blob: 04299f30080166cd2356e1ff1e77764c2ce4ed2f [file] [log] [blame]
//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "x86-isel"
#include "X86ISelLowering.h"
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86TargetMachine.h"
#include "X86TargetObjectFile.h"
#include "Utils/X86ShuffleDecode.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalAlias.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/VariadicFunction.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
#include <bitset>
using namespace llvm;
STATISTIC(NumTailCalls, "Number of tail calls");
// Forward declarations.
static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
SDValue V2);
/// Generate a DAG to grab 128-bits from a vector > 128 bits. This
/// sets things up to match to an AVX VEXTRACTF128 instruction or a
/// simple subregister reference. Idx is an index in the 128 bits we
/// want. It need not be aligned to a 128-bit bounday. That makes
/// lowering EXTRACT_VECTOR_ELT operations easier.
static SDValue Extract128BitVector(SDValue Vec,
SDValue Idx,
SelectionDAG &DAG,
DebugLoc dl) {
EVT VT = Vec.getValueType();
assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
EVT ElVT = VT.getVectorElementType();
int Factor = VT.getSizeInBits()/128;
EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
VT.getVectorNumElements()/Factor);
// Extract from UNDEF is UNDEF.
if (Vec.getOpcode() == ISD::UNDEF)
return DAG.getNode(ISD::UNDEF, dl, ResultVT);
if (isa<ConstantSDNode>(Idx)) {
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
// Extract the relevant 128 bits. Generate an EXTRACT_SUBVECTOR
// we can match to VEXTRACTF128.
unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
// This is the index of the first element of the 128-bit chunk
// we want.
unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
* ElemsPerChunk);
SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
VecIdx);
return Result;
}
return SDValue();
}
/// Generate a DAG to put 128-bits into a vector > 128 bits. This
/// sets things up to match to an AVX VINSERTF128 instruction or a
/// simple superregister reference. Idx is an index in the 128 bits
/// we want. It need not be aligned to a 128-bit bounday. That makes
/// lowering INSERT_VECTOR_ELT operations easier.
static SDValue Insert128BitVector(SDValue Result,
SDValue Vec,
SDValue Idx,
SelectionDAG &DAG,
DebugLoc dl) {
if (isa<ConstantSDNode>(Idx)) {
EVT VT = Vec.getValueType();
assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
EVT ElVT = VT.getVectorElementType();
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
EVT ResultVT = Result.getValueType();
// Insert the relevant 128 bits.
unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
// This is the index of the first element of the 128-bit chunk
// we want.
unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
* ElemsPerChunk);
SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
VecIdx);
return Result;
}
return SDValue();
}
static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
bool is64Bit = Subtarget->is64Bit();
if (Subtarget->isTargetEnvMacho()) {
if (is64Bit)
return new X8664_MachoTargetObjectFile();
return new TargetLoweringObjectFileMachO();
}
if (Subtarget->isTargetELF())
return new TargetLoweringObjectFileELF();
if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
return new TargetLoweringObjectFileCOFF();
llvm_unreachable("unknown subtarget type");
}
X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
: TargetLowering(TM, createTLOF(TM)) {
Subtarget = &TM.getSubtarget<X86Subtarget>();
X86ScalarSSEf64 = Subtarget->hasSSE2();
X86ScalarSSEf32 = Subtarget->hasSSE1();
X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
RegInfo = TM.getRegisterInfo();
TD = getTargetData();
// Set up the TargetLowering object.
static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
// X86 is weird, it always uses i8 for shift amounts and setcc results.
setBooleanContents(ZeroOrOneBooleanContent);
// X86-SSE is even stranger. It uses -1 or 0 for vector masks.
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// For 64-bit since we have so many registers use the ILP scheduler, for
// 32-bit code use the register pressure specific scheduling.
// For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
if (Subtarget->is64Bit())
setSchedulingPreference(Sched::ILP);
else if (Subtarget->isAtom())
setSchedulingPreference(Sched::Hybrid);
else
setSchedulingPreference(Sched::RegPressure);
setStackPointerRegisterToSaveRestore(X86StackPtr);
if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
// Setup Windows compiler runtime calls.
setLibcallName(RTLIB::SDIV_I64, "_alldiv");
setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
setLibcallName(RTLIB::SREM_I64, "_allrem");
setLibcallName(RTLIB::UREM_I64, "_aullrem");
setLibcallName(RTLIB::MUL_I64, "_allmul");
setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
// The _ftol2 runtime function has an unusual calling conv, which
// is modeled by a special pseudo-instruction.
setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
}
if (Subtarget->isTargetDarwin()) {
// Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
setUseUnderscoreSetJmp(false);
setUseUnderscoreLongJmp(false);
} else if (Subtarget->isTargetMingw()) {
// MS runtime is weird: it exports _setjmp, but longjmp!
