blob: 85463da59731f857032a382253e64a4e8f0c4160 [file] [log] [blame]
//===- CodeGenTarget.h - Target Class Wrapper -------------------*- C++ -*-===//
// The LLVM Compiler Infrastructure
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
// This file defines wrappers for the Target class and related global
// functionality. This makes it easier to access the data and provides a single
// place that needs to check it for validity. All of these classes throw
// exceptions on error conditions.
#include "CodeGenRegisters.h"
#include "CodeGenInstruction.h"
#include "llvm/TableGen/Record.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
namespace llvm {
struct CodeGenRegister;
class CodeGenTarget;
// SelectionDAG node properties.
// SDNPMemOperand: indicates that a node touches memory and therefore must
// have an associated memory operand that describes the access.
enum SDNP {
/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
/// record corresponds to.
MVT::SimpleValueType getValueType(Record *Rec);
std::string getName(MVT::SimpleValueType T);
std::string getEnumName(MVT::SimpleValueType T);
/// getQualifiedName - Return the name of the specified record, with a
/// namespace qualifier if the record contains one.
std::string getQualifiedName(const Record *R);
/// CodeGenTarget - This class corresponds to the Target class in the .td files.
class CodeGenTarget {
RecordKeeper &Records;
Record *TargetRec;
mutable DenseMap<const Record*, CodeGenInstruction*> Instructions;
mutable CodeGenRegBank *RegBank;
mutable std::vector<Record*> RegAltNameIndices;
mutable std::vector<MVT::SimpleValueType> LegalValueTypes;
void ReadRegAltNameIndices() const;
void ReadInstructions() const;
void ReadLegalValueTypes() const;
mutable std::vector<const CodeGenInstruction*> InstrsByEnum;
CodeGenTarget(RecordKeeper &Records);
Record *getTargetRecord() const { return TargetRec; }
const std::string &getName() const;
/// getInstNamespace - Return the target-specific instruction namespace.
std::string getInstNamespace() const;
/// getInstructionSet - Return the InstructionSet object.
Record *getInstructionSet() const;
/// getAsmParser - Return the AssemblyParser definition for this target.
Record *getAsmParser() const;
/// getAsmParserVariant - Return the AssmblyParserVariant definition for
/// this target.
Record *getAsmParserVariant(unsigned i) const;
/// getAsmParserVariantCount - Return the AssmblyParserVariant definition
/// available for this target.
unsigned getAsmParserVariantCount() const;
/// getAsmWriter - Return the AssemblyWriter definition for this target.
Record *getAsmWriter() const;
/// getRegBank - Return the register bank description.
CodeGenRegBank &getRegBank() const;
/// getRegisterByName - If there is a register with the specific AsmName,
/// return it.
const CodeGenRegister *getRegisterByName(StringRef Name) const;
const std::vector<Record*> &getRegAltNameIndices() const {
if (RegAltNameIndices.empty()) ReadRegAltNameIndices();
return RegAltNameIndices;
const CodeGenRegisterClass &getRegisterClass(Record *R) const {
return *getRegBank().getRegClass(R);
/// getRegisterVTs - Find the union of all possible SimpleValueTypes for the
/// specified physical register.
std::vector<MVT::SimpleValueType> getRegisterVTs(Record *R) const;
const std::vector<MVT::SimpleValueType> &getLegalValueTypes() const {
if (LegalValueTypes.empty()) ReadLegalValueTypes();
return LegalValueTypes;
/// isLegalValueType - Return true if the specified value type is natively
/// supported by the target (i.e. there are registers that directly hold it).
bool isLegalValueType(MVT::SimpleValueType VT) const {
const std::vector<MVT::SimpleValueType> &LegalVTs = getLegalValueTypes();
for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
if (LegalVTs[i] == VT) return true;
return false;
DenseMap<const Record*, CodeGenInstruction*> &getInstructions() const {
if (Instructions.empty()) ReadInstructions();
return Instructions;
CodeGenInstruction &getInstruction(const Record *InstRec) const {
if (Instructions.empty()) ReadInstructions();
DenseMap<const Record*, CodeGenInstruction*>::iterator I =
assert(I != Instructions.end() && "Not an instruction");
return *I->second;
/// getInstructionsByEnumValue - Return all of the instructions defined by the
/// target, ordered by their enum value.
const std::vector<const CodeGenInstruction*> &
getInstructionsByEnumValue() const {
if (InstrsByEnum.empty()) ComputeInstrsByEnum();
return InstrsByEnum;
typedef std::vector<const CodeGenInstruction*>::const_iterator inst_iterator;
inst_iterator inst_begin() const{return getInstructionsByEnumValue().begin();}
inst_iterator inst_end() const { return getInstructionsByEnumValue().end(); }
/// isLittleEndianEncoding - are instruction bit patterns defined as [0..n]?
bool isLittleEndianEncoding() const;
void ComputeInstrsByEnum() const;
/// ComplexPattern - ComplexPattern info, corresponding to the ComplexPattern
/// tablegen class in
class ComplexPattern {
MVT::SimpleValueType Ty;
unsigned NumOperands;
std::string SelectFunc;
std::vector<Record*> RootNodes;
unsigned Properties; // Node properties
ComplexPattern() : NumOperands(0) {}
ComplexPattern(Record *R);
MVT::SimpleValueType getValueType() const { return Ty; }
unsigned getNumOperands() const { return NumOperands; }
const std::string &getSelectFunc() const { return SelectFunc; }
const std::vector<Record*> &getRootNodes() const {
return RootNodes;
bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
} // End llvm namespace