blob: ec48b67b993c2c552b0b3e546d40d5744c265f9f [file] [log] [blame]
//===- CodeGen/ValueTypes.h - Low-Level Target independ. types --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the set of low-level target independent types which various
// values in the code generator are. This allows the target specific behavior
// of instructions to be described to target independent passes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_VALUETYPES_H
#define LLVM_CODEGEN_VALUETYPES_H
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <string>
namespace llvm {
class Type;
class LLVMContext;
struct EVT;
/// MVT - Machine Value Type. Every type that is supported natively by some
/// processor targeted by LLVM occurs here. This means that any legal value
/// type can be represented by a MVT.
class MVT {
public:
enum SimpleValueType {
// INVALID_SIMPLE_VALUE_TYPE - Simple value types less than zero are
// considered extended value types.
INVALID_SIMPLE_VALUE_TYPE = -1,
// If you change this numbering, you must change the values in
// ValueTypes.td as well!
Other = 0, // This is a non-standard value
i1 = 1, // This is a 1 bit integer value
i8 = 2, // This is an 8 bit integer value
i16 = 3, // This is a 16 bit integer value
i32 = 4, // This is a 32 bit integer value
i64 = 5, // This is a 64 bit integer value
i128 = 6, // This is a 128 bit integer value
FIRST_INTEGER_VALUETYPE = i1,
LAST_INTEGER_VALUETYPE = i128,
f16 = 7, // This is a 16 bit floating point value
f32 = 8, // This is a 32 bit floating point value
f64 = 9, // This is a 64 bit floating point value
f80 = 10, // This is a 80 bit floating point value
f128 = 11, // This is a 128 bit floating point value
ppcf128 = 12, // This is a PPC 128-bit floating point value
FIRST_FP_VALUETYPE = f16,
LAST_FP_VALUETYPE = ppcf128,
v2i1 = 13, // 2 x i1
v4i1 = 14, // 4 x i1
v8i1 = 15, // 8 x i1
v16i1 = 16, // 16 x i1
v32i1 = 17, // 32 x i1
v64i1 = 18, // 64 x i1
v2i8 = 19, // 2 x i8
v4i8 = 20, // 4 x i8
v8i8 = 21, // 8 x i8
v16i8 = 22, // 16 x i8
v32i8 = 23, // 32 x i8
v64i8 = 24, // 64 x i8
v1i16 = 25, // 1 x i16
v2i16 = 26, // 2 x i16
v4i16 = 27, // 4 x i16
v8i16 = 28, // 8 x i16
v16i16 = 29, // 16 x i16
v32i16 = 30, // 32 x i16
v1i32 = 31, // 1 x i32
v2i32 = 32, // 2 x i32
v4i32 = 33, // 4 x i32
v8i32 = 34, // 8 x i32
v16i32 = 35, // 16 x i32
v1i64 = 36, // 1 x i64
v2i64 = 37, // 2 x i64
v4i64 = 38, // 4 x i64
v8i64 = 39, // 8 x i64
v16i64 = 40, // 16 x i64
FIRST_INTEGER_VECTOR_VALUETYPE = v2i1,
LAST_INTEGER_VECTOR_VALUETYPE = v16i64,
v2f16 = 41, // 2 x f16
v2f32 = 42, // 2 x f32
v4f32 = 43, // 4 x f32
v8f32 = 44, // 8 x f32
v16f32 = 45, // 16 x f32
v2f64 = 46, // 2 x f64
v4f64 = 47, // 4 x f64
v8f64 = 48, // 8 x f64
FIRST_FP_VECTOR_VALUETYPE = v2f16,
LAST_FP_VECTOR_VALUETYPE = v8f64,
FIRST_VECTOR_VALUETYPE = v2i1,
LAST_VECTOR_VALUETYPE = v8f64,
x86mmx = 49, // This is an X86 MMX value
Glue = 50, // This glues nodes together during pre-RA sched
isVoid = 51, // This has no value
Untyped = 52, // This value takes a register, but has
// unspecified type. The register class
// will be determined by the opcode.
