blob: eb2390ab5d4cd32c70277ec2b56ae6108fd7e6fb [file] [log] [blame]
//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the ELFObjectFile template class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_ELF_H
#define LLVM_OBJECT_ELF_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <limits>
#include <utility>
namespace llvm {
namespace object {
using support::endianness;
template<endianness target_endianness, std::size_t max_alignment, bool is64Bits>
struct ELFType {
static const endianness TargetEndianness = target_endianness;
static const std::size_t MaxAlignment = max_alignment;
static const bool Is64Bits = is64Bits;
};
template<typename T, int max_align>
struct MaximumAlignment {
enum {value = AlignOf<T>::Alignment > max_align ? max_align
: AlignOf<T>::Alignment};
};
// Subclasses of ELFObjectFile may need this for template instantiation
inline std::pair<unsigned char, unsigned char>
getElfArchType(MemoryBuffer *Object) {
if (Object->getBufferSize() < ELF::EI_NIDENT)
return std::make_pair((uint8_t)ELF::ELFCLASSNONE,(uint8_t)ELF::ELFDATANONE);
return std::make_pair( (uint8_t)Object->getBufferStart()[ELF::EI_CLASS]
, (uint8_t)Object->getBufferStart()[ELF::EI_DATA]);
}
// Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
template<endianness target_endianness, std::size_t max_alignment>
struct ELFDataTypeTypedefHelperCommon {
typedef support::detail::packed_endian_specific_integral
<uint16_t, target_endianness,
MaximumAlignment<uint16_t, max_alignment>::value> Elf_Half;
typedef support::detail::packed_endian_specific_integral
<uint32_t, target_endianness,
MaximumAlignment<uint32_t, max_alignment>::value> Elf_Word;
typedef support::detail::packed_endian_specific_integral
<int32_t, target_endianness,
MaximumAlignment<int32_t, max_alignment>::value> Elf_Sword;
typedef support::detail::packed_endian_specific_integral
<uint64_t, target_endianness,
MaximumAlignment<uint64_t, max_alignment>::value> Elf_Xword;
typedef support::detail::packed_endian_specific_integral
<int64_t, target_endianness,
MaximumAlignment<int64_t, max_alignment>::value> Elf_Sxword;
};
template<class ELFT>
struct ELFDataTypeTypedefHelper;
/// ELF 32bit types.
template<endianness TargetEndianness, std::size_t MaxAlign>
struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, MaxAlign, false> >
: ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
typedef uint32_t value_type;
typedef support::detail::packed_endian_specific_integral
<value_type, TargetEndianness,
MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
typedef support::detail::packed_endian_specific_integral
<value_type, TargetEndianness,
MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
};
/// ELF 64bit types.
template<endianness TargetEndianness, std::size_t MaxAlign>
struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, MaxAlign, true> >
: ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
typedef uint64_t value_type;
typedef support::detail::packed_endian_specific_integral
<value_type, TargetEndianness,
MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
typedef support::detail::packed_endian_specific_integral
<value_type, TargetEndianness,
MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
};
// I really don't like doing this, but the alternative is copypasta.
#define LLVM_ELF_IMPORT_TYPES(E, M, W) \
typedef typename ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Addr Elf_Addr; \
typedef typename ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Off Elf_Off; \
typedef typename ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Half Elf_Half; \
typedef typename ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Word Elf_Word; \
typedef typename \
ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Sword Elf_Sword; \
typedef typename \
ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Xword Elf_Xword; \
typedef typename \
ELFDataTypeTypedefHelper<ELFType<E,M,W> >::Elf_Sxword Elf_Sxword;
#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) \
LLVM_ELF_IMPORT_TYPES(ELFT::TargetEndianness, ELFT::MaxAlignment, \
ELFT::Is64Bits)
// Section header.
template<class ELFT>
struct Elf_Shdr_Base;
template<endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Shdr_Base<ELFType<TargetEndianness, MaxAlign, false> > {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
Elf_Word sh_name; // Section name (index into string table)
Elf_Word sh_type; // Section type (SHT_*)
Elf_Word sh_flags; // Section flags (SHF_*)
Elf_Addr sh_addr; // Address where section is to be loaded
Elf_Off sh_offset; // File offset of section data, in bytes
Elf_Word sh_size; // Size of section, in bytes
Elf_Word sh_link; // Section type-specific header table index link
Elf_Word sh_info; // Section type-specific extra information
Elf_Word sh_addralign;// Section address alignment
Elf_Word sh_entsize; // Size of records contained within the section
};
template<endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Shdr_Base<ELFType<TargetEndianness, MaxAlign, true> > {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
Elf_Word sh_name; // Section name (index into string table)
Elf_Word sh_type; // Section type (SHT_*)
Elf_Xword sh_flags; // Section flags (SHF_*)
Elf_Addr sh_addr; // Address where section is to be loaded
Elf_Off sh_offset; // File offset of section data, in bytes
Elf_Xword sh_size; // Size of section, in bytes
Elf_Word sh_link; // Section type-specific header table index link
Elf_Word sh_info; // Section type-specific extra information
Elf_Xword sh_addralign;// Section address alignment
Elf_Xword sh_entsize; // Size of records contained within the section
};
template<class ELFT>
struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
using Elf_Shdr_Base<ELFT>::sh_entsize;
using Elf_Shdr_Base<ELFT>::sh_size;
/// @brief Get the number of entities this section contains if it has any.
unsigned getEntityCount() const {
if (sh_entsize == 0)
return 0;
return sh_size / sh_entsize;
}
};
template<class ELFT>
struct Elf_Sym_Base;
template<endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Sym_Base<ELFType<TargetEndianness, MaxAlign, false> > {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
Elf_Word st_name; // Symbol name (index into string table)
Elf_Addr st_value; // Value or address associated with the symbol
Elf_Word st_size; // Size of the symbol
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf_Half st_shndx; // Which section (header table index) it's defined in
};
template<endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Sym_Base<ELFType<TargetEndianness, MaxAlign, true> > {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
Elf_Word st_name; // Symbol name (index into string table)
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf_Half st_shndx; // Which section (header table index) it's defined in
Elf_Addr st_value; // Value or address associated with the symbol
Elf_Xword st_size; // Size of the symbol
};
template<class ELFT>
struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
using Elf_Sym_Base<ELFT>::st_info;
// These accessors and mutators correspond to the ELF32_ST_BIND,
// ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
unsigned char getBinding() const { return st_info >> 4; }
unsigned char getType() const { return st_info & 0x0f; }
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
void setBindingAndType(unsigned char b, unsigned char t) {
st_info = (b << 4) + (t & 0x0f);
}
};
/// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
/// (.gnu.version). This structure is identical for ELF32 and ELF64.
template<class ELFT>
struct Elf_Versym_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
};
template<class ELFT>
struct Elf_Verdaux_Impl;
/// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
/// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
template<class ELFT>
struct Elf_Verdef_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
Elf_Half vd_flags; // Bitwise flags (VER_DEF_*)
Elf_Half vd_ndx; // Version index, used in .gnu.version entries
Elf_Half vd_cnt; // Number of Verdaux entries
Elf_Word vd_hash; // Hash of name
Elf_Word vd_aux; // Offset to the first Verdaux entry (in bytes)
Elf_Word vd_next; // Offset to the next Verdef entry (in bytes)
/// Get the first Verdaux entry for this Verdef.
const Elf_Verdaux *getAux() const {
return reinterpret_cast<const Elf_Verdaux*>((const char*)this + vd_aux);
}
};
/// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
/// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
template<class ELFT>
struct Elf_Verdaux_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word vda_name; // Version name (offset in string table)
Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
};
/// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
template<class ELFT>
struct Elf_Verneed_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
Elf_Half vn_cnt; // Number of associated Vernaux entries
Elf_Word vn_file; // Library name (string table offset)
Elf_Word vn_aux; // Offset to first Vernaux entry (in bytes)
Elf_Word vn_next; // Offset to next Verneed entry (in bytes)
};
/// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
template<class ELFT>
struct Elf_Vernaux_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word vna_hash; // Hash of dependency name
Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
Elf_Half vna_other; // Version index, used in .gnu.version entries
Elf_Word vna_name; // Dependency name
Elf_Word vna_next; // Offset to next Vernaux entry (in bytes)
};
/// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
/// table section (.dynamic) look like.
template<class ELFT>
struct Elf_Dyn_Base;
template<endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Dyn_Base<ELFType<TargetEndianness, MaxAlign, false> > {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
Elf_Sword d_tag;
union {
Elf_Word d_val;
Elf_Addr d_ptr;
} d_un;
};
template<endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Dyn_Base<ELFType<TargetEndianness, MaxAlign, true> > {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
Elf_Sxword d_tag;
union {
Elf_Xword d_val;
Elf_Addr d_ptr;
} d_un;
};
/// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters.
template<class ELFT>
struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
using Elf_Dyn_Base<ELFT>::d_tag;
using Elf_Dyn_Base<ELFT>::d_un;
int64_t getTag() const { return d_tag; }
uint64_t getVal() const { return d_un.d_val; }
uint64_t getPtr() const { return d_un.ptr; }
};
// Elf_Rel: Elf Relocation
template<class ELFT, bool isRela>
struct Elf_Rel_Base;
template<endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, false>, false> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Word r_info; // Symbol table index and type of relocation to apply
uint32_t getRInfo(bool isMips64EL) const {
assert(!isMips64EL);
return r_info;
}
void setRInfo(uint32_t R) {
r_info = R;
}
};
template<endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, true>, false> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Xword r_info; // Symbol table index and type of relocation to apply
uint64_t getRInfo(bool isMips64EL) const {
uint64_t t = r_info;
if (!isMips64EL)
return t;
// Mip64 little endian has a "special" encoding of r_info. Instead of one
// 64 bit little endian number, it is a little ending 32 bit number followed
// by a 32 bit big endian number.
return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
return r_info;
}
void setRInfo(uint64_t R) {
// FIXME: Add mips64el support.
