD::NEON_ST1x3_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST1x3WB_8B_fixed, AArch64::ST1x3WB_4H_fixed,
AArch64::ST1x3WB_2S_fixed, AArch64::ST1x3WB_1D_fixed,
AArch64::ST1x3WB_16B_fixed, AArch64::ST1x3WB_8H_fixed,
AArch64::ST1x3WB_4S_fixed, AArch64::ST1x3WB_2D_fixed
};
return SelectVST(Node, true, 3, Opcodes);
}
case AArch64ISD::NEON_ST1x4_UPD: {
static const uint16_t Opcodes[] = {
AArch64::ST1x4WB_8B_fixed, AArch64::ST1x4WB_4H_fixed,
AArch64::ST1x4WB_2S_fixed, AArch64::ST1x4WB_1D_fixed,
AArch64::ST1x4WB_16B_fixed, AArch64::ST1x4WB_8H_fixed,
AArch64::ST1x4WB_4S_fixed, AArch64::ST1x4WB_2D_fixed
};
return SelectVST(Node, true, 4, Opcodes);
}
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
bool IsExt = false;
switch (IntNo) {
default:
break;
case Intrinsic::aarch64_neon_vtbx1:
IsExt = true;
case Intrinsic::aarch64_neon_vtbl1:
return SelectVTBL(Node, 1, IsExt);
case Intrinsic::aarch64_neon_vtbx2:
IsExt = true;
case Intrinsic::aarch64_neon_vtbl2:
return SelectVTBL(Node, 2, IsExt);
case Intrinsic::aarch64_neon_vtbx3:
IsExt = true;
case Intrinsic::aarch64_neon_vtbl3:
return SelectVTBL(Node, 3, IsExt);
case Intrinsic::aarch64_neon_vtbx4:
IsExt = true;
case Intrinsic::aarch64_neon_vtbl4:
return SelectVTBL(Node, 4, IsExt);
}
break;
}
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN: {
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
switch (IntNo) {
default:
break;
case Intrinsic::arm_neon_vld1: {
static const uint16_t Opcodes[] = {
AArch64::LD1_8B, AArch64::LD1_4H, AArch64::LD1_2S, AArch64::LD1_1D,
AArch64::LD1_16B, AArch64::LD1_8H, AArch64::LD1_4S, AArch64::LD1_2D
};
return SelectVLD(Node, false, 1, Opcodes);
}
case Intrinsic::arm_neon_vld2: {
static const uint16_t Opcodes[] = {
AArch64::LD2_8B, AArch64::LD2_4H, AArch64::LD2_2S, AArch64::LD1x2_1D,
AArch64::LD2_16B, AArch64::LD2_8H, AArch64::LD2_4S, AArch64::LD2_2D
};
return SelectVLD(Node, false, 2, Opcodes);
}
case Intrinsic::arm_neon_vld3: {
static const uint16_t Opcodes[] = {
AArch64::LD3_8B, AArch64::LD3_4H, AArch64::LD3_2S, AArch64::LD1x3_1D,
AArch64::LD3_16B, AArch64::LD3_8H, AArch64::LD3_4S, AArch64::LD3_2D
};
return SelectVLD(Node, false, 3, Opcodes);
}
case Intrinsic::arm_neon_vld4: {
static const uint16_t Opcodes[] = {
AArch64::LD4_8B, AArch64::LD4_4H, AArch64::LD4_2S, AArch64::LD1x4_1D,
AArch64::LD4_16B, AArch64::LD4_8H, AArch64::LD4_4S, AArch64::LD4_2D
};
return SelectVLD(Node, false, 4, Opcodes);
}
case Intrinsic::aarch64_neon_vld1x2: {
static const uint16_t Opcodes[] = {
AArch64::LD1x2_8B, AArch64::LD1x2_4H, AArch64::LD1x2_2S,
AArch64::LD1x2_1D, AArch64::LD1x2_16B, AArch64::LD1x2_8H,
AArch64::LD1x2_4S, AArch64::LD1x2_2D
};
return SelectVLD(Node, false, 2, Opcodes);
}
case Intrinsic::aarch64_neon_vld1x3: {
static const uint16_t Opcodes[] = {
AArch64::LD1x3_8B, AArch64::LD1x3_4H, AArch64::LD1x3_2S,
AArch64::LD1x3_1D, AArch64::LD1x3_16B, AArch64::LD1x3_8H,
AArch64::LD1x3_4S, AArch64::LD1x3_2D
};
return SelectVLD(Node, false, 3, Opcodes);
}
case Intrinsic::aarch64_neon_vld1x4: {
static const uint16_t Opcodes[] = {
AArch64::LD1x4_8B, AArch64::LD1x4_4H, AArch64::LD1x4_2S,
AArch64::LD1x4_1D, AArch64::LD1x4_16B, AArch64::LD1x4_8H,
AArch64::LD1x4_4S, AArch64::LD1x4_2D
};
return SelectVLD(Node, false, 4, Opcodes);
}
case Intrinsic::arm_neon_vst1: {
static const uint16_t Opcodes[] = {
AArch64::ST1_8B, AArch64::ST1_4H, AArch64::ST1_2S, AArch64::ST1_1D,
AArch64::ST1_16B, AArch64::ST1_8H, AArch64::ST1_4S, AArch64::ST1_2D