LAST_VALUETYPE = 53, // This always remains at the end of the list.
// This is the current maximum for LAST_VALUETYPE.
// MVT::MAX_ALLOWED_VALUETYPE is used for asserts and to size bit vectors
// This value must be a multiple of 32.
MAX_ALLOWED_VALUETYPE = 64,
// Metadata - This is MDNode or MDString.
Metadata = 250,
// iPTRAny - An int value the size of the pointer of the current
// target to any address space. This must only be used internal to
// tblgen. Other than for overloading, we treat iPTRAny the same as iPTR.
iPTRAny = 251,
// vAny - A vector with any length and element size. This is used
// for intrinsics that have overloadings based on vector types.
// This is only for tblgen's consumption!
vAny = 252,
// fAny - Any floating-point or vector floating-point value. This is used
// for intrinsics that have overloadings based on floating-point types.
// This is only for tblgen's consumption!
fAny = 253,
// iAny - An integer or vector integer value of any bit width. This is
// used for intrinsics that have overloadings based on integer bit widths.
// This is only for tblgen's consumption!
iAny = 254,
// iPTR - An int value the size of the pointer of the current
// target. This should only be used internal to tblgen!
iPTR = 255
};
SimpleValueType SimpleTy;
MVT() : SimpleTy((SimpleValueType)(INVALID_SIMPLE_VALUE_TYPE)) {}
MVT(SimpleValueType SVT) : SimpleTy(SVT) { }
bool operator>(const MVT& S) const { return SimpleTy > S.SimpleTy; }
bool operator<(const MVT& S) const { return SimpleTy < S.SimpleTy; }
bool operator==(const MVT& S) const { return SimpleTy == S.SimpleTy; }
bool operator!=(const MVT& S) const { return SimpleTy != S.SimpleTy; }
bool operator>=(const MVT& S) const { return SimpleTy >= S.SimpleTy; }
bool operator<=(const MVT& S) const { return SimpleTy <= S.SimpleTy; }
/// isFloatingPoint - Return true if this is a FP, or a vector FP type.
bool isFloatingPoint() const {
return ((SimpleTy >= MVT::FIRST_FP_VALUETYPE &&
SimpleTy <= MVT::LAST_FP_VALUETYPE) ||
(SimpleTy >= MVT::FIRST_FP_VECTOR_VALUETYPE &&
SimpleTy <= MVT::LAST_FP_VECTOR_VALUETYPE));
}
/// isInteger - Return true if this is an integer, or a vector integer type.
bool isInteger() const {
return ((SimpleTy >= MVT::FIRST_INTEGER_VALUETYPE &&
SimpleTy <= MVT::LAST_INTEGER_VALUETYPE) ||
(SimpleTy >= MVT::FIRST_INTEGER_VECTOR_VALUETYPE &&
SimpleTy <= MVT::LAST_INTEGER_VECTOR_VALUETYPE));
}
/// isVector - Return true if this is a vector value type.
bool isVector() const {
return (SimpleTy >= MVT::FIRST_VECTOR_VALUETYPE &&
SimpleTy <= MVT::LAST_VECTOR_VALUETYPE);
}
/// is16BitVector - Return true if this is a 16-bit vector type.
bool is16BitVector() const {
return (SimpleTy == MVT::v2i8 || SimpleTy == MVT::v1i16 ||
SimpleTy == MVT::v16i1);
}
/// is32BitVector - Return true if this is a 32-bit vector type.
bool is32BitVector() const {
return (SimpleTy == MVT::v4i8 || SimpleTy == MVT::v2i16 ||
SimpleTy == MVT::v1i32);
}
/// is64BitVector - Return true if this is a 64-bit vector type.
bool is64BitVector() const {
return (SimpleTy == MVT::v8i8 || SimpleTy == MVT::v4i16 ||
SimpleTy == MVT::v2i32 || SimpleTy == MVT::v1i64 ||
SimpleTy == MVT::v2f32);
}
/// is128BitVector - Return true if this is a 128-bit vector type.