r_info = R;
}
};
template<endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, false>, true> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Word r_info; // Symbol table index and type of relocation to apply
Elf_Sword r_addend; // Compute value for relocatable field by adding this
uint32_t getRInfo(bool isMips64EL) const {
assert(!isMips64EL);
return r_info;
}
void setRInfo(uint32_t R) {
r_info = R;
}
};
template<endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, true>, true> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Xword r_info; // Symbol table index and type of relocation to apply
Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
uint64_t getRInfo(bool isMips64EL) const {
// Mip64 little endian has a "special" encoding of r_info. Instead of one
// 64 bit little endian number, it is a little ending 32 bit number followed
// by a 32 bit big endian number.
uint64_t t = r_info;
if (!isMips64EL)
return t;
return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
}
void setRInfo(uint64_t R) {
// FIXME: Add mips64el support.
r_info = R;
}
};
template<class ELFT, bool isRela>
struct Elf_Rel_Impl;
template<endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
struct Elf_Rel_Impl<ELFType<TargetEndianness, MaxAlign, true>, isRela>
: Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, true>, isRela> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
// and ELF64_R_INFO macros defined in the ELF specification:
uint32_t getSymbol(bool isMips64EL) const {
return (uint32_t) (this->getRInfo(isMips64EL) >> 32);
}
uint32_t getType(bool isMips64EL) const {
return (uint32_t) (this->getRInfo(isMips64EL) & 0xffffffffL);
}
void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
void setType(uint32_t t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(uint32_t s, uint32_t t) {
this->setRInfo(((uint64_t)s << 32) + (t&0xffffffffL));
}
};
template<endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
struct Elf_Rel_Impl<ELFType<TargetEndianness, MaxAlign, false>, isRela>
: Elf_Rel_Base<ELFType<TargetEndianness, MaxAlign, false>, isRela> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
// and ELF32_R_INFO macros defined in the ELF specification:
uint32_t getSymbol(bool isMips64EL) const {
return this->getRInfo(isMips64EL) >> 8;
}
unsigned char getType(bool isMips64EL) const {
return (unsigned char) (this->getRInfo(isMips64EL) & 0x0ff);
}
void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
void setSymbolAndType(uint32_t s, unsigned char t) {
this->setRInfo((s << 8) + t);
}
};
template<class ELFT>
struct Elf_Ehdr_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
Elf_Half e_type; // Type of file (see ET_*)
Elf_Half e_machine; // Required architecture for this file (see EM_*)
Elf_Word e_version; // Must be equal to 1
Elf_Addr e_entry; // Address to jump to in order to start program
Elf_Off e_phoff; // Program header table's file offset, in bytes
Elf_Off e_shoff; // Section header table's file offset, in bytes
Elf_Word e_flags; // Processor-specific flags
Elf_Half e_ehsize; // Size of ELF header, in bytes
Elf_Half e_phentsize;// Size of an entry in the program header table
Elf_Half e_phnum; // Number of entries in the program header table
Elf_Half e_shentsize;// Size of an entry in the section header table
Elf_Half e_shnum; // Number of entries in the section header table
Elf_Half e_shstrndx; // Section header table index of section name
// string table
bool checkMagic() const {
return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
}
unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
};
template<class ELFT>
struct Elf_Phdr_Impl;
template<endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Phdr_Impl<ELFType<TargetEndianness, MaxAlign, false> > {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, false)
Elf_Word p_type; // Type of segment
Elf_Off p_offset; // FileOffset where segment is located, in bytes
Elf_Addr p_vaddr; // Virtual Address of beginning of segment
Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf_Word p_flags; // Segment flags
Elf_Word p_align; // Segment alignment constraint
};
template<endianness TargetEndianness, std::size_t MaxAlign>
struct Elf_Phdr_Impl<ELFType<TargetEndianness, MaxAlign, true> > {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, MaxAlign, true)
Elf_Word p_type; // Type of segment
Elf_Word p_flags; // Segment flags
Elf_Off p_offset; // FileOffset where segment is located, in bytes
Elf_Addr p_vaddr; // Virtual Address of beginning of segment
Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf_Xword p_align; // Segment alignment constraint
};
template<class ELFT>
class ELFObjectFile : public ObjectFile {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
public:
/// \brief Iterate over constant sized entities.
template<class EntT>
class ELFEntityIterator {
public:
typedef ptrdiff_t difference_type;
typedef EntT value_type;
typedef std::random_access_iterator_tag iterator_category;
typedef value_type &reference;
typedef value_type *pointer;
/// \brief Default construct iterator.
ELFEntityIterator() : EntitySize(0), Current(0) {}
ELFEntityIterator(uint64_t EntSize, const char *Start)
: EntitySize(EntSize)
, Current(Start) {}
reference operator *() {
assert(Current && "Attempted to dereference an invalid iterator!");
return *reinterpret_cast<pointer>(Current);
}
pointer operator ->() {
assert(Current && "Attempted to dereference an invalid iterator!");
return reinterpret_cast<pointer>(Current);
}
bool operator ==(const ELFEntityIterator &Other) {
return Current == Other.Current;
}
bool operator !=(const ELFEntityIterator &Other) {
return !(*this == Other);
}
ELFEntityIterator &operator ++() {
assert(Current && "Attempted to increment an invalid iterator!");
Current += EntitySize;
return *this;
}
ELFEntityIterator operator ++(int) {
ELFEntityIterator Tmp = *this;
++*this;
return Tmp;
}
ELFEntityIterator &operator =(const ELFEntityIterator &Other) {
EntitySize = Other.EntitySize;
Current = Other.Current;
return *this;
}
difference_type operator -(const ELFEntityIterator &Other) const {
assert(EntitySize == Other.EntitySize &&
"Subtracting iterators of different EntitiySize!");
return (Current - Other.Current) / EntitySize;
}
const char *get() const { return Current; }
private:
uint64_t EntitySize;
const char *Current;
};
typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
typedef Elf_Sym_Impl<ELFT> Elf_Sym;
typedef Elf_Dyn_Impl<ELFT> Elf_Dyn;
typedef Elf_Phdr_Impl<ELFT> Elf_Phdr;
typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
typedef Elf_Verdef_Impl<ELFT> Elf_Verdef;
typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
typedef Elf_Verneed_Impl<ELFT> Elf_Verneed;
typedef Elf_Vernaux_Impl<ELFT> Elf_Vernaux;
typedef Elf_Versym_Impl<ELFT> Elf_Versym;
typedef ELFEntityIterator<const Elf_Dyn> Elf_Dyn_iterator;
typedef ELFEntityIterator<const Elf_Sym> Elf_Sym_iterator;
typedef ELFEntityIterator<const Elf_Rela> Elf_Rela_Iter;
typedef ELFEntityIterator<const Elf_Rel> Elf_Rel_Iter;
protected:
// This flag is used for classof, to distinguish ELFObjectFile from
// its subclass. If more subclasses will be created, this flag will
// have to become an enum.
bool isDyldELFObject;
private:
typedef SmallVector<const Elf_Shdr *, 2> Sections_t;
typedef DenseMap<unsigned, unsigned> IndexMap_t;
typedef DenseMap<const Elf_Shdr*, SmallVector<uint32_t, 1> > RelocMap_t;
const Elf_Ehdr *Header;
const Elf_Shdr *SectionHeaderTable;
const Elf_Shdr *dot_shstrtab_sec; // Section header string table.
const Elf_Shdr *dot_strtab_sec; // Symbol header string table.
const Elf_Shdr *dot_dynstr_sec; // Dynamic symbol string table.
// SymbolTableSections[0] always points to the dynamic string table section
// header, or NULL if there is no dynamic string table.
Sections_t SymbolTableSections;
IndexMap_t SymbolTableSectionsIndexMap;
DenseMap<const Elf_Sym*, ELF::Elf64_Word> ExtendedSymbolTable;
const Elf_Shdr *dot_dynamic_sec; // .dynamic
const Elf_Shdr *dot_gnu_version_sec; // .gnu.version
const Elf_Shdr *dot_gnu_version_r_sec; // .gnu.version_r
const Elf_Shdr *dot_gnu_version_d_sec; // .gnu.version_d
// Pointer to SONAME entry in dynamic string table
// This is set the first time getLoadName is called.
mutable const char *dt_soname;
private:
uint64_t getROffset(DataRefImpl Rel) const;
// Records for each version index the corresponding Verdef or Vernaux entry.
// This is filled the first time LoadVersionMap() is called.
class VersionMapEntry : public PointerIntPair<const void*, 1> {
public:
// If the integer is 0, this is an Elf_Verdef*.
// If the integer is 1, this is an Elf_Vernaux*.
VersionMapEntry() : PointerIntPair<const void*, 1>(NULL, 0) { }
VersionMapEntry(const Elf_Verdef *verdef)
: PointerIntPair<const void*, 1>(verdef, 0) { }
VersionMapEntry(const Elf_Vernaux *vernaux)
: PointerIntPair<const void*, 1>(vernaux, 1) { }
bool isNull() const { return getPointer() == NULL; }
bool isVerdef() const { return !isNull() && getInt() == 0; }
bool isVernaux() const { return !isNull() && getInt() == 1; }
const Elf_Verdef *getVerdef() const {
return isVerdef() ? (const Elf_Verdef*)getPointer() : NULL;
}
const Elf_Vernaux *getVernaux() const {
return isVernaux() ? (const Elf_Vernaux*)getPointer() : NULL;
}
};
mutable SmallVector<VersionMapEntry, 16> VersionMap;
void LoadVersionDefs(const Elf_Shdr *sec) const;
void LoadVersionNeeds(const Elf_Shdr *ec) const;
void LoadVersionMap() const;
/// @brief Map sections to an array of relocation sections that reference
/// them sorted by section index.