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(false);
} else {
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(true);
}
// Set up the register classes.
addRegisterClass(MVT::i8, X86::GR8RegisterClass);
addRegisterClass(MVT::i16, X86::GR16RegisterClass);
addRegisterClass(MVT::i32, X86::GR32RegisterClass);
if (Subtarget->is64Bit())
addRegisterClass(MVT::i64, X86::GR64RegisterClass);
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
// We don't accept any truncstore of integer registers.
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
setTruncStoreAction(MVT::i32, MVT::i16, Expand);
setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
// SETOEQ and SETUNE require checking two conditions.
setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
// Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
// operation.
setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
} else if (!TM.Options.UseSoftFloat) {
// We have an algorithm for SSE2->double, and we turn this into a
// 64-bit FILD followed by conditional FADD for other targets.
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
// We have an algorithm for SSE2, and we turn this into a 64-bit
// FILD for other targets.
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
}
// Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
// this operation.
setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
if (!TM.Options.UseSoftFloat) {
// SSE has no i16 to fp conversion, only i32
if (X86ScalarSSEf32) {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
// f32 and f64 cases are Legal, f80 case is not
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
} else {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
}
} else {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
}
// In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
// are Legal, f80 is custom lowered.
setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
// Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
// this operation.
setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
if (X86ScalarSSEf32) {
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
// f32 and f64 cases are Legal, f80 case is not
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
} else {
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
}
// Handle FP_TO_UINT by promoting the destination to a larger signed
// conversion.
setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
} else if (!TM.Options.UseSoftFloat) {
// Since AVX is a superset of SSE3, only check for SSE here.
if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
// Expand FP_TO_UINT into a select.
// FIXME: We would like to use a Custom expander here eventually to do
// the optimal thing for SSE vs. the default expansion in the legalizer.
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
else
// With SSE3 we can use fisttpll to convert to a signed i64; without
// SSE, we're stuck with a fistpll.
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
}
if (isTargetFTOL()) {
// Use the _ftol2 runtime function, which has a pseudo-instruction
// to handle its weird calling convention.
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
}
// TODO: when we have SSE, these could be more efficient, by using movd/movq.
if (!X86ScalarSSEf64) {
setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
// Without SSE, i64->f64 goes through memory.
setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
}
}
// Scalar integer divide and remainder are lowered to use operations that
// produce two results, to match the available instructions. This exposes
// the two-result form to trivial CSE, which is able to combine x/y and x%y
// into a single instruction.
//
// Scalar integer multiply-high is also lowered to use two-result
// operations, to match the available instructions. However, plain multiply
// (low) operations are left as Legal, as there are single-result
// instructions for this in x86. Using the two-result multiply instructions
// when both high and low results are needed must be arranged by dagcombine.
for (unsigned i = 0, e = 4; i != e; ++i) {
MVT VT = IntVTs[i];
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
// Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
setOperationAction(ISD::ADDC, VT, Custom);
setOperationAction(ISD::ADDE, VT, Custom);
setOperationAction(ISD::SUBC, VT, Custom);
setOperationAction(ISD::SUBE, VT, Custom);
}
setOperationAction(ISD::BR_JT , MVT::Other, Expand);
setOperationAction(ISD::BRCOND , MVT::Other, Custom);
setOperationAction(ISD::BR_CC , MVT::Other, Expand);
setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
if (Subtarget->is64Bit())
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
setOperationAction(ISD::FREM , MVT::f32 , Expand);
setOperationAction(ISD::FREM , MVT::f64 , Expand);
setOperationAction(ISD::FREM , MVT::f80 , Expand);
setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
// Promote the i8 variants and force them on up to i32 which has a shorter
// encoding.
setOperationAction(ISD::CTTZ , MVT::i8 , Promote);
AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32);
setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote);
AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32);
if (Subtarget->hasBMI()) {
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand);
if (Subtarget->is64Bit())
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
} else {
setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
if (Subtarget->is64Bit())
setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
}
if (Subtarget->hasLZCNT()) {
// When promoting the i8 variants, force them to i32 for a shorter
// encoding.
