blob: 0abc3f7517e03d6c0ec969b2462676bf625574b6 [file] [log] [blame]
//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Class definitions
//===----------------------------------------------------------------------===//
class ImmediateAsmOperand<string name>
: AsmOperandClass {
let Name = name;
let RenderMethod = "addImmOperands";
}
// Constructs both a DAG pattern and instruction operand for an immediate
// of type VT. PRED returns true if a node is acceptable and XFORM returns
// the operand value associated with the node. ASMOP is the name of the
// associated asm operand, and also forms the basis of the asm print method.
class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
: PatLeaf<(vt imm), pred, xform>, Operand<vt> {
let PrintMethod = "print"##asmop##"Operand";
let ParserMatchClass = !cast<AsmOperandClass>(asmop);
}
// Constructs both a DAG pattern and instruction operand for a PC-relative
// address with address size VT. SELF is the name of the operand.
class PCRelAddress<ValueType vt, string self>
: ComplexPattern<vt, 1, "selectPCRelAddress", [z_pcrel_wrapper]>,
Operand<vt> {
let MIOperandInfo = (ops !cast<Operand>(self));
}
// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
class AddressAsmOperand<string format, string bitsize, string dispsize>
: AsmOperandClass {
let Name = format##bitsize##"Disp"##dispsize;
let ParserMethod = "parse"##format##bitsize;
let RenderMethod = "add"##format##"Operands";
}
// Constructs both a DAG pattern and instruction operand for an addressing mode.
// The mode is selected by custom code in selectTYPE...SUFFIX(). The address
// registers have BITSIZE bits and displacements have DISPSIZE bits. NUMOPS is
// the number of operands that make up an address and OPERANDS lists the types
// of those operands using (ops ...). FORMAT is the type of addressing mode,
// which needs to match the names used in AddressAsmOperand.
class AddressingMode<string type, string bitsize, string dispsize,
string suffix, int numops, string format, dag operands>
: ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
"select"##type##dispsize##suffix,
[add, sub, or, frameindex, z_adjdynalloc]>,
Operand<!cast<ValueType>("i"##bitsize)> {
let PrintMethod = "print"##format##"Operand";
let MIOperandInfo = operands;
let ParserMatchClass =
!cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize);
}
// An addressing mode with a base and displacement but no index.
class BDMode<string type, string bitsize, string dispsize, string suffix>
: AddressingMode<type, bitsize, dispsize, suffix, 2, "BDAddr",
(ops !cast<RegisterOperand>("ADDR"##bitsize),
!cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
// An addressing mode with a base, displacement and index.
class BDXMode<string type, string bitsize, string dispsize, string suffix>
: AddressingMode<type, bitsize, dispsize, suffix, 3, "BDXAddr",
(ops !cast<RegisterOperand>("ADDR"##bitsize),
!cast<Immediate>("disp"##dispsize##"imm"##bitsize),
!cast<RegisterOperand>("ADDR"##bitsize))>;
//===----------------------------------------------------------------------===//
// Extracting immediate operands from nodes
// These all create MVT::i64 nodes to ensure the value is not sign-extended
// when converted from an SDNode to a MachineOperand later on.
//===----------------------------------------------------------------------===//
// Bits 0-15 (counting from the lsb).
def LL16 : SDNodeXForm<imm, [{
uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
return CurDAG->getTargetConstant(Value, MVT::i64);
}]>;
// Bits 16-31 (counting from the lsb).
def LH16 : SDNodeXForm<imm, [{
uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
return CurDAG->getTargetConstant(Value, MVT::i64);
}]>;
// Bits 32-47 (counting from the lsb).
def HL16 : SDNodeXForm<imm, [{
uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
return CurDAG->getTargetConstant(Value, MVT::i64);
}]>;
// Bits 48-63 (counting from the lsb).
def HH16 : SDNodeXForm<imm, [{
uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
return CurDAG->getTargetConstant(Value, MVT::i64);
}]>;
// Low 32 bits.
def LF32 : SDNodeXForm<imm, [{
uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
return CurDAG->getTargetConstant(Value, MVT::i64);
}]>;
// High 32 bits.
def HF32 : SDNodeXForm<imm, [{
uint64_t Value = N->getZExtValue() >> 32;
return CurDAG->getTargetConstant(Value, MVT::i64);
}]>;
// Truncate an immediate to a 8-bit signed quantity.
def SIMM8 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64);
}]>;
// Truncate an immediate to a 8-bit unsigned quantity.
def UIMM8 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64);
}]>;
// Truncate an immediate to a 16-bit signed quantity.
def SIMM16 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64);
}]>;
// Truncate an immediate to a 16-bit unsigned quantity.
def UIMM16 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64);
}]>;
// Truncate an immediate to a 32-bit signed quantity.
def SIMM32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64);
}]>;
// Truncate an immediate to a 32-bit unsigned quantity.
def UIMM32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64);
}]>;
// Negate and then truncate an immediate to a 32-bit unsigned quantity.
def NEGIMM32 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64);
}]>;
//===----------------------------------------------------------------------===//
// Immediate asm operands.