bool is128BitVector() const {
return (SimpleTy == MVT::v16i8 || SimpleTy == MVT::v8i16 ||
SimpleTy == MVT::v4i32 || SimpleTy == MVT::v2i64 ||
SimpleTy == MVT::v4f32 || SimpleTy == MVT::v2f64);
}
/// is256BitVector - Return true if this is a 256-bit vector type.
bool is256BitVector() const {
return (SimpleTy == MVT::v8f32 || SimpleTy == MVT::v4f64 ||
SimpleTy == MVT::v32i8 || SimpleTy == MVT::v16i16 ||
SimpleTy == MVT::v8i32 || SimpleTy == MVT::v4i64);
}
/// is512BitVector - Return true if this is a 512-bit vector type.
bool is512BitVector() const {
return (SimpleTy == MVT::v8f64 || SimpleTy == MVT::v16f32 ||
SimpleTy == MVT::v64i8 || SimpleTy == MVT::v32i16 ||
SimpleTy == MVT::v8i64 || SimpleTy == MVT::v16i32);
}
/// is1024BitVector - Return true if this is a 1024-bit vector type.
bool is1024BitVector() const {
return (SimpleTy == MVT::v16i64);
}
/// isPow2VectorType - Returns true if the given vector is a power of 2.
bool isPow2VectorType() const {
unsigned NElts = getVectorNumElements();
return !(NElts & (NElts - 1));
}
/// getPow2VectorType - Widens the length of the given vector MVT up to
/// the nearest power of 2 and returns that type.
MVT getPow2VectorType() const {
if (isPow2VectorType())
return *this;
unsigned NElts = getVectorNumElements();
unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts);
return MVT::getVectorVT(getVectorElementType(), Pow2NElts);
}
/// getScalarType - If this is a vector type, return the element type,
/// otherwise return this.
MVT getScalarType() const {
return isVector() ? getVectorElementType() : *this;
}
MVT getVectorElementType() const {
switch (SimpleTy) {
default:
llvm_unreachable("Not a vector MVT!");
case v2i1 :
case v4i1 :
case v8i1 :
case v16i1 :
case v32i1 :
case v64i1: return i1;
case v2i8 :
case v4i8 :
case v8i8 :
case v16i8:
case v32i8:
case v64i8: return i8;
case v1i16:
case v2i16:
case v4i16:
case v8i16:
case v16i16:
case v32i16: return i16;
case v1i32:
case v2i32:
case v4i32:
case v8i32:
case v16i32: return i32;
case v1i64:
case v2i64:
case v4i64:
case v8i64:
case v16i64: return i64;
case v2f16: return f16;
case v2f32:
case v4f32:
case v8f32:
case v16f32: return f32;
case v2f64:
case v4f64:
case v8f64: return f64;
}
}
unsigned getVectorNumElements() const {
switch (SimpleTy) {
default:
llvm_unreachable("Not a vector MVT!");
case v32i1:
case v32i8:
case v32i16: return 32;
case v64i1:
case v64i8: return 64;
case v16i1:
case v16i8:
case v16i16:
case v16i32:
case v16i64:
case v16f32: return 16;
case v8i1 :
case v8i8 :
case v8i16:
case v8i32:
case v8i64:
case v8f32:
case v8f64: return 8;
case v4i1:
case v4i8:
case v4i16:
case v4i32:
case v4i64:
case v4f32:
case v4f64: return 4;
case v2i1:
case v2i8:
case v2i16:
case v2i32:
case v2i64:
case v2f16:
case v2f32:
case v2f64: return 2;
case v1i16:
case v1i32:
case v1i64: return 1;
}
}
unsigned getSizeInBits() const {
switch (SimpleTy) {
case iPTR:
llvm_unreachable("Value type size is target-dependent. Ask TLI.");
case iPTRAny:
case iAny:
case fAny:
case vAny:
llvm_unreachable("Value type is overloaded.");
case Metadata:
llvm_unreachable("Value type is metadata.");
default:
llvm_unreachable("getSizeInBits called on extended MVT.");
case i1 : return 1;
case v2i1: return 2;
case v4i1: return 4;
case i8 :
case v8i1: return 8;
case i16 :
case f16:
case v16i1:
case v2i8:
case v1i16: return 16;
case f32 :
case i32 :
case v32i1:
case v4i8:
case v2i16:
case v2f16:
case v1i32: return 32;
case x86mmx:
case f64 :
case i64 :
case v64i1:
case v8i8:
case v4i16:
case v2i32:
case v1i64:
case v2f32: return 64;
case f80 : return 80;
case f128:
case ppcf128:
case i128:
case v16i8:
case v8i16:
case v4i32:
case v2i64:
case v4f32:
case v2f64: return 128;
case v32i8:
case v16i16:
case v8i32:
case v4i64:
case v8f32:
case v4f64: return 256;
case v64i8:
case v32i16:
case v16i32:
case v8i64:
case v16f32:
case v8f64: return 512;
case v16i64:return 1024;
}
}
/// getStoreSize - Return the number of bytes overwritten by a store
/// of the specified value type.