RelocMap_t SectionRelocMap;
/// @brief Get the relocation section that contains \a Rel.
const Elf_Shdr *getRelSection(DataRefImpl Rel) const {
return getSection(Rel.w.b);
}
public:
bool isRelocationHasAddend(DataRefImpl Rel) const;
template<typename T>
const T *getEntry(uint16_t Section, uint32_t Entry) const;
template<typename T>
const T *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
const Elf_Shdr *getSection(DataRefImpl index) const;
const Elf_Shdr *getSection(uint32_t index) const;
const Elf_Rel *getRel(DataRefImpl Rel) const;
const Elf_Rela *getRela(DataRefImpl Rela) const;
const char *getString(uint32_t section, uint32_t offset) const;
const char *getString(const Elf_Shdr *section, uint32_t offset) const;
error_code getSymbolVersion(const Elf_Shdr *section,
const Elf_Sym *Symb,
StringRef &Version,
bool &IsDefault) const;
void VerifyStrTab(const Elf_Shdr *sh) const;
protected:
const Elf_Sym *getSymbol(DataRefImpl Symb) const; // FIXME: Should be private?
void validateSymbol(DataRefImpl Symb) const;
StringRef getRelocationTypeName(uint32_t Type) const;
public:
error_code getSymbolName(const Elf_Shdr *section,
const Elf_Sym *Symb,
StringRef &Res) const;
error_code getSectionName(const Elf_Shdr *section,
StringRef &Res) const;
const Elf_Dyn *getDyn(DataRefImpl DynData) const;
error_code getSymbolVersion(SymbolRef Symb, StringRef &Version,
bool &IsDefault) const;
uint64_t getSymbolIndex(const Elf_Sym *sym) const;
protected:
virtual error_code getSymbolNext(DataRefImpl Symb, SymbolRef &Res) const;
virtual error_code getSymbolName(DataRefImpl Symb, StringRef &Res) const;
virtual error_code getSymbolFileOffset(DataRefImpl Symb, uint64_t &Res) const;
virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
virtual error_code getSymbolAlignment(DataRefImpl Symb, uint32_t &Res) const;
virtual error_code getSymbolSize(DataRefImpl Symb, uint64_t &Res) const;
virtual error_code getSymbolNMTypeChar(DataRefImpl Symb, char &Res) const;
virtual error_code getSymbolFlags(DataRefImpl Symb, uint32_t &Res) const;
virtual error_code getSymbolType(DataRefImpl Symb, SymbolRef::Type &Res) const;
virtual error_code getSymbolSection(DataRefImpl Symb,
section_iterator &Res) const;
virtual error_code getSymbolValue(DataRefImpl Symb, uint64_t &Val) const;
virtual error_code getLibraryNext(DataRefImpl Data, LibraryRef &Result) const;
virtual error_code getLibraryPath(DataRefImpl Data, StringRef &Res) const;
virtual error_code getSectionNext(DataRefImpl Sec, SectionRef &Res) const;
virtual error_code getSectionName(DataRefImpl Sec, StringRef &Res) const;
virtual error_code getSectionAddress(DataRefImpl Sec, uint64_t &Res) const;
virtual error_code getSectionSize(DataRefImpl Sec, uint64_t &Res) const;
virtual error_code getSectionContents(DataRefImpl Sec, StringRef &Res) const;
virtual error_code getSectionAlignment(DataRefImpl Sec, uint64_t &Res) const;
virtual error_code isSectionText(DataRefImpl Sec, bool &Res) const;
virtual error_code isSectionData(DataRefImpl Sec, bool &Res) const;
virtual error_code isSectionBSS(DataRefImpl Sec, bool &Res) const;
virtual error_code isSectionRequiredForExecution(DataRefImpl Sec,
bool &Res) const;
virtual error_code isSectionVirtual(DataRefImpl Sec, bool &Res) const;
virtual error_code isSectionZeroInit(DataRefImpl Sec, bool &Res) const;
virtual error_code isSectionReadOnlyData(DataRefImpl Sec, bool &Res) const;
virtual error_code sectionContainsSymbol(DataRefImpl Sec, DataRefImpl Symb,
bool &Result) const;
virtual relocation_iterator getSectionRelBegin(DataRefImpl Sec) const;
virtual relocation_iterator getSectionRelEnd(DataRefImpl Sec) const;
virtual error_code getRelocationNext(DataRefImpl Rel,
RelocationRef &Res) const;
virtual error_code getRelocationAddress(DataRefImpl Rel,
uint64_t &Res) const;
virtual error_code getRelocationOffset(DataRefImpl Rel,
uint64_t &Res) const;
virtual error_code getRelocationSymbol(DataRefImpl Rel,
SymbolRef &Res) const;
virtual error_code getRelocationType(DataRefImpl Rel,
uint64_t &Res) const;
virtual error_code getRelocationTypeName(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const;
virtual error_code getRelocationAdditionalInfo(DataRefImpl Rel,
int64_t &Res) const;
virtual error_code getRelocationValueString(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const;
public:
ELFObjectFile(MemoryBuffer *Object, error_code &ec);
bool isMips64EL() const {
return Header->e_machine == ELF::EM_MIPS &&
Header->getFileClass() == ELF::ELFCLASS64 &&
Header->getDataEncoding() == ELF::ELFDATA2LSB;
}
virtual symbol_iterator begin_symbols() const;
virtual symbol_iterator end_symbols() const;
virtual symbol_iterator begin_dynamic_symbols() const;
virtual symbol_iterator end_dynamic_symbols() const;
virtual section_iterator begin_sections() const;
virtual section_iterator end_sections() const;
virtual library_iterator begin_libraries_needed() const;
virtual library_iterator end_libraries_needed() const;
const Elf_Shdr *getDynamicSymbolTableSectionHeader() const {
return SymbolTableSections[0];
}
const Elf_Shdr *getDynamicStringTableSectionHeader() const {
return dot_dynstr_sec;
}
Elf_Dyn_iterator begin_dynamic_table() const;
/// \param NULLEnd use one past the first DT_NULL entry as the end instead of
/// the section size.
Elf_Dyn_iterator end_dynamic_table(bool NULLEnd = false) const;
Elf_Sym_iterator begin_elf_dynamic_symbols() const {
const Elf_Shdr *DynSymtab = SymbolTableSections[0];
if (DynSymtab)
return Elf_Sym_iterator(DynSymtab->sh_entsize,
(const char *)base() + DynSymtab->sh_offset);
return Elf_Sym_iterator(0, 0);
}
Elf_Sym_iterator end_elf_dynamic_symbols() const {
const Elf_Shdr *DynSymtab = SymbolTableSections[0];
if (DynSymtab)
return Elf_Sym_iterator(DynSymtab->sh_entsize, (const char *)base() +
DynSymtab->sh_offset + DynSymtab->sh_size);
return Elf_Sym_iterator(0, 0);
}
Elf_Rela_Iter beginELFRela(const Elf_Shdr *sec) const {
return Elf_Rela_Iter(sec->sh_entsize,
(const char *)(base() + sec->sh_offset));
}
Elf_Rela_Iter endELFRela(const Elf_Shdr *sec) const {
return Elf_Rela_Iter(sec->sh_entsize, (const char *)
(base() + sec->sh_offset + sec->sh_size));
}
Elf_Rel_Iter beginELFRel(const Elf_Shdr *sec) const {
return Elf_Rel_Iter(sec->sh_entsize,
(const char *)(base() + sec->sh_offset));
}
Elf_Rel_Iter endELFRel(const Elf_Shdr *sec) const {
return Elf_Rel_Iter(sec->sh_entsize, (const char *)
(base() + sec->sh_offset + sec->sh_size));
}
/// \brief Iterate over program header table.
typedef ELFEntityIterator<const Elf_Phdr> Elf_Phdr_Iter;
Elf_Phdr_Iter begin_program_headers() const {
return Elf_Phdr_Iter(Header->e_phentsize,
(const char*)base() + Header->e_phoff);
}
Elf_Phdr_Iter end_program_headers() const {
return Elf_Phdr_Iter(Header->e_phentsize,
(const char*)base() +
Header->e_phoff +
(Header->e_phnum * Header->e_phentsize));
}
virtual uint8_t getBytesInAddress() const;
virtual StringRef getFileFormatName() const;
virtual StringRef getObjectType() const { return "ELF"; }
virtual unsigned getArch() const;
virtual StringRef getLoadName() const;
virtual error_code getSectionContents(const Elf_Shdr *sec,
StringRef &Res) const;
uint64_t getNumSections() const;
uint64_t getStringTableIndex() const;
ELF::Elf64_Word getSymbolTableIndex(const Elf_Sym *symb) const;
const Elf_Ehdr *getElfHeader() const;
const Elf_Shdr *getSection(const Elf_Sym *symb) const;
const Elf_Shdr *getElfSection(section_iterator &It) const;
const Elf_Sym *getElfSymbol(symbol_iterator &It) const;
const Elf_Sym *getElfSymbol(uint32_t index) const;
// Methods for type inquiry through isa, cast, and dyn_cast
bool isDyldType() const { return isDyldELFObject; }
static inline bool classof(const Binary *v) {
return v->getType() == getELFType(ELFT::TargetEndianness == support::little,
ELFT::Is64Bits);
}
};
// Iterate through the version definitions, and place each Elf_Verdef
// in the VersionMap according to its index.
template<class ELFT>
void ELFObjectFile<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
unsigned vd_size = sec->sh_size; // Size of section in bytes
unsigned vd_count = sec->sh_info; // Number of Verdef entries
const char *sec_start = (const char*)base() + sec->sh_offset;
const char *sec_end = sec_start + vd_size;
// The first Verdef entry is at the start of the section.
const char *p = sec_start;
for (unsigned i = 0; i < vd_count; i++) {
if (p + sizeof(Elf_Verdef) > sec_end)
report_fatal_error("Section ended unexpectedly while scanning "
"version definitions.");
const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
if (vd->vd_version != ELF::VER_DEF_CURRENT)
report_fatal_error("Unexpected verdef version");
size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
if (index >= VersionMap.size())
VersionMap.resize(index+1);
VersionMap[index] = VersionMapEntry(vd);
p += vd->vd_next;
}
}
// Iterate through the versions needed section, and place each Elf_Vernaux
// in the VersionMap according to its index.