setOperationAction(ISD::CTLZ , MVT::i8 , Promote);
AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote);
AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand);
if (Subtarget->is64Bit())
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
} else {
setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
}
}
if (Subtarget->hasPOPCNT()) {
setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
} else {
setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
if (Subtarget->is64Bit())
setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
}
setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
// These should be promoted to a larger select which is supported.
setOperationAction(ISD::SELECT , MVT::i1 , Promote);
// X86 wants to expand cmov itself.
setOperationAction(ISD::SELECT , MVT::i8 , Custom);
setOperationAction(ISD::SELECT , MVT::i16 , Custom);
setOperationAction(ISD::SELECT , MVT::i32 , Custom);
setOperationAction(ISD::SELECT , MVT::f32 , Custom);
setOperationAction(ISD::SELECT , MVT::f64 , Custom);
setOperationAction(ISD::SELECT , MVT::f80 , Custom);
setOperationAction(ISD::SETCC , MVT::i8 , Custom);
setOperationAction(ISD::SETCC , MVT::i16 , Custom);
setOperationAction(ISD::SETCC , MVT::i32 , Custom);
setOperationAction(ISD::SETCC , MVT::f32 , Custom);
setOperationAction(ISD::SETCC , MVT::f64 , Custom);
setOperationAction(ISD::SETCC , MVT::f80 , Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::SELECT , MVT::i64 , Custom);
setOperationAction(ISD::SETCC , MVT::i64 , Custom);
}
setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
// Darwin ABI issue.
setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
if (Subtarget->is64Bit())
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
}
// 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
}
if (Subtarget->hasSSE1())
setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom);
setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
// On X86 and X86-64, atomic operations are lowered to locked instructions.
// Locked instructions, in turn, have implicit fence semantics (all memory
// operations are flushed before issuing the locked instruction, and they
// are not buffered), so we can fold away the common pattern of
// fence-atomic-fence.
setShouldFoldAtomicFences(true);
// Expand certain atomics
for (unsigned i = 0, e = 4; i != e; ++i) {
MVT VT = IntVTs[i];
setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
}
if (!Subtarget->is64Bit()) {
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
}
if (Subtarget->hasCmpxchg16b()) {
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
}
// FIXME - use subtarget debug flags
if (!Subtarget->isTargetDarwin() &&
!Subtarget->isTargetELF() &&
!Subtarget->isTargetCygMing()) {
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
}
setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
if (Subtarget->is64Bit()) {
setExceptionPointerRegister(X86::RAX);
setExceptionSelectorRegister(X86::RDX);
} else {
setExceptionPointerRegister(X86::EAX);
setExceptionSelectorRegister(X86::EDX);
}
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::VAARG , MVT::Other, Custom);
setOperationAction(ISD::VACOPY , MVT::Other, Custom);
} else {
setOperationAction(ISD::VAARG , MVT::Other, Expand);
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
}
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
MVT::i64 : MVT::i32, Custom);
else if (TM.Options.EnableSegmentedStacks)
setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
MVT::i64 : MVT::i32, Custom);
else
setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
MVT::i64 : MVT::i32, Expand);
if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
// f32 and f64 use SSE.
// Set up the FP register classes.
addRegisterClass(MVT::f32, X86::FR32RegisterClass);
addRegisterClass(MVT::f64, X86::FR64RegisterClass);
// Use ANDPD to simulate FABS.
setOperationAction(ISD::FABS , MVT::f64, Custom);
setOperationAction(ISD::FABS , MVT::f32, Custom);
// Use XORP to simulate FNEG.
setOperationAction(ISD::FNEG , MVT::f64, Custom);
setOperationAction(ISD::FNEG , MVT::f32, Custom);
// Use ANDPD and ORPD to simulate FCOPYSIGN.
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
// Lower this to FGETSIGNx86 plus an AND.
setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
// We don't support sin/cos/fmod
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
// Expand FP immediates into loads from the stack, except for the special
// cases we handle.
addLegalFPImmediate(APFloat(+0.0)); // xorpd
addLegalFPImmediate(APFloat(+0.0f)); // xorps
} else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
// Use SSE for f32, x87 for f64.
// Set up the FP register classes.
addRegisterClass(MVT::f32, X86::FR32RegisterClass);
addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
// Use ANDPS to simulate FABS.
setOperationAction(ISD::FABS , MVT::f32, Custom);
// Use XORP to simulate FNEG.
setOperationAction(ISD::FNEG , MVT::f32, Custom);
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
// Use ANDPS and ORPS to simulate FCOPYSIGN.
