blob: a2c5bd3f766135b8288145d47e9796c9db39ed27 [file] [log] [blame]
//===- MCExpr.h - Assembly Level Expressions --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_MC_MCEXPR_H
#define LLVM_MC_MCEXPR_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataTypes.h"
namespace llvm {
class MCAsmLayout;
class MCAssembler;
class MCContext;
class MCSection;
class MCSectionData;
class MCSymbol;
class MCValue;
class raw_ostream;
class StringRef;
typedef DenseMap<const MCSectionData*, uint64_t> SectionAddrMap;
/// MCExpr - Base class for the full range of assembler expressions which are
/// needed for parsing.
class MCExpr {
public:
enum ExprKind {
Binary, ///< Binary expressions.
Constant, ///< Constant expressions.
SymbolRef, ///< References to labels and assigned expressions.
Unary, ///< Unary expressions.
Target ///< Target specific expression.
};
private:
ExprKind Kind;
MCExpr(const MCExpr&) LLVM_DELETED_FUNCTION;
void operator=(const MCExpr&) LLVM_DELETED_FUNCTION;
bool EvaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
const MCAsmLayout *Layout,
const SectionAddrMap *Addrs) const;
protected:
explicit MCExpr(ExprKind _Kind) : Kind(_Kind) {}
bool EvaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm,
const MCAsmLayout *Layout,
const SectionAddrMap *Addrs,
bool InSet) const;
public:
/// @name Accessors
/// @{
ExprKind getKind() const { return Kind; }
/// @}
/// @name Utility Methods
/// @{
void print(raw_ostream &OS) const;
void dump() const;
/// @}
/// @name Expression Evaluation
/// @{
/// EvaluateAsAbsolute - Try to evaluate the expression to an absolute value.
///
/// @param Res - The absolute value, if evaluation succeeds.
/// @param Layout - The assembler layout object to use for evaluating symbol
/// values. If not given, then only non-symbolic expressions will be
/// evaluated.
/// @result - True on success.
bool EvaluateAsAbsolute(int64_t &Res, const MCAsmLayout &Layout,
const SectionAddrMap &Addrs) const;
bool EvaluateAsAbsolute(int64_t &Res) const;
bool EvaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const;
bool EvaluateAsAbsolute(int64_t &Res, const MCAsmLayout &Layout) const;
/// EvaluateAsRelocatable - Try to evaluate the expression to a relocatable
/// value, i.e. an expression of the fixed form (a - b + constant).
///
/// @param Res - The relocatable value, if evaluation succeeds.
/// @param Layout - The assembler layout object to use for evaluating values.
/// @result - True on success.
bool EvaluateAsRelocatable(MCValue &Res, const MCAsmLayout &Layout) const;
/// FindAssociatedSection - Find the "associated section" for this expression,
/// which is currently defined as the absolute section for constants, or
/// otherwise the section associated with the first defined symbol in the
/// expression.
const MCSection *FindAssociatedSection() const;
/// @}
};
inline raw_ostream &operator<<(raw_ostream &OS, const MCExpr &E) {
E.print(OS);
return OS;
}
//// MCConstantExpr - Represent a constant integer expression.
class MCConstantExpr : public MCExpr {
int64_t Value;
explicit MCConstantExpr(int64_t _Value)
: MCExpr(MCExpr::Constant), Value(_Value) {}
public:
/// @name Construction
/// @{
static const MCConstantExpr *Create(int64_t Value, MCContext &Ctx);
/// @}
/// @name Accessors
/// @{
int64_t getValue() const { return Value; }
/// @}
static bool classof(const MCExpr *E) {
return E->getKind() == MCExpr::Constant;
}
};
/// MCSymbolRefExpr - Represent a reference to a symbol from inside an
/// expression.
///
/// A symbol reference in an expression may be a use of a label, a use of an
/// assembler variable (defined constant), or constitute an implicit definition
/// of the symbol as external.
class MCSymbolRefExpr : public MCExpr {
public:
enum VariantKind {
VK_None,
VK_Invalid,
VK_GOT,
VK_GOTOFF,
VK_GOTPCREL,
VK_GOTTPOFF,
VK_INDNTPOFF,
VK_NTPOFF,
VK_GOTNTPOFF,
VK_PLT,
VK_TLSGD,
VK_TLSLD,
VK_TLSLDM,
VK_TPOFF,
VK_DTPOFF,
VK_TLVP, // Mach-O thread local variable relocation
VK_SECREL,
// FIXME: We'd really like to use the generic Kinds listed above for these.