template<class ELFT>
void ELFObjectFile<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
unsigned vn_size = sec->sh_size; // Size of section in bytes
unsigned vn_count = sec->sh_info; // Number of Verneed entries
const char *sec_start = (const char*)base() + sec->sh_offset;
const char *sec_end = sec_start + vn_size;
// The first Verneed entry is at the start of the section.
const char *p = sec_start;
for (unsigned i = 0; i < vn_count; i++) {
if (p + sizeof(Elf_Verneed) > sec_end)
report_fatal_error("Section ended unexpectedly while scanning "
"version needed records.");
const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
if (vn->vn_version != ELF::VER_NEED_CURRENT)
report_fatal_error("Unexpected verneed version");
// Iterate through the Vernaux entries
const char *paux = p + vn->vn_aux;
for (unsigned j = 0; j < vn->vn_cnt; j++) {
if (paux + sizeof(Elf_Vernaux) > sec_end)
report_fatal_error("Section ended unexpected while scanning auxiliary "
"version needed records.");
const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
size_t index = vna->vna_other & ELF::VERSYM_VERSION;
if (index >= VersionMap.size())
VersionMap.resize(index+1);
VersionMap[index] = VersionMapEntry(vna);
paux += vna->vna_next;
}
p += vn->vn_next;
}
}
template<class ELFT>
void ELFObjectFile<ELFT>::LoadVersionMap() const {
// If there is no dynamic symtab or version table, there is nothing to do.
if (SymbolTableSections[0] == NULL || dot_gnu_version_sec == NULL)
return;
// Has the VersionMap already been loaded?
if (VersionMap.size() > 0)
return;
// The first two version indexes are reserved.
// Index 0 is LOCAL, index 1 is GLOBAL.
VersionMap.push_back(VersionMapEntry());
VersionMap.push_back(VersionMapEntry());
if (dot_gnu_version_d_sec)
LoadVersionDefs(dot_gnu_version_d_sec);
if (dot_gnu_version_r_sec)
LoadVersionNeeds(dot_gnu_version_r_sec);
}
template<class ELFT>
void ELFObjectFile<ELFT>::validateSymbol(DataRefImpl Symb) const {
#ifndef NDEBUG
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
// FIXME: We really need to do proper error handling in the case of an invalid
// input file. Because we don't use exceptions, I think we'll just pass
// an error object around.
if (!( symb
&& SymbolTableSection
&& symb >= (const Elf_Sym*)(base()
+ SymbolTableSection->sh_offset)
&& symb < (const Elf_Sym*)(base()
+ SymbolTableSection->sh_offset
+ SymbolTableSection->sh_size)))
// FIXME: Proper error handling.
report_fatal_error("Symb must point to a valid symbol!");
#endif
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolNext(DataRefImpl Symb,
SymbolRef &Result) const {
validateSymbol(Symb);
const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
++Symb.d.a;
// Check to see if we are at the end of this symbol table.
if (Symb.d.a >= SymbolTableSection->getEntityCount()) {
// We are at the end. If there are other symbol tables, jump to them.
// If the symbol table is .dynsym, we are iterating dynamic symbols,
// and there is only one table of these.
if (Symb.d.b != 0) {
++Symb.d.b;
Symb.d.a = 1; // The 0th symbol in ELF is fake.
}
// Otherwise return the terminator.
if (Symb.d.b == 0 || Symb.d.b >= SymbolTableSections.size()) {
Symb.d.a = std::numeric_limits<uint32_t>::max();
Symb.d.b = std::numeric_limits<uint32_t>::max();
}
}
Result = SymbolRef(Symb, this);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolName(DataRefImpl Symb,
StringRef &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
return getSymbolName(SymbolTableSections[Symb.d.b], symb, Result);
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolVersion(SymbolRef SymRef,
StringRef &Version,
bool &IsDefault) const {
DataRefImpl Symb = SymRef.getRawDataRefImpl();
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
return getSymbolVersion(SymbolTableSections[Symb.d.b], symb,
Version, IsDefault);
}
template<class ELFT>
ELF::Elf64_Word ELFObjectFile<ELFT>
::getSymbolTableIndex(const Elf_Sym *symb) const {
if (symb->st_shndx == ELF::SHN_XINDEX)
return ExtendedSymbolTable.lookup(symb);
return symb->st_shndx;
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Shdr *
ELFObjectFile<ELFT>::getSection(const Elf_Sym *symb) const {
if (symb->st_shndx == ELF::SHN_XINDEX)
return getSection(ExtendedSymbolTable.lookup(symb));
if (symb->st_shndx >= ELF::SHN_LORESERVE)
return 0;
return getSection(symb->st_shndx);
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Ehdr *
ELFObjectFile<ELFT>::getElfHeader() const {
return Header;
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Shdr *
ELFObjectFile<ELFT>::getElfSection(section_iterator &It) const {
llvm::object::DataRefImpl ShdrRef = It->getRawDataRefImpl();
return reinterpret_cast<const Elf_Shdr *>(ShdrRef.p);
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Sym *
ELFObjectFile<ELFT>::getElfSymbol(symbol_iterator &It) const {
return getSymbol(It->getRawDataRefImpl());
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Sym *
ELFObjectFile<ELFT>::getElfSymbol(uint32_t index) const {
DataRefImpl SymbolData;
SymbolData.d.a = index;
SymbolData.d.b = 1;
return getSymbol(SymbolData);
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolFileOffset(DataRefImpl Symb,
uint64_t &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *Section;
switch (getSymbolTableIndex(symb)) {
case ELF::SHN_COMMON:
// Unintialized symbols have no offset in the object file
case ELF::SHN_UNDEF:
Result = UnknownAddressOrSize;
return object_error::success;
case ELF::SHN_ABS:
Result = symb->st_value;
return object_error::success;
default: Section = getSection(symb);
}
switch (symb->getType()) {
case ELF::STT_SECTION:
Result = Section ? Section->sh_offset : UnknownAddressOrSize;
return object_error::success;
case ELF::STT_FUNC:
case ELF::STT_OBJECT:
case ELF::STT_NOTYPE:
Result = symb->st_value +
(Section ? Section->sh_offset : 0);
return object_error::success;
default:
Result = UnknownAddressOrSize;
return object_error::success;
}
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolAddress(DataRefImpl Symb,
uint64_t &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *Section;
switch (getSymbolTableIndex(symb)) {
case ELF::SHN_COMMON:
case ELF::SHN_UNDEF:
Result = UnknownAddressOrSize;
return object_error::success;
case ELF::SHN_ABS:
Result = symb->st_value;
return object_error::success;
default: Section = getSection(symb);
}
switch (symb->getType()) {
case ELF::STT_SECTION:
Result = Section ? Section->sh_addr : UnknownAddressOrSize;
return object_error::success;
case ELF::STT_FUNC:
case ELF::STT_OBJECT:
case ELF::STT_NOTYPE:
bool IsRelocatable;
switch(Header->e_type) {
case ELF::ET_EXEC:
case ELF::ET_DYN:
IsRelocatable = false;
break;
default:
IsRelocatable = true;
}
Result = symb->st_value;
// Clear the ARM/Thumb indicator flag.
if (Header->e_machine == ELF::EM_ARM)
Result &= ~1;
if (IsRelocatable && Section != 0)
Result += Section->sh_addr;
return object_error::success;
default:
Result = UnknownAddressOrSize;
return object_error::success;
}
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolAlignment(DataRefImpl Symb,
uint32_t &Res) const {
uint32_t flags;
getSymbolFlags(Symb, flags);
if (flags & SymbolRef::SF_Common) {
uint64_t Value;
getSymbolValue(Symb, Value);
Res = Value;
} else {
Res = 0;
}
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolSize(DataRefImpl Symb,
uint64_t &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
if (symb->st_size == 0)
Result = UnknownAddressOrSize;
Result = symb->st_size;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolNMTypeChar(DataRefImpl Symb,
char &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *Section = getSection(symb);
char ret = '?';
if (Section) {
switch (Section->sh_type) {
case ELF::SHT_PROGBITS:
case ELF::SHT_DYNAMIC:
switch (Section->sh_flags) {
case (ELF::SHF_ALLOC | ELF::SHF_EXECINSTR):
ret = 't'; break;
case (ELF::SHF_ALLOC | ELF::SHF_WRITE):
ret = 'd'; break;
case ELF::SHF_ALLOC:
case (ELF::SHF_ALLOC | ELF::SHF_MERGE):
case (ELF::SHF_ALLOC | ELF::SHF_MERGE | ELF::SHF_STRINGS):
ret = 'r'; break;
}
break;
case ELF::SHT_NOBITS: ret = 'b';
}
}
switch (getSymbolTableIndex(symb)) {
case ELF::SHN_UNDEF:
if (ret == '?')