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
// We don't support sin/cos/fmod
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
// Special cases we handle for FP constants.
addLegalFPImmediate(APFloat(+0.0f)); // xorps
addLegalFPImmediate(APFloat(+0.0)); // FLD0
addLegalFPImmediate(APFloat(+1.0)); // FLD1
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
if (!TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f64 , Expand);
setOperationAction(ISD::FCOS , MVT::f64 , Expand);
}
} else if (!TM.Options.UseSoftFloat) {
// f32 and f64 in x87.
// Set up the FP register classes.
addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
setOperationAction(ISD::UNDEF, MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
if (!TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f64 , Expand);
setOperationAction(ISD::FCOS , MVT::f64 , Expand);
}
addLegalFPImmediate(APFloat(+0.0)); // FLD0
addLegalFPImmediate(APFloat(+1.0)); // FLD1
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
addLegalFPImmediate(APFloat(+0.0f)); // FLD0
addLegalFPImmediate(APFloat(+1.0f)); // FLD1
addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
}
// We don't support FMA.
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FMA, MVT::f32, Expand);
// Long double always uses X87.
if (!TM.Options.UseSoftFloat) {
addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
setOperationAction(ISD::UNDEF, MVT::f80, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
{
APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
addLegalFPImmediate(TmpFlt); // FLD0
TmpFlt.changeSign();
addLegalFPImmediate(TmpFlt); // FLD0/FCHS
bool ignored;
APFloat TmpFlt2(+1.0);
TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
&ignored);
addLegalFPImmediate(TmpFlt2); // FLD1
TmpFlt2.changeSign();
addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
}
if (!TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f80 , Expand);
setOperationAction(ISD::FCOS , MVT::f80 , Expand);
}
setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
setOperationAction(ISD::FCEIL, MVT::f80, Expand);
setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
setOperationAction(ISD::FRINT, MVT::f80, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
setOperationAction(ISD::FMA, MVT::f80, Expand);
}
// Always use a library call for pow.
setOperationAction(ISD::FPOW , MVT::f32 , Expand);
setOperationAction(ISD::FPOW , MVT::f64 , Expand);
setOperationAction(ISD::FPOW , MVT::f80 , Expand);
setOperationAction(ISD::FLOG, MVT::f80, Expand);
setOperationAction(ISD::FLOG2, MVT::f80, Expand);
setOperationAction(ISD::FLOG10, MVT::f80, Expand);
setOperationAction(ISD::FEXP, MVT::f80, Expand);
setOperationAction(ISD::FEXP2, MVT::f80, Expand);
// First set operation action for all vector types to either promote
// (for widening) or expand (for scalarization). Then we will selectively
// turn on ones that can be effectively codegen'd.
for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::VSELECT, (MVT::SimpleValueType)VT, Expand);
for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
setTruncStoreAction((MVT::SimpleValueType)VT,
(MVT::SimpleValueType)InnerVT, Expand);
setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
}
// FIXME: In order to prevent SSE instructions being expanded to MMX ones
// with -msoft-float, disable use of MMX as well.
if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
// No operations on x86mmx supported, everything uses intrinsics.
}
// MMX-sized vectors (other than x86mmx) are expected to be expanded
// into smaller operations.
setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
setOperationAction(ISD::AND, MVT::v8i8, Expand);
setOperationAction(ISD::AND, MVT::v4i16, Expand);
setOperationAction(ISD::AND, MVT::v2i32, Expand);
setOperationAction(ISD::AND, MVT::v1i64, Expand);
setOperationAction(ISD::OR, MVT::v8i8, Expand);
setOperationAction(ISD::OR, MVT::v4i16, Expand);
setOperationAction(ISD::OR, MVT::v2i32, Expand);
setOperationAction(ISD::OR, MVT::v1i64, Expand);
setOperationAction(ISD::XOR, MVT::v8i8, Expand);
setOperationAction(ISD::XOR, MVT::v4i16, Expand);
setOperationAction(ISD::XOR, MVT::v2i32, Expand);
setOperationAction(ISD::XOR, MVT::v1i64, Expand);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
setOperationAction(ISD::FADD, MVT::v4f32, Legal);
setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
}
if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
// FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
// registers cannot be used even for integer operations.
addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
setOperationAction(ISD::ADD, MVT::v16i8, Legal);
setOperationAction(ISD::ADD, MVT::v8i16, Legal);
setOperationAction(ISD::ADD, MVT::v4i32, Legal);
setOperationAction(ISD::ADD, MVT::v2i64, Legal);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
setOperationAction(ISD::SUB, MVT::v16i8, Legal);
setOperationAction(ISD::SUB, MVT::v8i16, Legal);
setOperationAction(ISD::SUB, MVT::v4i32, Legal);
setOperationAction(ISD::SUB, MVT::v2i64, Legal);
setOperationAction(ISD::MUL, MVT::v8i16, Legal);
setOperationAction(ISD::FADD, MVT::v2f64, Legal);
setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
// Custom lower build_vector, vector_shuffle, and extract_vector_elt.
for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
EVT VT = (MVT::SimpleValueType)i;
// Do not attempt to custom lower non-power-of-2 vectors
if (!isPowerOf2_32(VT.getVectorNumElements()))
continue;
// Do not attempt to custom lower non-128-bit vectors
if (!VT.is128BitVector())
continue;
setOperationAction(ISD::BUILD_VECTOR,
VT.getSimpleVT().SimpleTy, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE,
VT.getSimpleVT().SimpleTy, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT,
VT.getSimpleVT().SimpleTy, Custom);
}
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
}
// Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
EVT VT = SVT;
// Do not attempt to promote non-128-bit vectors
if (!VT.is128BitVector())
continue;
setOperationAction(ISD::AND, SVT, Promote);
AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
setOperationAction(ISD::OR, SVT, Promote);
AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
setOperationAction(ISD::XOR, SVT, Promote);
AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
setOperationAction(ISD::LOAD, SVT, Promote);
AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
setOperationAction(ISD::SELECT, SVT, Promote);
AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
}
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// Custom lower v2i64 and v2f64 selects.
setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
}
if (Subtarget->hasSSE41()) {
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::FRINT, MVT::f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
// FIXME: Do we need to handle scalar-to-vector here?
setOperationAction(ISD::MUL, MVT::v4i32, Legal);
setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
setOperationAction(ISD::VSELECT, MVT::v2i64, Legal);
setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
// i8 and i16 vectors are custom , because the source register and source
// source memory operand types are not the same width. f32 vectors are
// custom since the immediate controlling the insert encodes additional
// information.
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
// FIXME: these should be Legal but thats only for the case where
// the index is constant. For now custom expand to deal with that.
if (Subtarget->is64Bit()) {
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
}
}
if (Subtarget->hasSSE2()) {
setOperationAction(ISD::SRL, MVT::v8i16, Custom);
setOperationAction(ISD::SRL, MVT::v16i8, Custom);
setOperationAction(ISD::SHL, MVT::v8i16, Custom);
setOperationAction(ISD::SHL, MVT::v16i8, Custom);
setOperationAction(ISD::SRA, MVT::v8i16, Custom);
setOperationAction(ISD::SRA, MVT::v16i8, Custom);
if (Subtarget->hasAVX2()) {
setOperationAction(ISD::SRL, MVT::v2i64, Legal);
setOperationAction(ISD::SRL, MVT::v4i32, Legal);
setOperationAction(ISD::SHL, MVT::v2i64, Legal);
setOperationAction(ISD::SHL, MVT::v4i32, Legal);
setOperationAction(ISD::SRA, MVT::v4i32, Legal);
} else {
setOperationAction(ISD::SRL, MVT::v2i64, Custom);
setOperationAction(ISD::SRL, MVT::v4i32, Custom);
setOperationAction(ISD::SHL, MVT::v2i64, Custom);
setOperationAction(ISD::SHL, MVT::v4i32, Custom);
setOperationAction(ISD::SRA, MVT::v4i32, Custom);
}
}
if (Subtarget->hasSSE42())
setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
setOperationAction(ISD::FADD, MVT::v8f32, Legal);
setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
setOperationAction(ISD::FADD, MVT::v4f64, Legal);
setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f64, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i64, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i8, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i16, Custom);
setOperationAction(ISD::SRL, MVT::v16i16, Custom);