//===----------------------------------------------------------------------===//
def U4Imm : ImmediateAsmOperand<"U4Imm">;
def U6Imm : ImmediateAsmOperand<"U6Imm">;
def S8Imm : ImmediateAsmOperand<"S8Imm">;
def U8Imm : ImmediateAsmOperand<"U8Imm">;
def S16Imm : ImmediateAsmOperand<"S16Imm">;
def U16Imm : ImmediateAsmOperand<"U16Imm">;
def S32Imm : ImmediateAsmOperand<"S32Imm">;
def U32Imm : ImmediateAsmOperand<"U32Imm">;
//===----------------------------------------------------------------------===//
// 8-bit immediates
//===----------------------------------------------------------------------===//
def uimm8zx4 : Immediate<i8, [{
return isUInt<4>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U4Imm">;
def uimm8zx6 : Immediate<i8, [{
return isUInt<6>(N->getZExtValue());
}], NOOP_SDNodeXForm, "U6Imm">;
def simm8 : Immediate<i8, [{}], SIMM8, "S8Imm">;
def uimm8 : Immediate<i8, [{}], UIMM8, "U8Imm">;
//===----------------------------------------------------------------------===//
// i32 immediates
//===----------------------------------------------------------------------===//
// Immediates for the lower and upper 16 bits of an i32, with the other
// bits of the i32 being zero.
def imm32ll16 : Immediate<i32, [{
return SystemZ::isImmLL(N->getZExtValue());
}], LL16, "U16Imm">;
def imm32lh16 : Immediate<i32, [{
return SystemZ::isImmLH(N->getZExtValue());
}], LH16, "U16Imm">;
// Immediates for the lower and upper 16 bits of an i32, with the other
// bits of the i32 being one.
def imm32ll16c : Immediate<i32, [{
return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
}], LL16, "U16Imm">;
def imm32lh16c : Immediate<i32, [{
return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
}], LH16, "U16Imm">;
// Short immediates
def imm32sx8 : Immediate<i32, [{
return isInt<8>(N->getSExtValue());
}], SIMM8, "S8Imm">;
def imm32zx8 : Immediate<i32, [{
return isUInt<8>(N->getZExtValue());
}], UIMM8, "U8Imm">;
def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
def imm32sx16 : Immediate<i32, [{
return isInt<16>(N->getSExtValue());
}], SIMM16, "S16Imm">;
def imm32zx16 : Immediate<i32, [{
return isUInt<16>(N->getZExtValue());
}], UIMM16, "U16Imm">;
def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
// Full 32-bit immediates. we need both signed and unsigned versions
// because the assembler is picky. E.g. AFI requires signed operands
// while NILF requires unsigned ones.
def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
def imm32 : ImmLeaf<i32, [{}]>;
//===----------------------------------------------------------------------===//
// 64-bit immediates
//===----------------------------------------------------------------------===//
// Immediates for 16-bit chunks of an i64, with the other bits of the
// i32 being zero.
def imm64ll16 : Immediate<i64, [{
return SystemZ::isImmLL(N->getZExtValue());
}], LL16, "U16Imm">;
def imm64lh16 : Immediate<i64, [{
return SystemZ::isImmLH(N->getZExtValue());
}], LH16, "U16Imm">;
def imm64hl16 : Immediate<i64, [{
return SystemZ::isImmHL(N->getZExtValue());
}], HL16, "U16Imm">;
def imm64hh16 : Immediate<i64, [{
return SystemZ::isImmHH(N->getZExtValue());
}], HH16, "U16Imm">;
// Immediates for 16-bit chunks of an i64, with the other bits of the
// i32 being one.
def imm64ll16c : Immediate<i64, [{
return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
}], LL16, "U16Imm">;
def imm64lh16c : Immediate<i64, [{
return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
}], LH16, "U16Imm">;
def imm64hl16c : Immediate<i64, [{
return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
}], HL16, "U16Imm">;
def imm64hh16c : Immediate<i64, [{
return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
}], HH16, "U16Imm">;
// Immediates for the lower and upper 32 bits of an i64, with the other
// bits of the i32 being zero.
def imm64lf32 : Immediate<i64, [{
return SystemZ::isImmLF(N->getZExtValue());
}], LF32, "U32Imm">;
def imm64hf32 : Immediate<i64, [{
return SystemZ::isImmHF(N->getZExtValue());
}], HF32, "U32Imm">;
// Immediates for the lower and upper 32 bits of an i64, with the other
// bits of the i32 being one.