ret = 'U';
break;
case ELF::SHN_ABS: ret = 'a'; break;
case ELF::SHN_COMMON: ret = 'c'; break;
}
switch (symb->getBinding()) {
case ELF::STB_GLOBAL: ret = ::toupper(ret); break;
case ELF::STB_WEAK:
if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
ret = 'w';
else
if (symb->getType() == ELF::STT_OBJECT)
ret = 'V';
else
ret = 'W';
}
if (ret == '?' && symb->getType() == ELF::STT_SECTION) {
StringRef name;
if (error_code ec = getSymbolName(Symb, name))
return ec;
Result = StringSwitch<char>(name)
.StartsWith(".debug", 'N')
.StartsWith(".note", 'n')
.Default('?');
return object_error::success;
}
Result = ret;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolType(DataRefImpl Symb,
SymbolRef::Type &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
switch (symb->getType()) {
case ELF::STT_NOTYPE:
Result = SymbolRef::ST_Unknown;
break;
case ELF::STT_SECTION:
Result = SymbolRef::ST_Debug;
break;
case ELF::STT_FILE:
Result = SymbolRef::ST_File;
break;
case ELF::STT_FUNC:
Result = SymbolRef::ST_Function;
break;
case ELF::STT_OBJECT:
case ELF::STT_COMMON:
case ELF::STT_TLS:
Result = SymbolRef::ST_Data;
break;
default:
Result = SymbolRef::ST_Other;
break;
}
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolFlags(DataRefImpl Symb,
uint32_t &Result) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
Result = SymbolRef::SF_None;
if (symb->getBinding() != ELF::STB_LOCAL)
Result |= SymbolRef::SF_Global;
if (symb->getBinding() == ELF::STB_WEAK)
Result |= SymbolRef::SF_Weak;
if (symb->st_shndx == ELF::SHN_ABS)
Result |= SymbolRef::SF_Absolute;
if (symb->getType() == ELF::STT_FILE ||
symb->getType() == ELF::STT_SECTION)
Result |= SymbolRef::SF_FormatSpecific;
if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
Result |= SymbolRef::SF_Undefined;
if (symb->getType() == ELF::STT_COMMON ||
getSymbolTableIndex(symb) == ELF::SHN_COMMON)
Result |= SymbolRef::SF_Common;
if (symb->getType() == ELF::STT_TLS)
Result |= SymbolRef::SF_ThreadLocal;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolSection(DataRefImpl Symb,
section_iterator &Res) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
const Elf_Shdr *sec = getSection(symb);
if (!sec)
Res = end_sections();
else {
DataRefImpl Sec;
Sec.p = reinterpret_cast<intptr_t>(sec);
Res = section_iterator(SectionRef(Sec, this));
}
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolValue(DataRefImpl Symb,
uint64_t &Val) const {
validateSymbol(Symb);
const Elf_Sym *symb = getSymbol(Symb);
Val = symb->st_value;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionNext(DataRefImpl Sec,
SectionRef &Result) const {
const uint8_t *sec = reinterpret_cast<const uint8_t *>(Sec.p);
sec += Header->e_shentsize;
Sec.p = reinterpret_cast<intptr_t>(sec);
Result = SectionRef(Sec, this);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionName(DataRefImpl Sec,
StringRef &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
Result = StringRef(getString(dot_shstrtab_sec, sec->sh_name));
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionAddress(DataRefImpl Sec,
uint64_t &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
Result = sec->sh_addr;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionSize(DataRefImpl Sec,
uint64_t &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
Result = sec->sh_size;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionContents(DataRefImpl Sec,
StringRef &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
const char *start = (const char*)base() + sec->sh_offset;
Result = StringRef(start, sec->sh_size);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionContents(const Elf_Shdr *Sec,
StringRef &Result) const {
const char *start = (const char*)base() + Sec->sh_offset;
Result = StringRef(start, Sec->sh_size);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionAlignment(DataRefImpl Sec,
uint64_t &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
Result = sec->sh_addralign;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionText(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & ELF::SHF_EXECINSTR)
Result = true;
else
Result = false;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionData(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
&& sec->sh_type == ELF::SHT_PROGBITS)
Result = true;
else
Result = false;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionBSS(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
&& sec->sh_type == ELF::SHT_NOBITS)
Result = true;
else
Result = false;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionRequiredForExecution(
DataRefImpl Sec, bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & ELF::SHF_ALLOC)
Result = true;
else
Result = false;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionVirtual(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_type == ELF::SHT_NOBITS)
Result = true;
else
Result = false;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionZeroInit(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
// For ELF, all zero-init sections are virtual (that is, they occupy no space
// in the object image) and vice versa.
Result = sec->sh_type == ELF::SHT_NOBITS;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::isSectionReadOnlyData(DataRefImpl Sec,
bool &Result) const {
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
if (sec->sh_flags & ELF::SHF_WRITE || sec->sh_flags & ELF::SHF_EXECINSTR)
Result = false;
else
Result = true;
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::sectionContainsSymbol(DataRefImpl Sec,
DataRefImpl Symb,
bool &Result) const {
validateSymbol(Symb);
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
const Elf_Sym *symb = getSymbol(Symb);
unsigned shndx = symb->st_shndx;
bool Reserved = shndx >= ELF::SHN_LORESERVE
&& shndx <= ELF::SHN_HIRESERVE;
Result = !Reserved && (sec == getSection(symb->st_shndx));
return object_error::success;
}
template<class ELFT>
relocation_iterator
ELFObjectFile<ELFT>::getSectionRelBegin(DataRefImpl Sec) const {
DataRefImpl RelData;
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
if (sec != 0 && ittr != SectionRelocMap.end()) {
RelData.w.a = getSection(ittr->second[0])->sh_info;
RelData.w.b = ittr->second[0];
RelData.w.c = 0;
}
return relocation_iterator(RelocationRef(RelData, this));
}
template<class ELFT>
relocation_iterator
ELFObjectFile<ELFT>::getSectionRelEnd(DataRefImpl Sec) const {
DataRefImpl RelData;
const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
if (sec != 0 && ittr != SectionRelocMap.end()) {
// Get the index of the last relocation section for this section.
std::size_t relocsecindex = ittr->second[ittr->second.size() - 1];
const Elf_Shdr *relocsec = getSection(relocsecindex);
RelData.w.a = relocsec->sh_info;
RelData.w.b = relocsecindex;
RelData.w.c = relocsec->sh_size / relocsec->sh_entsize;
}
return relocation_iterator(RelocationRef(RelData, this));
}
// Relocations
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationNext(DataRefImpl Rel,
RelocationRef &Result) const {
++Rel.w.c;
const Elf_Shdr *relocsec = getSection(Rel.w.b);
if (Rel.w.c >= (relocsec->sh_size / relocsec->sh_entsize)) {
// We have reached the end of the relocations for this section. See if there
// is another relocation section.
typename RelocMap_t::mapped_type relocseclist =
SectionRelocMap.lookup(getSection(Rel.w.a));
// Do a binary search for the current reloc section index (which must be
// present). Then get the next one.
typename RelocMap_t::mapped_type::const_iterator loc =
std::lower_bound(relocseclist.begin(), relocseclist.end(), Rel.w.b);
++loc;
// If there is no next one, don't do anything. The ++Rel.w.c above sets Rel
// to the end iterator.
if (loc != relocseclist.end()) {
Rel.w.b = *loc;
Rel.w.a = 0;
}
}
Result = RelocationRef(Rel, this);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationSymbol(DataRefImpl Rel,
SymbolRef &Result) const {
uint32_t symbolIdx;
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
symbolIdx = getRel(Rel)->getSymbol(isMips64EL());
break;
}
case ELF::SHT_RELA : {
symbolIdx = getRela(Rel)->getSymbol(isMips64EL());
break;
}
}
DataRefImpl SymbolData;
IndexMap_t::const_iterator it = SymbolTableSectionsIndexMap.find(sec->sh_link);
if (it == SymbolTableSectionsIndexMap.end())
report_fatal_error("Relocation symbol table not found!");
SymbolData.d.a = symbolIdx;
SymbolData.d.b = it->second;
Result = SymbolRef(SymbolData, this);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationAddress(DataRefImpl Rel,
uint64_t &Result) const {
assert((Header->e_type == ELF::ET_EXEC || Header->e_type == ELF::ET_DYN) &&
"Only executable and shared objects files have addresses");
Result = getROffset(Rel);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationOffset(DataRefImpl Rel,
uint64_t &Result) const {
assert(Header->e_type == ELF::ET_REL &&
"Only relocatable object files have relocation offsets");
Result = getROffset(Rel);
return object_error::success;
}
template<class ELFT>
uint64_t ELFObjectFile<ELFT>::getROffset(DataRefImpl Rel) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default:
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL:
return getRel(Rel)->r_offset;
case ELF::SHT_RELA:
return getRela(Rel)->r_offset;
}
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationType(DataRefImpl Rel,
uint64_t &Result) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
Result = getRel(Rel)->getType(isMips64EL());
break;
}
case ELF::SHT_RELA : {
Result = getRela(Rel)->getType(isMips64EL());
break;
}
}
return object_error::success;
}
#define LLVM_ELF_SWITCH_RELOC_TYPE_NAME(enum) \
case ELF::enum: Res = #enum; break;
template<class ELFT>
StringRef ELFObjectFile<ELFT>::getRelocationTypeName(uint32_t Type) const {
StringRef Res = "Unknown";
switch (Header->e_machine) {
case ELF::EM_X86_64:
switch (Type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_COPY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GLOB_DAT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_JUMP_SLOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_RELATIVE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32S);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPMOD64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSGD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSLD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTTPOFF);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTOFF64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPLT64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLTOFF64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32_TLSDESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_IRELATIVE);
default: break;
}
break;
case ELF::EM_386:
switch (Type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PLT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_COPY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GLOB_DAT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_JUMP_SLOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_RELATIVE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTOFF);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTPC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32PLT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTIE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_PUSH);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_POP);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_PUSH);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_POP);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDO_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPMOD32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTDESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_IRELATIVE);
default: break;
}
break;
case ELF::EM_MIPS:
switch (Type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_REL32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_26);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GPREL16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_LITERAL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PC16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_CALL16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GPREL32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_SHIFT5);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_SHIFT6);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_DISP);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_PAGE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_OFST);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GOT_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_SUB);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_INSERT_A);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_INSERT_B);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_DELETE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_HIGHER);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_HIGHEST);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_CALL_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_CALL_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_SCN_DISP);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_REL16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_ADD_IMMEDIATE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_PJUMP);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_RELGOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_JALR);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPMOD32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPREL32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPMOD64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPREL64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_GD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_LDM);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPREL_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_DTPREL_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_GOTTPREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_TPREL32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_TPREL64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_TPREL_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_TLS_TPREL_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_GLOB_DAT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_COPY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_JUMP_SLOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_MIPS_NUM);
default: break;
}
break;
case ELF::EM_AARCH64:
switch (Type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G3);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD_PREL_LO19);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_LO21);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_PG_HI21);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADD_ABS_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST8_ABS_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TSTBR14);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CONDBR19);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_JUMP26);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CALL26);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST16_ABS_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST32_ABS_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST64_ABS_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST128_ABS_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_GOT_PAGE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD64_GOT_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_HI12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_HI12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADR_PAGE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_LD64_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADD_LO12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_CALL);
default: break;
}
break;
case ELF::EM_ARM:
switch (Type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PC24);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ABS5);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BREL_ADJ);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_SWI8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_XPC25);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_XPC22);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPMOD32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_TPOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_COPY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GLOB_DAT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP_SLOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_RELATIVE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_PREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP24);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP24);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_ABS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_7_0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_15_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_23_15);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SBREL_11_0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_19_12_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_27_20_CK);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL31);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_V4BX);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PREL31);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_ABS_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_ABS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_PREL_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_PREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_ABS_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_ABS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_PREL_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_PREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP19);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP6);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ALU_PREL_11_0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32_NOI);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32_NOI);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_BREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL_NC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_BREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GOTDESC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESCSEQ);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_CALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32_ABS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_ABS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_PREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTRELAX);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTENTRY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTINHERIT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP11);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GD32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDM32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE12GP);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_3);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_4);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_5);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_6);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_7);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_9);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_10);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_11);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_13);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_14);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_15);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ME_TOO);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ32);
default: break;
}
break;
case ELF::EM_HEXAGON:
switch (Type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_0);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_1);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_2);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_3);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HL16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B32_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_12_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_11_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_10_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_9_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_7_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_COPY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GLOB_DAT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_JMP_SLOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_RELATIVE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_PLT_B22_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPMOD_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_PLT_B22_PCREL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_LO16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_HI16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_PCREL_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_11_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_11_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_11_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_11_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_11_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32_6_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16_X);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_11_X);
default: break;
}
break;
case ELF::EM_PPC:
switch (Type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR24);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR16_LO);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR16_HI);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR16_HA);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR14);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR14_BRTAKEN);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_ADDR14_BRNTAKEN);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL24);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL14);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL14_BRTAKEN);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL14_BRNTAKEN);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_REL32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_TPREL16_LO);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC_TPREL16_HA);
default: break;
}
break;
case ELF::EM_PPC64:
switch (Type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_LO);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_HI);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR14);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL24);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_HIGHER);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_HIGHEST);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_REL64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_LO);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_HA);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_DS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_ADDR16_LO_DS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_DS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TOC16_LO_DS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TLS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_LO);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TPREL16_HA);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_LO);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_DTPREL16_HA);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSGD16_LO);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSGD16_HA);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSLD16_LO);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TLSLD16_HA);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TPREL16_LO_DS);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_GOT_TPREL16_HA);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TLSGD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_PPC64_TLSLD);
default: break;
}
break;
case ELF::EM_S390:
switch (Type) {
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_NONE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_8);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_COPY);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GLOB_DAT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_JMP_SLOT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_RELATIVE);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTOFF);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPC);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC16DBL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLT16DBL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC32DBL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLT32DBL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPCDBL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PC64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLT64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTENT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTOFF16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTOFF64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLTENT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLTOFF16);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLTOFF32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_PLTOFF64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LOAD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GDCALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDCALL);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GD32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GD64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GOTIE12);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GOTIE32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GOTIE64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDM32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDM64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_IE32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_IE64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_IEENT);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LE32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LE64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDO32);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_LDO64);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_DTPMOD);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_DTPOFF);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_TPOFF);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_20);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOT20);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_GOTPLT20);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_TLS_GOTIE20);
LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_390_IRELATIVE);
default: break;
}
break;
default: break;
}
return Res;
}
#undef LLVM_ELF_SWITCH_RELOC_TYPE_NAME
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationTypeName(
DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
uint32_t type;
switch (sec->sh_type) {
default :
return object_error::parse_failed;
case ELF::SHT_REL : {
type = getRel(Rel)->getType(isMips64EL());
break;
}
case ELF::SHT_RELA : {
type = getRela(Rel)->getType(isMips64EL());
break;
}
}
if (!isMips64EL()) {
StringRef Name = getRelocationTypeName(type);
Result.append(Name.begin(), Name.end());
} else {
uint8_t Type1 = (type >> 0) & 0xFF;
uint8_t Type2 = (type >> 8) & 0xFF;
uint8_t Type3 = (type >> 16) & 0xFF;
// Concat all three relocation type names.
StringRef Name = getRelocationTypeName(Type1);
Result.append(Name.begin(), Name.end());
Name = getRelocationTypeName(Type2);
Result.append(1, '/');
Result.append(Name.begin(), Name.end());
Name = getRelocationTypeName(Type3);
Result.append(1, '/');
Result.append(Name.begin(), Name.end());
}
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationAdditionalInfo(
DataRefImpl Rel, int64_t &Result) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
switch (sec->sh_type) {
default :
report_fatal_error("Invalid section type in Rel!");
case ELF::SHT_REL : {
Result = 0;
return object_error::success;
}
case ELF::SHT_RELA : {
Result = getRela(Rel)->r_addend;
return object_error::success;
}
}
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getRelocationValueString(
DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
const Elf_Shdr *sec = getSection(Rel.w.b);
uint8_t type;
StringRef res;
int64_t addend = 0;
uint16_t symbol_index = 0;
switch (sec->sh_type) {
default:
return object_error::parse_failed;
case ELF::SHT_REL: {
type = getRel(Rel)->getType(isMips64EL());
symbol_index = getRel(Rel)->getSymbol(isMips64EL());
// TODO: Read implicit addend from section data.
break;
}
case ELF::SHT_RELA: {
type = getRela(Rel)->getType(isMips64EL());
symbol_index = getRela(Rel)->getSymbol(isMips64EL());
addend = getRela(Rel)->r_addend;
break;
}
}
const Elf_Sym *symb = getEntry<Elf_Sym>(sec->sh_link, symbol_index);
StringRef symname;
if (error_code ec = getSymbolName(getSection(sec->sh_link), symb, symname))
return ec;
switch (Header->e_machine) {
case ELF::EM_X86_64:
switch (type) {
case ELF::R_X86_64_PC8:
case ELF::R_X86_64_PC16:
case ELF::R_X86_64_PC32: {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << symname << (addend < 0 ? "" : "+") << addend << "-P";
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
}
break;
case ELF::R_X86_64_8:
case ELF::R_X86_64_16:
case ELF::R_X86_64_32:
case ELF::R_X86_64_32S:
case ELF::R_X86_64_64: {
std::string fmtbuf;
raw_string_ostream fmt(fmtbuf);
fmt << symname << (addend < 0 ? "" : "+") << addend;
fmt.flush();
Result.append(fmtbuf.begin(), fmtbuf.end());
}
break;
default:
res = "Unknown";
}
break;
case ELF::EM_AARCH64:
case ELF::EM_ARM:
case ELF::EM_HEXAGON:
res = symname;
break;
default:
res = "Unknown";
}
if (Result.empty())
Result.append(res.begin(), res.end());
return object_error::success;
}
// Verify that the last byte in the string table in a null.
template<class ELFT>
void ELFObjectFile<ELFT>::VerifyStrTab(const Elf_Shdr *sh) const {
const char *strtab = (const char*)base() + sh->sh_offset;
if (strtab[sh->sh_size - 1] != 0)
// FIXME: Proper error handling.
report_fatal_error("String table must end with a null terminator!");
}
template<class ELFT>
ELFObjectFile<ELFT>::ELFObjectFile(MemoryBuffer *Object, error_code &ec)
: ObjectFile(getELFType(
static_cast<endianness>(ELFT::TargetEndianness) == support::little,
ELFT::Is64Bits),
Object)
, isDyldELFObject(false)
, SectionHeaderTable(0)
, dot_shstrtab_sec(0)
, dot_strtab_sec(0)
, dot_dynstr_sec(0)
, dot_dynamic_sec(0)
, dot_gnu_version_sec(0)
, dot_gnu_version_r_sec(0)
, dot_gnu_version_d_sec(0)
, dt_soname(0)
{
const uint64_t FileSize = Data->getBufferSize();
if (sizeof(Elf_Ehdr) > FileSize)
// FIXME: Proper error handling.
report_fatal_error("File too short!");
Header = reinterpret_cast<const Elf_Ehdr *>(base());
if (Header->e_shoff == 0)
return;
const uint64_t SectionTableOffset = Header->e_shoff;
if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
// FIXME: Proper error handling.
report_fatal_error("Section header table goes past end of file!");
// The getNumSections() call below depends on SectionHeaderTable being set.
SectionHeaderTable =
reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
const uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
if (SectionTableOffset + SectionTableSize > FileSize)
// FIXME: Proper error handling.
report_fatal_error("Section table goes past end of file!");
// To find the symbol tables we walk the section table to find SHT_SYMTAB.
const Elf_Shdr* SymbolTableSectionHeaderIndex = 0;
const Elf_Shdr* sh = SectionHeaderTable;
// Reserve SymbolTableSections[0] for .dynsym
SymbolTableSections.push_back(NULL);
for (uint64_t i = 0, e = getNumSections(); i != e; ++i) {
switch (sh->sh_type) {
case ELF::SHT_SYMTAB_SHNDX: {
if (SymbolTableSectionHeaderIndex)
// FIXME: Proper error handling.
report_fatal_error("More than one .symtab_shndx!");
SymbolTableSectionHeaderIndex = sh;
break;
}
case ELF::SHT_SYMTAB: {
SymbolTableSectionsIndexMap[i] = SymbolTableSections.size();
SymbolTableSections.push_back(sh);
break;
}
case ELF::SHT_DYNSYM: {
if (SymbolTableSections[0] != NULL)
// FIXME: Proper error handling.
report_fatal_error("More than one .dynsym!");
SymbolTableSectionsIndexMap[i] = 0;
SymbolTableSections[0] = sh;
break;
}
case ELF::SHT_REL:
case ELF::SHT_RELA: {
SectionRelocMap[getSection(sh->sh_info)].push_back(i);
break;
}
case ELF::SHT_DYNAMIC: {
if (dot_dynamic_sec != NULL)
// FIXME: Proper error handling.
report_fatal_error("More than one .dynamic!");
dot_dynamic_sec = sh;
break;
}
case ELF::SHT_GNU_versym: {
if (dot_gnu_version_sec != NULL)
// FIXME: Proper error handling.
report_fatal_error("More than one .gnu.version section!");
dot_gnu_version_sec = sh;
break;
}
case ELF::SHT_GNU_verdef: {
if (dot_gnu_version_d_sec != NULL)
// FIXME: Proper error handling.
report_fatal_error("More than one .gnu.version_d section!");
dot_gnu_version_d_sec = sh;
break;
}
case ELF::SHT_GNU_verneed: {
if (dot_gnu_version_r_sec != NULL)
// FIXME: Proper error handling.
report_fatal_error("More than one .gnu.version_r section!");
dot_gnu_version_r_sec = sh;
break;
}
}
++sh;
}
// Sort section relocation lists by index.
for (typename RelocMap_t::iterator i = SectionRelocMap.begin(),
e = SectionRelocMap.end(); i != e; ++i) {
std::sort(i->second.begin(), i->second.end());
}
// Get string table sections.
dot_shstrtab_sec = getSection(getStringTableIndex());
if (dot_shstrtab_sec) {
// Verify that the last byte in the string table in a null.