setOperationAction(ISD::SRL, MVT::v32i8, Custom);
setOperationAction(ISD::SHL, MVT::v16i16, Custom);
setOperationAction(ISD::SHL, MVT::v32i8, Custom);
setOperationAction(ISD::SRA, MVT::v16i16, Custom);
setOperationAction(ISD::SRA, MVT::v32i8, Custom);
setOperationAction(ISD::SETCC, MVT::v32i8, Custom);
setOperationAction(ISD::SETCC, MVT::v16i16, Custom);
setOperationAction(ISD::SETCC, MVT::v8i32, Custom);
setOperationAction(ISD::SETCC, MVT::v4i64, Custom);
setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
setOperationAction(ISD::VSELECT, MVT::v4i64, Legal);
setOperationAction(ISD::VSELECT, MVT::v8i32, Legal);
setOperationAction(ISD::VSELECT, MVT::v8f32, Legal);
if (Subtarget->hasAVX2()) {
setOperationAction(ISD::ADD, MVT::v4i64, Legal);
setOperationAction(ISD::ADD, MVT::v8i32, Legal);
setOperationAction(ISD::ADD, MVT::v16i16, Legal);
setOperationAction(ISD::ADD, MVT::v32i8, Legal);
setOperationAction(ISD::SUB, MVT::v4i64, Legal);
setOperationAction(ISD::SUB, MVT::v8i32, Legal);
setOperationAction(ISD::SUB, MVT::v16i16, Legal);
setOperationAction(ISD::SUB, MVT::v32i8, Legal);
setOperationAction(ISD::MUL, MVT::v4i64, Custom);
setOperationAction(ISD::MUL, MVT::v8i32, Legal);
setOperationAction(ISD::MUL, MVT::v16i16, Legal);
// Don't lower v32i8 because there is no 128-bit byte mul
setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
setOperationAction(ISD::SRL, MVT::v4i64, Legal);
setOperationAction(ISD::SRL, MVT::v8i32, Legal);
setOperationAction(ISD::SHL, MVT::v4i64, Legal);
setOperationAction(ISD::SHL, MVT::v8i32, Legal);
setOperationAction(ISD::SRA, MVT::v8i32, Legal);
} else {
setOperationAction(ISD::ADD, MVT::v4i64, Custom);
setOperationAction(ISD::ADD, MVT::v8i32, Custom);
setOperationAction(ISD::ADD, MVT::v16i16, Custom);
setOperationAction(ISD::ADD, MVT::v32i8, Custom);
setOperationAction(ISD::SUB, MVT::v4i64, Custom);
setOperationAction(ISD::SUB, MVT::v8i32, Custom);
setOperationAction(ISD::SUB, MVT::v16i16, Custom);
setOperationAction(ISD::SUB, MVT::v32i8, Custom);
setOperationAction(ISD::MUL, MVT::v4i64, Custom);
setOperationAction(ISD::MUL, MVT::v8i32, Custom);
setOperationAction(ISD::MUL, MVT::v16i16, Custom);
// Don't lower v32i8 because there is no 128-bit byte mul
setOperationAction(ISD::SRL, MVT::v4i64, Custom);
setOperationAction(ISD::SRL, MVT::v8i32, Custom);
setOperationAction(ISD::SHL, MVT::v4i64, Custom);
setOperationAction(ISD::SHL, MVT::v8i32, Custom);
setOperationAction(ISD::SRA, MVT::v8i32, Custom);
}
// Custom lower several nodes for 256-bit types.
for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
EVT VT = SVT;
// Extract subvector is special because the value type
// (result) is 128-bit but the source is 256-bit wide.
if (VT.is128BitVector())
setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
// Do not attempt to custom lower other non-256-bit vectors
if (!VT.is256BitVector())
continue;
setOperationAction(ISD::BUILD_VECTOR, SVT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, SVT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, SVT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, SVT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, SVT, Custom);
}
// Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
EVT VT = SVT;
// Do not attempt to promote non-256-bit vectors
if (!VT.is256BitVector())
continue;
setOperationAction(ISD::AND, SVT, Promote);
AddPromotedToType (ISD::AND, SVT, MVT::v4i64);
setOperationAction(ISD::OR, SVT, Promote);
AddPromotedToType (ISD::OR, SVT, MVT::v4i64);
setOperationAction(ISD::XOR, SVT, Promote);
AddPromotedToType (ISD::XOR, SVT, MVT::v4i64);
setOperationAction(ISD::LOAD, SVT, Promote);
AddPromotedToType (ISD::LOAD, SVT, MVT::v4i64);
setOperationAction(ISD::SELECT, SVT, Promote);
AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
}
}
// SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
// of this type with custom code.
for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
Custom);
}
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
// Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
// handle type legalization for these operations here.
//
// FIXME: We really should do custom legalization for addition and
// subtraction on x86-32 once PR3203 is fixed. We really can't do much better
// than generic legalization for 64-bit multiplication-with-overflow, though.
for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
// Add/Sub/Mul with overflow operations are custom lowered.