unsigned getStoreSize() const {
return (getSizeInBits() + 7) / 8;
}
/// getStoreSizeInBits - Return the number of bits overwritten by a store
/// of the specified value type.
unsigned getStoreSizeInBits() const {
return getStoreSize() * 8;
}
/// Return true if this has more bits than VT.
bool bitsGT(MVT VT) const {
return getSizeInBits() > VT.getSizeInBits();
}
/// Return true if this has no less bits than VT.
bool bitsGE(MVT VT) const {
return getSizeInBits() >= VT.getSizeInBits();
}
/// Return true if this has less bits than VT.
bool bitsLT(MVT VT) const {
return getSizeInBits() < VT.getSizeInBits();
}
/// Return true if this has no more bits than VT.
bool bitsLE(MVT VT) const {
return getSizeInBits() <= VT.getSizeInBits();
}
static MVT getFloatingPointVT(unsigned BitWidth) {
switch (BitWidth) {
default:
llvm_unreachable("Bad bit width!");
case 16:
return MVT::f16;
case 32:
return MVT::f32;
case 64:
return MVT::f64;
case 80:
return MVT::f80;
case 128:
return MVT::f128;
}
}
static MVT getIntegerVT(unsigned BitWidth) {
switch (BitWidth) {
default:
return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
case 1:
return MVT::i1;
case 8:
return MVT::i8;
case 16:
return MVT::i16;
case 32:
return MVT::i32;
case 64:
return MVT::i64;
case 128:
return MVT::i128;
}
}
static MVT getVectorVT(MVT VT, unsigned NumElements) {
switch (VT.SimpleTy) {
default:
break;
case MVT::i1:
if (NumElements == 2) return MVT::v2i1;
if (NumElements == 4) return MVT::v4i1;
if (NumElements == 8) return MVT::v8i1;
if (NumElements == 16) return MVT::v16i1;
if (NumElements == 32) return MVT::v32i1;
if (NumElements == 64) return MVT::v64i1;
break;
case MVT::i8:
if (NumElements == 2) return MVT::v2i8;
if (NumElements == 4) return MVT::v4i8;
if (NumElements == 8) return MVT::v8i8;
if (NumElements == 16) return MVT::v16i8;
if (NumElements == 32) return MVT::v32i8;
if (NumElements == 64) return MVT::v64i8;
break;
case MVT::i16:
if (NumElements == 1) return MVT::v1i16;
if (NumElements == 2) return MVT::v2i16;
if (NumElements == 4) return MVT::v4i16;
if (NumElements == 8) return MVT::v8i16;
if (NumElements == 16) return MVT::v16i16;
if (NumElements == 32) return MVT::v32i16;
break;
case MVT::i32:
if (NumElements == 1) return MVT::v1i32;
if (NumElements == 2) return MVT::v2i32;
if (NumElements == 4) return MVT::v4i32;
if (NumElements == 8) return MVT::v8i32;
if (NumElements == 16) return MVT::v16i32;
break;
case MVT::i64:
if (NumElements == 1) return MVT::v1i64;
if (NumElements == 2) return MVT::v2i64;
if (NumElements == 4) return MVT::v4i64;
if (NumElements == 8) return MVT::v8i64;
if (NumElements == 16) return MVT::v16i64;
break;
case MVT::f16:
if (NumElements == 2) return MVT::v2f16;
break;
case MVT::f32:
if (NumElements == 2) return MVT::v2f32;
if (NumElements == 4) return MVT::v4f32;
if (NumElements == 8) return MVT::v8f32;
if (NumElements == 16) return MVT::v16f32;
break;
case MVT::f64:
if (NumElements == 2) return MVT::v2f64;
if (NumElements == 4) return MVT::v4f64;
if (NumElements == 8) return MVT::v8f64;
break;
}
return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
}
/// Return the value type corresponding to the specified type. This returns
/// all pointers as iPTR. If HandleUnknown is true, unknown types are
/// returned as Other, otherwise they are invalid.