VerifyStrTab(dot_shstrtab_sec);
}
// Merge this into the above loop.
for (const char *i = reinterpret_cast<const char *>(SectionHeaderTable),
*e = i + getNumSections() * Header->e_shentsize;
i != e; i += Header->e_shentsize) {
const Elf_Shdr *sh = reinterpret_cast<const Elf_Shdr*>(i);
if (sh->sh_type == ELF::SHT_STRTAB) {
StringRef SectionName(getString(dot_shstrtab_sec, sh->sh_name));
if (SectionName == ".strtab") {
if (dot_strtab_sec != 0)
// FIXME: Proper error handling.
report_fatal_error("Already found section named .strtab!");
dot_strtab_sec = sh;
VerifyStrTab(dot_strtab_sec);
} else if (SectionName == ".dynstr") {
if (dot_dynstr_sec != 0)
// FIXME: Proper error handling.
report_fatal_error("Already found section named .dynstr!");
dot_dynstr_sec = sh;
VerifyStrTab(dot_dynstr_sec);
}
}
}
// Build symbol name side-mapping if there is one.
if (SymbolTableSectionHeaderIndex) {
const Elf_Word *ShndxTable = reinterpret_cast<const Elf_Word*>(base() +
SymbolTableSectionHeaderIndex->sh_offset);
error_code ec;
for (symbol_iterator si = begin_symbols(),
se = end_symbols(); si != se; si.increment(ec)) {
if (ec)
report_fatal_error("Fewer extended symbol table entries than symbols!");
if (*ShndxTable != ELF::SHN_UNDEF)
ExtendedSymbolTable[getSymbol(si->getRawDataRefImpl())] = *ShndxTable;
++ShndxTable;
}
}
}
// Get the symbol table index in the symtab section given a symbol
template<class ELFT>
uint64_t ELFObjectFile<ELFT>::getSymbolIndex(const Elf_Sym *Sym) const {
assert(SymbolTableSections.size() == 1 && "Only one symbol table supported!");
const Elf_Shdr *SymTab = *SymbolTableSections.begin();
uintptr_t SymLoc = uintptr_t(Sym);
uintptr_t SymTabLoc = uintptr_t(base() + SymTab->sh_offset);
assert(SymLoc > SymTabLoc && "Symbol not in symbol table!");
uint64_t SymOffset = SymLoc - SymTabLoc;
assert(SymOffset % SymTab->sh_entsize == 0 &&
"Symbol not multiple of symbol size!");
return SymOffset / SymTab->sh_entsize;
}
template<class ELFT>
symbol_iterator ELFObjectFile<ELFT>::begin_symbols() const {
DataRefImpl SymbolData;
if (SymbolTableSections.size() <= 1) {
SymbolData.d.a = std::numeric_limits<uint32_t>::max();
SymbolData.d.b = std::numeric_limits<uint32_t>::max();
} else {
SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
SymbolData.d.b = 1; // The 0th table is .dynsym
}
return symbol_iterator(SymbolRef(SymbolData, this));
}
template<class ELFT>
symbol_iterator ELFObjectFile<ELFT>::end_symbols() const {
DataRefImpl SymbolData;
SymbolData.d.a = std::numeric_limits<uint32_t>::max();
SymbolData.d.b = std::numeric_limits<uint32_t>::max();
return symbol_iterator(SymbolRef(SymbolData, this));
}
template<class ELFT>
symbol_iterator ELFObjectFile<ELFT>::begin_dynamic_symbols() const {
DataRefImpl SymbolData;
if (SymbolTableSections[0] == NULL) {
SymbolData.d.a = std::numeric_limits<uint32_t>::max();
SymbolData.d.b = std::numeric_limits<uint32_t>::max();
} else {
SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
SymbolData.d.b = 0; // The 0th table is .dynsym
}
return symbol_iterator(SymbolRef(SymbolData, this));
}
template<class ELFT>
symbol_iterator ELFObjectFile<ELFT>::end_dynamic_symbols() const {
DataRefImpl SymbolData;
SymbolData.d.a = std::numeric_limits<uint32_t>::max();
SymbolData.d.b = std::numeric_limits<uint32_t>::max();
return symbol_iterator(SymbolRef(SymbolData, this));
}
template<class ELFT>
section_iterator ELFObjectFile<ELFT>::begin_sections() const {
DataRefImpl ret;
ret.p = reinterpret_cast<intptr_t>(base() + Header->e_shoff);
return section_iterator(SectionRef(ret, this));
}
template<class ELFT>
section_iterator ELFObjectFile<ELFT>::end_sections() const {
DataRefImpl ret;
ret.p = reinterpret_cast<intptr_t>(base()
+ Header->e_shoff
+ (Header->e_shentsize*getNumSections()));
return section_iterator(SectionRef(ret, this));
}
template<class ELFT>
typename ELFObjectFile<ELFT>::Elf_Dyn_iterator
ELFObjectFile<ELFT>::begin_dynamic_table() const {
if (dot_dynamic_sec)
return Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
(const char *)base() + dot_dynamic_sec->sh_offset);
return Elf_Dyn_iterator(0, 0);
}
template<class ELFT>
typename ELFObjectFile<ELFT>::Elf_Dyn_iterator
ELFObjectFile<ELFT>::end_dynamic_table(bool NULLEnd) const {
if (dot_dynamic_sec) {
Elf_Dyn_iterator Ret(dot_dynamic_sec->sh_entsize,
(const char *)base() + dot_dynamic_sec->sh_offset +
dot_dynamic_sec->sh_size);
if (NULLEnd) {
Elf_Dyn_iterator Start = begin_dynamic_table();
while (Start != Ret && Start->getTag() != ELF::DT_NULL)
++Start;
// Include the DT_NULL.
if (Start != Ret)
++Start;
Ret = Start;
}
return Ret;
}
return Elf_Dyn_iterator(0, 0);
}
template<class ELFT>
StringRef ELFObjectFile<ELFT>::getLoadName() const {
if (!dt_soname) {
// Find the DT_SONAME entry
Elf_Dyn_iterator it = begin_dynamic_table();
Elf_Dyn_iterator ie = end_dynamic_table();
while (it != ie && it->getTag() != ELF::DT_SONAME)
++it;
if (it != ie) {
if (dot_dynstr_sec == NULL)
report_fatal_error("Dynamic string table is missing");
dt_soname = getString(dot_dynstr_sec, it->getVal());
} else {
dt_soname = "";
}
}
return dt_soname;
}
template<class ELFT>
library_iterator ELFObjectFile<ELFT>::begin_libraries_needed() const {
// Find the first DT_NEEDED entry
Elf_Dyn_iterator i = begin_dynamic_table();
Elf_Dyn_iterator e = end_dynamic_table();
while (i != e && i->getTag() != ELF::DT_NEEDED)
++i;
DataRefImpl DRI;
DRI.p = reinterpret_cast<uintptr_t>(i.get());
return library_iterator(LibraryRef(DRI, this));
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getLibraryNext(DataRefImpl Data,
LibraryRef &Result) const {
// Use the same DataRefImpl format as DynRef.
Elf_Dyn_iterator i = Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
reinterpret_cast<const char *>(Data.p));
Elf_Dyn_iterator e = end_dynamic_table();
// Skip the current dynamic table entry and find the next DT_NEEDED entry.
do
++i;
while (i != e && i->getTag() != ELF::DT_NEEDED);
DataRefImpl DRI;
DRI.p = reinterpret_cast<uintptr_t>(i.get());
Result = LibraryRef(DRI, this);
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getLibraryPath(DataRefImpl Data,
StringRef &Res) const {
Elf_Dyn_iterator i = Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
reinterpret_cast<const char *>(Data.p));
if (i == end_dynamic_table())
report_fatal_error("getLibraryPath() called on iterator end");
if (i->getTag() != ELF::DT_NEEDED)
report_fatal_error("Invalid library_iterator");
// This uses .dynstr to lookup the name of the DT_NEEDED entry.
// THis works as long as DT_STRTAB == .dynstr. This is true most of
// the time, but the specification allows exceptions.