VK_ARM_NONE,
VK_ARM_PLT, // ARM-style PLT references. i.e., (PLT) instead of @PLT
VK_ARM_TLSGD, // ditto for TLSGD, GOT, GOTOFF, TPOFF and GOTTPOFF
VK_ARM_GOT,
VK_ARM_GOTOFF,
VK_ARM_TPOFF,
VK_ARM_GOTTPOFF,
VK_ARM_TARGET1,
VK_ARM_TARGET2,
VK_ARM_PREL31,
VK_PPC_TOC, // TOC base
VK_PPC_TOC_ENTRY, // TOC entry
VK_PPC_DARWIN_HA16, // ha16(symbol)
VK_PPC_DARWIN_LO16, // lo16(symbol)
VK_PPC_GAS_HA16, // symbol@ha
VK_PPC_GAS_LO16, // symbol@l
VK_PPC_TPREL16_HA, // symbol@tprel@ha
VK_PPC_TPREL16_LO, // symbol@tprel@l
VK_PPC_DTPREL16_HA, // symbol@dtprel@ha
VK_PPC_DTPREL16_LO, // symbol@dtprel@l
VK_PPC_TOC16_HA, // symbol@toc@ha
VK_PPC_TOC16_LO, // symbol@toc@l
VK_PPC_GOT_TPREL16_HA, // symbol@got@tprel@ha
VK_PPC_GOT_TPREL16_LO, // symbol@got@tprel@l
VK_PPC_TLS, // symbol@tls
VK_PPC_GOT_TLSGD16_HA, // symbol@got@tlsgd@ha
VK_PPC_GOT_TLSGD16_LO, // symbol@got@tlsgd@l
VK_PPC_TLSGD, // symbol@tlsgd
VK_PPC_GOT_TLSLD16_HA, // symbol@got@tlsld@ha
VK_PPC_GOT_TLSLD16_LO, // symbol@got@tlsld@l
VK_PPC_TLSLD, // symbol@tlsld
VK_Mips_GPREL,
VK_Mips_GOT_CALL,
VK_Mips_GOT16,
VK_Mips_GOT,
VK_Mips_ABS_HI,
VK_Mips_ABS_LO,
VK_Mips_TLSGD,
VK_Mips_TLSLDM,
VK_Mips_DTPREL_HI,
VK_Mips_DTPREL_LO,
VK_Mips_GOTTPREL,
VK_Mips_TPREL_HI,
VK_Mips_TPREL_LO,
VK_Mips_GPOFF_HI,
VK_Mips_GPOFF_LO,
VK_Mips_GOT_DISP,
VK_Mips_GOT_PAGE,
VK_Mips_GOT_OFST,
VK_Mips_HIGHER,
VK_Mips_HIGHEST,
VK_Mips_GOT_HI16,
VK_Mips_GOT_LO16,
VK_Mips_CALL_HI16,
VK_Mips_CALL_LO16,
VK_COFF_IMGREL32 // symbol@imgrel (image-relative)
};
private:
/// The symbol being referenced.
const MCSymbol *Symbol;
/// The symbol reference modifier.
const VariantKind Kind;
explicit MCSymbolRefExpr(const MCSymbol *_Symbol, VariantKind _Kind)
: MCExpr(MCExpr::SymbolRef), Symbol(_Symbol), Kind(_Kind) {
assert(Symbol);
}
public:
/// @name Construction
/// @{
static const MCSymbolRefExpr *Create(const MCSymbol *Symbol, MCContext &Ctx) {
return MCSymbolRefExpr::Create(Symbol, VK_None, Ctx);
}
static const MCSymbolRefExpr *Create(const MCSymbol *Symbol, VariantKind Kind,
MCContext &Ctx);
static const MCSymbolRefExpr *Create(StringRef Name, VariantKind Kind,
MCContext &Ctx);
/// @}
/// @name Accessors
/// @{
const MCSymbol &getSymbol() const { return *Symbol; }
VariantKind getKind() const { return Kind; }
/// @}
/// @name Static Utility Functions
/// @{
static StringRef getVariantKindName(VariantKind Kind);
static VariantKind getVariantKindForName(StringRef Name);
/// @}
static bool classof(const MCExpr *E) {
return E->getKind() == MCExpr::SymbolRef;
}
};
/// MCUnaryExpr - Unary assembler expressions.
class MCUnaryExpr : public MCExpr {
public:
enum Opcode {
LNot, ///< Logical negation.
Minus, ///< Unary minus.
Not, ///< Bitwise negation.
Plus ///< Unary plus.