static MVT getVT(Type *Ty, bool HandleUnknown = false);
};
/// EVT - Extended Value Type. Capable of holding value types which are not
/// native for any processor (such as the i12345 type), as well as the types
/// a MVT can represent.
struct EVT {
private:
MVT V;
Type *LLVMTy;
public:
EVT() : V((MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE)),
LLVMTy(0) {}
EVT(MVT::SimpleValueType SVT) : V(SVT), LLVMTy(0) { }
EVT(MVT S) : V(S), LLVMTy(0) {}
bool operator==(EVT VT) const {
return !(*this != VT);
}
bool operator!=(EVT VT) const {
if (V.SimpleTy != VT.V.SimpleTy)
return true;
if (V.SimpleTy < 0)
return LLVMTy != VT.LLVMTy;
return false;
}
/// getFloatingPointVT - Returns the EVT that represents a floating point
/// type with the given number of bits. There are two floating point types
/// with 128 bits - this returns f128 rather than ppcf128.
static EVT getFloatingPointVT(unsigned BitWidth) {
return MVT::getFloatingPointVT(BitWidth);
}
/// getIntegerVT - Returns the EVT that represents an integer with the given
/// number of bits.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth) {
MVT M = MVT::getIntegerVT(BitWidth);
if (M.SimpleTy >= 0)
return M;
return getExtendedIntegerVT(Context, BitWidth);
}
/// getVectorVT - Returns the EVT that represents a vector NumElements in
/// length, where each element is of type VT.
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements) {
MVT M = MVT::getVectorVT(VT.V, NumElements);
if (M.SimpleTy >= 0)
return M;
return getExtendedVectorVT(Context, VT, NumElements);
}
/// changeVectorElementTypeToInteger - Return a vector with the same number
/// of elements as this vector, but with the element type converted to an
/// integer type with the same bitwidth.
EVT changeVectorElementTypeToInteger() const {
if (!isSimple())
return changeExtendedVectorElementTypeToInteger();
MVT EltTy = getSimpleVT().getVectorElementType();
unsigned BitWidth = EltTy.getSizeInBits();
MVT IntTy = MVT::getIntegerVT(BitWidth);
MVT VecTy = MVT::getVectorVT(IntTy, getVectorNumElements());
assert(VecTy.SimpleTy >= 0 &&
"Simple vector VT not representable by simple integer vector VT!");
return VecTy;
}
/// isSimple - Test if the given EVT is simple (as opposed to being
/// extended).
bool isSimple() const {
return V.SimpleTy >= 0;
}
/// isExtended - Test if the given EVT is extended (as opposed to
/// being simple).
bool isExtended() const {
return !isSimple();
}
/// isFloatingPoint - Return true if this is a FP, or a vector FP type.
bool isFloatingPoint() const {
return isSimple() ? V.isFloatingPoint() : isExtendedFloatingPoint();
}
/// isInteger - Return true if this is an integer, or a vector integer type.
bool isInteger() const {
return isSimple() ? V.isInteger() : isExtendedInteger();
}
/// isVector - Return true if this is a vector value type.
bool isVector() const {
return isSimple() ? V.isVector() : isExtendedVector();
}
/// is16BitVector - Return true if this is a 16-bit vector type.