// TODO: This should really use DT_STRTAB instead. Doing this requires
// reading the program headers.
if (dot_dynstr_sec == NULL)
report_fatal_error("Dynamic string table is missing");
Res = getString(dot_dynstr_sec, i->getVal());
return object_error::success;
}
template<class ELFT>
library_iterator ELFObjectFile<ELFT>::end_libraries_needed() const {
Elf_Dyn_iterator e = end_dynamic_table();
DataRefImpl DRI;
DRI.p = reinterpret_cast<uintptr_t>(e.get());
return library_iterator(LibraryRef(DRI, this));
}
template<class ELFT>
uint8_t ELFObjectFile<ELFT>::getBytesInAddress() const {
return ELFT::Is64Bits ? 8 : 4;
}
template<class ELFT>
StringRef ELFObjectFile<ELFT>::getFileFormatName() const {
switch(Header->e_ident[ELF::EI_CLASS]) {
case ELF::ELFCLASS32:
switch(Header->e_machine) {
case ELF::EM_386:
return "ELF32-i386";
case ELF::EM_X86_64:
return "ELF32-x86-64";
case ELF::EM_ARM:
return "ELF32-arm";
case ELF::EM_HEXAGON:
return "ELF32-hexagon";
case ELF::EM_MIPS:
return "ELF32-mips";
default:
return "ELF32-unknown";
}
case ELF::ELFCLASS64:
switch(Header->e_machine) {
case ELF::EM_386:
return "ELF64-i386";
case ELF::EM_X86_64:
return "ELF64-x86-64";
case ELF::EM_AARCH64:
return "ELF64-aarch64";
case ELF::EM_PPC64:
return "ELF64-ppc64";
case ELF::EM_S390:
return "ELF64-s390";
default:
return "ELF64-unknown";
}
default:
// FIXME: Proper error handling.
report_fatal_error("Invalid ELFCLASS!");
}
}
template<class ELFT>
unsigned ELFObjectFile<ELFT>::getArch() const {
switch(Header->e_machine) {
case ELF::EM_386:
return Triple::x86;
case ELF::EM_X86_64:
return Triple::x86_64;
case ELF::EM_AARCH64:
return Triple::aarch64;
case ELF::EM_ARM:
return Triple::arm;
case ELF::EM_HEXAGON:
return Triple::hexagon;
case ELF::EM_MIPS:
return (ELFT::TargetEndianness == support::little) ?
Triple::mipsel : Triple::mips;
case ELF::EM_PPC64:
return Triple::ppc64;
case ELF::EM_S390:
return Triple::systemz;
default:
return Triple::UnknownArch;
}
}
template<class ELFT>
uint64_t ELFObjectFile<ELFT>::getNumSections() const {
assert(Header && "Header not initialized!");
if (Header->e_shnum == ELF::SHN_UNDEF) {
assert(SectionHeaderTable && "SectionHeaderTable not initialized!");
return SectionHeaderTable->sh_size;
}
return Header->e_shnum;
}
template<class ELFT>
uint64_t
ELFObjectFile<ELFT>::getStringTableIndex() const {
if (Header->e_shnum == ELF::SHN_UNDEF) {
if (Header->e_shstrndx == ELF::SHN_HIRESERVE)
return SectionHeaderTable->sh_link;
if (Header->e_shstrndx >= getNumSections())
return 0;
}
return Header->e_shstrndx;
}
template<class ELFT>
template<typename T>
inline const T *
ELFObjectFile<ELFT>::getEntry(uint16_t Section, uint32_t Entry) const {
return getEntry<T>(getSection(Section), Entry);
}
template<class ELFT>
template<typename T>
inline const T *
ELFObjectFile<ELFT>::getEntry(const Elf_Shdr * Section, uint32_t Entry) const {
return reinterpret_cast<const T *>(
base()
+ Section->sh_offset
+ (Entry * Section->sh_entsize));
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Sym *
ELFObjectFile<ELFT>::getSymbol(DataRefImpl Symb) const {
return getEntry<Elf_Sym>(SymbolTableSections[Symb.d.b], Symb.d.a);
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Rel *
ELFObjectFile<ELFT>::getRel(DataRefImpl Rel) const {
return getEntry<Elf_Rel>(Rel.w.b, Rel.w.c);
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Rela *
ELFObjectFile<ELFT>::getRela(DataRefImpl Rela) const {
return getEntry<Elf_Rela>(Rela.w.b, Rela.w.c);
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Shdr *
ELFObjectFile<ELFT>::getSection(DataRefImpl Symb) const {
const Elf_Shdr *sec = getSection(Symb.d.b);
if (sec->sh_type != ELF::SHT_SYMTAB || sec->sh_type != ELF::SHT_DYNSYM)
// FIXME: Proper error handling.
report_fatal_error("Invalid symbol table section!");
return sec;
}
template<class ELFT>
const typename ELFObjectFile<ELFT>::Elf_Shdr *
ELFObjectFile<ELFT>::getSection(uint32_t index) const {
if (index == 0)
return 0;
if (!SectionHeaderTable || index >= getNumSections())
// FIXME: Proper error handling.
report_fatal_error("Invalid section index!");
return reinterpret_cast<const Elf_Shdr *>(
reinterpret_cast<const char *>(SectionHeaderTable)
+ (index * Header->e_shentsize));
}
template<class ELFT>
const char *ELFObjectFile<ELFT>::getString(uint32_t section,
ELF::Elf32_Word offset) const {
return getString(getSection(section), offset);
}
template<class ELFT>
const char *ELFObjectFile<ELFT>::getString(const Elf_Shdr *section,
ELF::Elf32_Word offset) const {
assert(section && section->sh_type == ELF::SHT_STRTAB && "Invalid section!");
if (offset >= section->sh_size)
// FIXME: Proper error handling.
report_fatal_error("Symbol name offset outside of string table!");
return (const char *)base() + section->sh_offset + offset;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolName(const Elf_Shdr *section,
const Elf_Sym *symb,
StringRef &Result) const {
if (symb->st_name == 0) {
const Elf_Shdr *section = getSection(symb);
if (!section)
Result = "";
else
Result = getString(dot_shstrtab_sec, section->sh_name);
return object_error::success;
}
if (section == SymbolTableSections[0]) {
// Symbol is in .dynsym, use .dynstr string table
Result = getString(dot_dynstr_sec, symb->st_name);
} else {
// Use the default symbol table name section.
Result = getString(dot_strtab_sec, symb->st_name);
}
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSectionName(const Elf_Shdr *section,
StringRef &Result) const {
Result = StringRef(getString(dot_shstrtab_sec, section->sh_name));
return object_error::success;
}
template<class ELFT>
error_code ELFObjectFile<ELFT>::getSymbolVersion(const Elf_Shdr *section,
const Elf_Sym *symb,
StringRef &Version,
bool &IsDefault) const {
// Handle non-dynamic symbols.
if (section != SymbolTableSections[0]) {
// Non-dynamic symbols can have versions in their names
// A name of the form 'foo@V1' indicates version 'V1', non-default.
// A name of the form 'foo@@V2' indicates version 'V2', default version.
StringRef Name;
error_code ec = getSymbolName(section, symb, Name);
if (ec != object_error::success)
return ec;
size_t atpos = Name.find('@');
if (atpos == StringRef::npos) {
Version = "";
IsDefault = false;
return object_error::success;
}
++atpos;
if (atpos < Name.size() && Name[atpos] == '@') {
IsDefault = true;
++atpos;
} else {
IsDefault = false;
}
Version = Name.substr(atpos);
return object_error::success;
}
// This is a dynamic symbol. Look in the GNU symbol version table.
if (dot_gnu_version_sec == NULL) {
// No version table.
Version = "";
IsDefault = false;
return object_error::success;
}
// Determine the position in the symbol table of this entry.
const char *sec_start = (const char*)base() + section->sh_offset;
size_t entry_index = ((const char*)symb - sec_start)/section->sh_entsize;
// Get the corresponding version index entry
const Elf_Versym *vs = getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
// Special markers for unversioned symbols.
if (version_index == ELF::VER_NDX_LOCAL ||
version_index == ELF::VER_NDX_GLOBAL) {
Version = "";
IsDefault = false;
return object_error::success;
}
// Lookup this symbol in the version table
LoadVersionMap();
if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
report_fatal_error("Symbol has version index without corresponding "
"define or reference entry");
const VersionMapEntry &entry = VersionMap[version_index];
// Get the version name string
size_t name_offset;
if (entry.isVerdef()) {
// The first Verdaux entry holds the name.
name_offset = entry.getVerdef()->getAux()->vda_name;
} else {
name_offset = entry.getVernaux()->vna_name;
}
Version = getString(dot_dynstr_sec, name_offset);
// Set IsDefault
if (entry.isVerdef()) {
IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
} else {
IsDefault = false;
}
return object_error::success;
}
/// This is a generic interface for retrieving GNU symbol version
/// information from an ELFObjectFile.
static inline error_code GetELFSymbolVersion(const ObjectFile *Obj,
const SymbolRef &Sym,
StringRef &Version,
bool &IsDefault) {
// Little-endian 32-bit
if (const ELFObjectFile<ELFType<support::little, 4, false> > *ELFObj =
dyn_cast<ELFObjectFile<ELFType<support::little, 4, false> > >(Obj))
return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
// Big-endian 32-bit
if (const ELFObjectFile<ELFType<support::big, 4, false> > *ELFObj =
dyn_cast<ELFObjectFile<ELFType<support::big, 4, false> > >(Obj))
return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
// Little-endian 64-bit
if (const ELFObjectFile<ELFType<support::little, 8, true> > *ELFObj =
dyn_cast<ELFObjectFile<ELFType<support::little, 8, true> > >(Obj))
return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
// Big-endian 64-bit
if (const ELFObjectFile<ELFType<support::big, 8, true> > *ELFObj =
dyn_cast<ELFObjectFile<ELFType<support::big, 8, true> > >(Obj))
return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
llvm_unreachable("Object passed to GetELFSymbolVersion() is not ELF");
}
/// This function returns the hash value for a symbol in the .dynsym section
/// Name of the API remains consistent as specified in the libelf
/// REF : http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash
static inline unsigned elf_hash(StringRef &symbolName) {
unsigned h = 0, g;
for (unsigned i = 0, j = symbolName.size(); i < j; i++) {
h = (h << 4) + symbolName[i];
g = h & 0xf0000000L;
if (g != 0)
h ^= g >> 24;
h &= ~g;
}
return h;
}
}
}
#endif