};
private:
Opcode Op;
const MCExpr *Expr;
MCUnaryExpr(Opcode _Op, const MCExpr *_Expr)
: MCExpr(MCExpr::Unary), Op(_Op), Expr(_Expr) {}
public:
/// @name Construction
/// @{
static const MCUnaryExpr *Create(Opcode Op, const MCExpr *Expr,
MCContext &Ctx);
static const MCUnaryExpr *CreateLNot(const MCExpr *Expr, MCContext &Ctx) {
return Create(LNot, Expr, Ctx);
}
static const MCUnaryExpr *CreateMinus(const MCExpr *Expr, MCContext &Ctx) {
return Create(Minus, Expr, Ctx);
}
static const MCUnaryExpr *CreateNot(const MCExpr *Expr, MCContext &Ctx) {
return Create(Not, Expr, Ctx);
}
static const MCUnaryExpr *CreatePlus(const MCExpr *Expr, MCContext &Ctx) {
return Create(Plus, Expr, Ctx);
}
/// @}
/// @name Accessors
/// @{
/// getOpcode - Get the kind of this unary expression.
Opcode getOpcode() const { return Op; }
/// getSubExpr - Get the child of this unary expression.
const MCExpr *getSubExpr() const { return Expr; }
/// @}
static bool classof(const MCExpr *E) {
return E->getKind() == MCExpr::Unary;
}
};
/// MCBinaryExpr - Binary assembler expressions.
class MCBinaryExpr : public MCExpr {
public:
enum Opcode {
Add, ///< Addition.
And, ///< Bitwise and.
Div, ///< Signed division.
EQ, ///< Equality comparison.
GT, ///< Signed greater than comparison (result is either 0 or some
///< target-specific non-zero value)
GTE, ///< Signed greater than or equal comparison (result is either 0 or
///< some target-specific non-zero value).
LAnd, ///< Logical and.
LOr, ///< Logical or.
LT, ///< Signed less than comparison (result is either 0 or
///< some target-specific non-zero value).
LTE, ///< Signed less than or equal comparison (result is either 0 or
///< some target-specific non-zero value).
Mod, ///< Signed remainder.
Mul, ///< Multiplication.
NE, ///< Inequality comparison.
Or, ///< Bitwise or.
Shl, ///< Shift left.
Shr, ///< Shift right (arithmetic or logical, depending on target)
Sub, ///< Subtraction.
Xor ///< Bitwise exclusive or.
};
private:
Opcode Op;
const MCExpr *LHS, *RHS;
MCBinaryExpr(Opcode _Op, const MCExpr *_LHS, const MCExpr *_RHS)
: MCExpr(MCExpr::Binary), Op(_Op), LHS(_LHS), RHS(_RHS) {}
public:
/// @name Construction
/// @{
static const MCBinaryExpr *Create(Opcode Op, const MCExpr *LHS,
const MCExpr *RHS, MCContext &Ctx);
static const MCBinaryExpr *CreateAdd(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(Add, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateAnd(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(And, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateDiv(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(Div, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateEQ(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(EQ, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateGT(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(GT, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateGTE(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(GTE, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateLAnd(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(LAnd, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateLOr(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(LOr, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateLT(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(LT, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateLTE(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(LTE, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateMod(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(Mod, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateMul(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(Mul, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateNE(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(NE, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateOr(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(Or, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateShl(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(Shl, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateShr(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(Shr, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateSub(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(Sub, LHS, RHS, Ctx);
}
static const MCBinaryExpr *CreateXor(const MCExpr *LHS, const MCExpr *RHS,
MCContext &Ctx) {
return Create(Xor, LHS, RHS, Ctx);
}
/// @}
/// @name Accessors
/// @{
/// getOpcode - Get the kind of this binary expression.
Opcode getOpcode() const { return Op; }
/// getLHS - Get the left-hand side expression of the binary operator.
const MCExpr *getLHS() const { return LHS; }
/// getRHS - Get the right-hand side expression of the binary operator.
const MCExpr *getRHS() const { return RHS; }
/// @}
static bool classof(const MCExpr *E) {
return E->getKind() == MCExpr::Binary;
}
};
/// MCTargetExpr - This is an extension point for target-specific MCExpr
/// subclasses to implement.
///
/// NOTE: All subclasses are required to have trivial destructors because
/// MCExprs are bump pointer allocated and not destructed.
class MCTargetExpr : public MCExpr {
virtual void anchor();
protected:
MCTargetExpr() : MCExpr(Target) {}
virtual ~MCTargetExpr() {}
public:
virtual void PrintImpl(raw_ostream &OS) const = 0;
virtual bool EvaluateAsRelocatableImpl(MCValue &Res,
const MCAsmLayout *Layout) const = 0;
virtual void AddValueSymbols(MCAssembler *) const = 0;
virtual const MCSection *FindAssociatedSection() const = 0;
virtual void fixELFSymbolsInTLSFixups(MCAssembler &) const = 0;
static bool classof(const MCExpr *E) {
return E->getKind() == MCExpr::Target;
}
};
} // end namespace llvm
#endif