bool is16BitVector() const {
return isSimple() ? V.is16BitVector() : isExtended16BitVector();
}
/// is32BitVector - Return true if this is a 32-bit vector type.
bool is32BitVector() const {
return isSimple() ? V.is32BitVector() : isExtended32BitVector();
}
/// is64BitVector - Return true if this is a 64-bit vector type.
bool is64BitVector() const {
return isSimple() ? V.is64BitVector() : isExtended64BitVector();
}
/// is128BitVector - Return true if this is a 128-bit vector type.
bool is128BitVector() const {
return isSimple() ? V.is128BitVector() : isExtended128BitVector();
}
/// is256BitVector - Return true if this is a 256-bit vector type.
bool is256BitVector() const {
return isSimple() ? V.is256BitVector() : isExtended256BitVector();
}
/// is512BitVector - Return true if this is a 512-bit vector type.
bool is512BitVector() const {
return isSimple() ? V.is512BitVector() : isExtended512BitVector();
}
/// is1024BitVector - Return true if this is a 1024-bit vector type.
bool is1024BitVector() const {
return isSimple() ? V.is1024BitVector() : isExtended1024BitVector();
}
/// isOverloaded - Return true if this is an overloaded type for TableGen.
bool isOverloaded() const {
return (V==MVT::iAny || V==MVT::fAny || V==MVT::vAny || V==MVT::iPTRAny);
}
/// isByteSized - Return true if the bit size is a multiple of 8.
bool isByteSized() const {
return (getSizeInBits() & 7) == 0;
}
/// isRound - Return true if the size is a power-of-two number of bytes.
bool isRound() const {
unsigned BitSize = getSizeInBits();
return BitSize >= 8 && !(BitSize & (BitSize - 1));
}
/// bitsEq - Return true if this has the same number of bits as VT.
bool bitsEq(EVT VT) const {
if (EVT::operator==(VT)) return true;
return getSizeInBits() == VT.getSizeInBits();
}
/// bitsGT - Return true if this has more bits than VT.
bool bitsGT(EVT VT) const {
if (EVT::operator==(VT)) return false;
return getSizeInBits() > VT.getSizeInBits();
}
/// bitsGE - Return true if this has no less bits than VT.
bool bitsGE(EVT VT) const {
if (EVT::operator==(VT)) return true;
return getSizeInBits() >= VT.getSizeInBits();
}
/// bitsLT - Return true if this has less bits than VT.
bool bitsLT(EVT VT) const {
if (EVT::operator==(VT)) return false;
return getSizeInBits() < VT.getSizeInBits();
}
/// bitsLE - Return true if this has no more bits than VT.
bool bitsLE(EVT VT) const {
if (EVT::operator==(VT)) return true;
return getSizeInBits() <= VT.getSizeInBits();
}
/// getSimpleVT - Return the SimpleValueType held in the specified
/// simple EVT.
MVT getSimpleVT() const {
assert(isSimple() && "Expected a SimpleValueType!");
return V;
}
/// getScalarType - If this is a vector type, return the element type,
/// otherwise return this.
EVT getScalarType() const {
return isVector() ? getVectorElementType() : *this;
}
/// getVectorElementType - Given a vector type, return the type of
/// each element.
EVT getVectorElementType() const {
assert(isVector() && "Invalid vector type!");
if (isSimple())
return V.getVectorElementType();
return getExtendedVectorElementType();
}
/// getVectorNumElements - Given a vector type, return the number of
/// elements it contains.
unsigned getVectorNumElements() const {
assert(isVector() && "Invalid vector type!");
if (isSimple())
return V.getVectorNumElements();
return getExtendedVectorNumElements();
}
/// getSizeInBits - Return the size of the specified value type in bits.
unsigned getSizeInBits() const {
if (isSimple())
return V.getSizeInBits();
return getExtendedSizeInBits();
}
/// getStoreSize - Return the number of bytes overwritten by a store
/// of the specified value type.
unsigned getStoreSize() const {
return (getSizeInBits() + 7) / 8;
}
/// getStoreSizeInBits - Return the number of bits overwritten by a store
/// of the specified value type.
unsigned getStoreSizeInBits() const {
return getStoreSize() * 8;
}
/// getRoundIntegerType - Rounds the bit-width of the given integer EVT up
/// to the nearest power of two (and at least to eight), and returns the
/// integer EVT with that number of bits.