};
return SelectVST(Node, false, 1, Opcodes);
}
case Intrinsic::arm_neon_vst2: {
static const uint16_t Opcodes[] = {
AArch64::ST2_8B, AArch64::ST2_4H, AArch64::ST2_2S, AArch64::ST1x2_1D,
AArch64::ST2_16B, AArch64::ST2_8H, AArch64::ST2_4S, AArch64::ST2_2D
};
return SelectVST(Node, false, 2, Opcodes);
}
case Intrinsic::arm_neon_vst3: {
static const uint16_t Opcodes[] = {
AArch64::ST3_8B, AArch64::ST3_4H, AArch64::ST3_2S, AArch64::ST1x3_1D,
AArch64::ST3_16B, AArch64::ST3_8H, AArch64::ST3_4S, AArch64::ST3_2D
};
return SelectVST(Node, false, 3, Opcodes);
}
case Intrinsic::arm_neon_vst4: {
static const uint16_t Opcodes[] = {
AArch64::ST4_8B, AArch64::ST4_4H, AArch64::ST4_2S, AArch64::ST1x4_1D,
AArch64::ST4_16B, AArch64::ST4_8H, AArch64::ST4_4S, AArch64::ST4_2D
};
return SelectVST(Node, false, 4, Opcodes);
}
case Intrinsic::aarch64_neon_vst1x2: {
static const uint16_t Opcodes[] = {
AArch64::ST1x2_8B, AArch64::ST1x2_4H, AArch64::ST1x2_2S,
AArch64::ST1x2_1D, AArch64::ST1x2_16B, AArch64::ST1x2_8H,
AArch64::ST1x2_4S, AArch64::ST1x2_2D
};
return SelectVST(Node, false, 2, Opcodes);
}
case Intrinsic::aarch64_neon_vst1x3: {
static const uint16_t Opcodes[] = {
AArch64::ST1x3_8B, AArch64::ST1x3_4H, AArch64::ST1x3_2S,
AArch64::ST1x3_1D, AArch64::ST1x3_16B, AArch64::ST1x3_8H,
AArch64::ST1x3_4S, AArch64::ST1x3_2D
};
return SelectVST(Node, false, 3, Opcodes);
}
case Intrinsic::aarch64_neon_vst1x4: {
static const uint16_t Opcodes[] = {
AArch64::ST1x4_8B, AArch64::ST1x4_4H, AArch64::ST1x4_2S,
AArch64::ST1x4_1D, AArch64::ST1x4_16B, AArch64::ST1x4_8H,
AArch64::ST1x4_4S, AArch64::ST1x4_2D
};
return SelectVST(Node, false, 4, Opcodes);
}
case Intrinsic::arm_neon_vld2lane: {
static const uint16_t Opcodes[] = {
AArch64::LD2LN_B, AArch64::LD2LN_H, AArch64::LD2LN_S, AArch64::LD2LN_D
};
return SelectVLDSTLane(Node, true, false, 2, Opcodes);
}
case Intrinsic::arm_neon_vld3lane: {
static const uint16_t Opcodes[] = {
AArch64::LD3LN_B, AArch64::LD3LN_H, AArch64::LD3LN_S, AArch64::LD3LN_D
};
return SelectVLDSTLane(Node, true, false, 3, Opcodes);
}
case Intrinsic::arm_neon_vld4lane: {
static const uint16_t Opcodes[] = {
AArch64::LD4LN_B, AArch64::LD4LN_H, AArch64::LD4LN_S, AArch64::LD4LN_D
};
return SelectVLDSTLane(Node, true, false, 4, Opcodes);
}
case Intrinsic::arm_neon_vst2lane: {
static const uint16_t Opcodes[] = {
AArch64::ST2LN_B, AArch64::ST2LN_H, AArch64::ST2LN_S, AArch64::ST2LN_D
};
return SelectVLDSTLane(Node, false, false, 2, Opcodes);
}
case Intrinsic::arm_neon_vst3lane: {
static const uint16_t Opcodes[] = {
AArch64::ST3LN_B, AArch64::ST3LN_H, AArch64::ST3LN_S, AArch64::ST3LN_D
};
return SelectVLDSTLane(Node, false, false, 3, Opcodes);
}
case Intrinsic::arm_neon_vst4lane: {
static const uint16_t Opcodes[] = {
AArch64::ST4LN_B, AArch64::ST4LN_H, AArch64::ST4LN_S, AArch64::ST4LN_D
};
return SelectVLDSTLane(Node, false, false, 4, Opcodes);
}
} // End of switch IntNo
break;
} // End of case ISD::INTRINSIC_VOID and :ISD::INTRINSIC_W_CHAIN
default:
break; // Let generic code handle it
}
SDNode *ResNode = SelectCode(Node);
DEBUG(dbgs() << "=> ";
if (ResNode == NULL || ResNode == Node)
Node->dump(CurDAG);
else
ResNode->dump(CurDAG);
dbgs() << "\n");
return ResNode;
}
/// This pass converts a legalized DAG into a AArch64-specific DAG, ready for
/// instruction scheduling.
FunctionPass *llvm::createAArch64ISelDAG(AArch64TargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new AArch64DAGToDAGISel(TM, OptLevel);
}