def imm64lf32c : Immediate<i64, [{
return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
}], LF32, "U32Imm">;
def imm64hf32c : Immediate<i64, [{
return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
}], HF32, "U32Imm">;
// Short immediates.
def imm64sx8 : Immediate<i64, [{
return isInt<8>(N->getSExtValue());
}], SIMM8, "S8Imm">;
def imm64sx16 : Immediate<i64, [{
return isInt<16>(N->getSExtValue());
}], SIMM16, "S16Imm">;
def imm64zx16 : Immediate<i64, [{
return isUInt<16>(N->getZExtValue());
}], UIMM16, "U16Imm">;
def imm64sx32 : Immediate<i64, [{
return isInt<32>(N->getSExtValue());
}], SIMM32, "S32Imm">;
def imm64zx32 : Immediate<i64, [{
return isUInt<32>(N->getZExtValue());
}], UIMM32, "U32Imm">;
def imm64zx32n : Immediate<i64, [{
return isUInt<32>(-N->getSExtValue());
}], NEGIMM32, "U32Imm">;
def imm64 : ImmLeaf<i64, [{}]>;
//===----------------------------------------------------------------------===//
// Floating-point immediates
//===----------------------------------------------------------------------===//
// Floating-point zero.
def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
// Floating point negative zero.
def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
//===----------------------------------------------------------------------===//
// Symbolic address operands
//===----------------------------------------------------------------------===//
// PC-relative offsets of a basic block. The offset is sign-extended
// and multiplied by 2.
def brtarget16 : Operand<OtherVT> {
let EncoderMethod = "getPC16DBLEncoding";
}
def brtarget32 : Operand<OtherVT> {
let EncoderMethod = "getPC32DBLEncoding";
}
// A PC-relative offset of a global value. The offset is sign-extended
// and multiplied by 2.
def pcrel32 : PCRelAddress<i64, "pcrel32"> {
let EncoderMethod = "getPC32DBLEncoding";
}
// A PC-relative offset of a global value when the value is used as a
// call target. The offset is sign-extended and multiplied by 2.
def pcrel16call : PCRelAddress<i64, "pcrel16call"> {
let PrintMethod = "printCallOperand";
let EncoderMethod = "getPLT16DBLEncoding";
}
def pcrel32call : PCRelAddress<i64, "pcrel32call"> {
let PrintMethod = "printCallOperand";
let EncoderMethod = "getPLT32DBLEncoding";
}
//===----------------------------------------------------------------------===//
// Addressing modes
//===----------------------------------------------------------------------===//
// 12-bit displacement operands.
def disp12imm32 : Operand<i32>;
def disp12imm64 : Operand<i64>;
// 20-bit displacement operands.
def disp20imm32 : Operand<i32>;
def disp20imm64 : Operand<i64>;
def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">;
def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">;
def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">;
def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">;
def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">;
def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">;
// DAG patterns and operands for addressing modes. Each mode has
// the form <type><range><group> where:
//
// <type> is one of:
// shift : base + displacement (32-bit)
// bdaddr : base + displacement
// bdxaddr : base + displacement + index
// laaddr : like bdxaddr, but used for Load Address operations
// dynalloc : base + displacement + index + ADJDYNALLOC
//
// <range> is one of:
// 12 : the displacement is an unsigned 12-bit value
// 20 : the displacement is a signed 20-bit value
//
// <group> is one of:
// pair : used when there is an equivalent instruction with the opposite
// range value (12 or 20)
// only : used when there is no equivalent instruction with the opposite
// range value
def shift12only : BDMode <"BDAddr", "32", "12", "Only">;
def shift20only : BDMode <"BDAddr", "32", "20", "Only">;
def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">;
def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">;
def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">;
def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">;
def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">;
def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">;
def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">;
def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">;
def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">;
def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">;
def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">;
def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">;
//===----------------------------------------------------------------------===//
// Miscellaneous
//===----------------------------------------------------------------------===//
// Access registers. At present we just use them for accessing the thread
// pointer, so we don't expose them as register to LLVM.
def AccessReg : AsmOperandClass {
let Name = "AccessReg";
let ParserMethod = "parseAccessReg";
}
def access_reg : Immediate<i8, [{ return N->getZExtValue() < 16; }],
NOOP_SDNodeXForm, "AccessReg"> {
let ParserMatchClass = AccessReg;
}
// A 4-bit condition-code mask.
def cond4 : PatLeaf<(i8 imm), [{ return (N->getZExtValue() < 16); }]>,
Operand<i8> {
let PrintMethod = "printCond4Operand";
}