EVT getRoundIntegerType(LLVMContext &Context) const {
assert(isInteger() && !isVector() && "Invalid integer type!");
unsigned BitWidth = getSizeInBits();
if (BitWidth <= 8)
return EVT(MVT::i8);
return getIntegerVT(Context, 1 << Log2_32_Ceil(BitWidth));
}
/// getHalfSizedIntegerVT - Finds the smallest simple value type that is
/// greater than or equal to half the width of this EVT. If no simple
/// value type can be found, an extended integer value type of half the
/// size (rounded up) is returned.
EVT getHalfSizedIntegerVT(LLVMContext &Context) const {
assert(isInteger() && !isVector() && "Invalid integer type!");
unsigned EVTSize = getSizeInBits();
for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE;
IntVT <= MVT::LAST_INTEGER_VALUETYPE; ++IntVT) {
EVT HalfVT = EVT((MVT::SimpleValueType)IntVT);
if (HalfVT.getSizeInBits() * 2 >= EVTSize)
return HalfVT;
}
return getIntegerVT(Context, (EVTSize + 1) / 2);
}
/// isPow2VectorType - Returns true if the given vector is a power of 2.
bool isPow2VectorType() const {
unsigned NElts = getVectorNumElements();
return !(NElts & (NElts - 1));
}
/// getPow2VectorType - Widens the length of the given vector EVT up to
/// the nearest power of 2 and returns that type.
EVT getPow2VectorType(LLVMContext &Context) const {
if (!isPow2VectorType()) {
unsigned NElts = getVectorNumElements();
unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts);
return EVT::getVectorVT(Context, getVectorElementType(), Pow2NElts);
}
else {
return *this;
}
}
/// getEVTString - This function returns value type as a string,
/// e.g. "i32".
std::string getEVTString() const;
/// getTypeForEVT - This method returns an LLVM type corresponding to the
/// specified EVT. For integer types, this returns an unsigned type. Note
/// that this will abort for types that cannot be represented.
Type *getTypeForEVT(LLVMContext &Context) const;
/// getEVT - Return the value type corresponding to the specified type.
/// This returns all pointers as iPTR. If HandleUnknown is true, unknown
/// types are returned as Other, otherwise they are invalid.
static EVT getEVT(Type *Ty, bool HandleUnknown = false);
intptr_t getRawBits() const {
if (isSimple())
return V.SimpleTy;
else
return (intptr_t)(LLVMTy);
}
/// compareRawBits - A meaningless but well-behaved order, useful for
/// constructing containers.
struct compareRawBits {
bool operator()(EVT L, EVT R) const {
if (L.V.SimpleTy == R.V.SimpleTy)
return L.LLVMTy < R.LLVMTy;
else
return L.V.SimpleTy < R.V.SimpleTy;
}
};
private:
// Methods for handling the Extended-type case in functions above.
// These are all out-of-line to prevent users of this header file
// from having a dependency on Type.h.
EVT changeExtendedVectorElementTypeToInteger() const;
static EVT getExtendedIntegerVT(LLVMContext &C, unsigned BitWidth);
static EVT getExtendedVectorVT(LLVMContext &C, EVT VT,
unsigned NumElements);
bool isExtendedFloatingPoint() const;
bool isExtendedInteger() const;
bool isExtendedVector() const;
bool isExtended16BitVector() const;
bool isExtended32BitVector() const;
bool isExtended64BitVector() const;
bool isExtended128BitVector() const;
bool isExtended256BitVector() const;
bool isExtended512BitVector() const;
bool isExtended1024BitVector() const;
EVT getExtendedVectorElementType() const;
unsigned getExtendedVectorNumElements() const;
unsigned getExtendedSizeInBits() const;
};
} // End llvm namespace
#endif