MVT VT = IntVTs[i];
setOperationAction(ISD::SADDO, VT, Custom);
setOperationAction(ISD::UADDO, VT, Custom);
setOperationAction(ISD::SSUBO, VT, Custom);
setOperationAction(ISD::USUBO, VT, Custom);
setOperationAction(ISD::SMULO, VT, Custom);
setOperationAction(ISD::UMULO, VT, Custom);
}
// There are no 8-bit 3-address imul/mul instructions
setOperationAction(ISD::SMULO, MVT::i8, Expand);
setOperationAction(ISD::UMULO, MVT::i8, Expand);
if (!Subtarget->is64Bit()) {
// These libcalls are not available in 32-bit.
setLibcallName(RTLIB::SHL_I128, 0);
setLibcallName(RTLIB::SRL_I128, 0);
setLibcallName(RTLIB::SRA_I128, 0);
}
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
setTargetDAGCombine(ISD::VSELECT);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::FADD);
setTargetDAGCombine(ISD::FSUB);
setTargetDAGCombine(ISD::SUB);
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::TRUNCATE);
setTargetDAGCombine(ISD::SINT_TO_FP);
if (Subtarget->is64Bit())
setTargetDAGCombine(ISD::MUL);
if (Subtarget->hasBMI())
setTargetDAGCombine(ISD::XOR);
computeRegisterProperties();
// On Darwin, -Os means optimize for size without hurting performance,
// do not reduce the limit.
maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
setPrefLoopAlignment(4); // 2^4 bytes.
benefitFromCodePlacementOpt = true;
setPrefFunctionAlignment(4); // 2^4 bytes.
}
EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
if (!VT.isVector()) return MVT::i8;
return VT.changeVectorElementTypeToInteger();
}
/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
/// the desired ByVal argument alignment.
static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
if (MaxAlign == 16)
return;
if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
if (VTy->getBitWidth() == 128)
MaxAlign = 16;
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
unsigned EltAlign = 0;
getMaxByValAlign(ATy->getElementType(), EltAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
unsigned EltAlign = 0;
getMaxByValAlign(STy->getElementType(i), EltAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
if (MaxAlign == 16)
break;
}
}
return;
}
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. For X86, aggregates
/// that contain SSE vectors are placed at 16-byte boundaries while the rest
/// are at 4-byte boundaries.
unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
if (Subtarget->is64Bit()) {
// Max of 8 and alignment of type.
unsigned TyAlign = TD->getABITypeAlignment(Ty);
if (TyAlign > 8)
return TyAlign;
return 8;
}
unsigned Align = 4;
if (Subtarget->hasSSE1())
getMaxByValAlign(Ty, Align);
return Align;
}
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
/// means there isn't a need to check it against alignment requirement,
/// probably because the source does not need to be loaded. If
/// 'IsZeroVal' is true, that means it's safe to return a
/// non-scalar-integer type, e.g. empty string source, constant, or loaded
/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
/// constant so it does not need to be loaded.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
EVT
X86TargetLowering::getOptimalMemOpType(uint64_t Size,
unsigned DstAlign, unsigned SrcAlign,
bool IsZeroVal,
bool MemcpyStrSrc,
MachineFunction &MF) const {
// FIXME: This turns off use of xmm stores for memset/memcpy on targets like
// linux. This is because the stack realignment code can't handle certain
// cases like PR2962. This should be removed when PR2962 is fixed.
const Function *F = MF.getFunction();
if (IsZeroVal &&
!F->hasFnAttr(Attribute::NoImplicitFloat)) {
if (Size >= 16 &&
(Subtarget->isUnalignedMemAccessFast() ||
((DstAlign == 0 || DstAlign >= 16) &&
(SrcAlign == 0 || SrcAlign >= 16))) &&
Subtarget->getStackAlignment() >= 16) {
if (Subtarget->getStackAlignment() >= 32) {
if (Subtarget->hasAVX2())
return MVT::v8i32;
if (Subtarget->hasAVX())
return MVT::v8f32;
}
if (Subtarget->hasSSE2())
return MVT::v4i32;
if (Subtarget->hasSSE1())
return MVT::v4f32;
} else if (!MemcpyStrSrc && Size >= 8 &&
!Subtarget->is64Bit() &&
Subtarget->getStackAlignment() >= 8 &&
Subtarget->hasSSE2()) {
// Do not use f64 to lower memcpy if source is string constant. It's
// better to use i32 to avoid the loads.
return MVT::f64;
}
}
if (Subtarget->is64Bit() && Size >= 8)
return MVT::i64;
return MVT::i32;
}
/// getJumpTableEncoding - Return the entry encoding for a jump table in the
/// current function. The returned value is a member of the
/// MachineJumpTableInfo::JTEntryKind enum.
unsigned X86TargetLowering::getJumpTableEncoding() const {
// In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
// symbol.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
Subtarget->isPICStyleGOT())
return MachineJumpTableInfo::EK_Custom32;
// Otherwise, use the normal jump table encoding heuristics.
return TargetLowering::getJumpTableEncoding();
}
const MCExpr *
X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid,MCContext &Ctx) const{
assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
Subtarget->isPICStyleGOT());
// In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
// entries.
return MCSymbolRefExpr::Create(MBB->getSymbol(),
MCSymbolRefExpr::VK_GOTOFF, Ctx);
}
/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
/// jumptable.
SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
if (!Subtarget->is64Bit())
// This doesn't have DebugLoc associated with it, but is not really the
// same as a Register.
return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
return Table;
}
/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
/// MCExpr.
const MCExpr *X86TargetLowering::
getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
MCContext &Ctx) const {
// X86-64 uses RIP relative addressing based on the jump table label.
if (Subtarget->isPICStyleRIPRel())
return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
// Otherwise, the reference is relative to the PIC base.
return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
}
// FIXME: Why this routine is here? Move to RegInfo!
std::pair<const TargetRegisterClass*, uint8_t>
X86TargetLowering::findRepresentativeClass(EVT VT) const{
const TargetRegisterClass *RRC = 0;
uint8_t Cost = 1;
switch (VT.getSimpleVT().SimpleTy) {
default:
return TargetLowering::findRepresentativeClass(VT);
case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
RRC = (Subtarget->is64Bit()
? X86::GR64RegisterClass : X86::GR32RegisterClass);
break;
case MVT::x86mmx:
RRC = X86::VR64RegisterClass;
break;
case MVT::f32: case MVT::f64:
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
case MVT::v4f32: case MVT::v2f64:
case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
case MVT::v4f64:
RRC = X86::VR128RegisterClass;
break;
}
return std::make_pair(RRC, Cost);
}
bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
unsigned &Offset) const {
if (!Subtarget->isTargetLinux())
return false;
if (Subtarget->is64Bit()) {
// %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
Offset = 0x28;
if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
AddressSpace = 256;
else
AddressSpace = 257;
} else {
// %gs:0x14 on i386
Offset = 0x14;
AddressSpace = 256;
}
return true;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "X86GenCallingConv.inc"
bool
X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_X86);
}
SDValue
X86TargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
RVLocs, *DAG.getContext());
CCInfo.AnalyzeReturn(Outs, RetCC_X86);
// Add the regs to the liveout set for the function.
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
for (unsigned i = 0; i != RVLocs.size(); ++i)
if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
MRI.addLiveOut(RVLocs[i].getLocReg());
SDValue Flag;
SmallVector<SDValue, 6> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
// Operand #1 = Bytes To Pop
RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
MVT::i16));
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue ValToCopy = OutVals[i];
EVT ValVT = ValToCopy.getValueType();
// If this is x86-64, and we disabled SSE, we can't return FP values,
// or SSE or MMX vectors.
if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
(Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
report_fatal_error("SSE register return with SSE disabled");
}
// Likewise we can't return F64 values with SSE1 only. gcc does so, but
// llvm-gcc has never done it right and no one has noticed, so this
// should be OK for now.
if (ValVT == MVT::f64 &&
(Subtarget->is64Bit() && !Subtarget->hasSSE2()))
report_fatal_error("SSE2 register return with SSE2 disabled");
// Returns in ST0/ST1 are handled specially: these are pushed as operands to
// the RET instruction and handled by the FP Stackifier.
if (VA.getLocReg() == X86::ST0 ||
VA.getLocReg() == X86::ST1) {
// If this is a copy from an xmm register to ST(0), use an FPExtend to
// change the value to the FP stack register class.
if (isScalarFPTypeInSSEReg(VA.getValVT()))
ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
RetOps.push_back(ValToCopy);
// Don't emit a copytoreg.
continue;
}
// 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
// which is returned in RAX / RDX.
if (Subtarget->is64Bit()) {
if (ValVT == MVT::x86mmx) {
if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
ValToCopy);
// If we don't have SSE2 available, convert to v4f32 so the generated
// register is legal.
if (!Subtarget->hasSSE2())
ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
}
}
}
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
Flag = Chain.getValue(1);
}
// The x86-64 ABI for returning structs by value requires that we copy
// the sret argument into %rax for the return. We saved the argument into
// a virtual register in the entry block, so now we copy the value out
// and into %rax.
if (Subtarget->is64Bit() &&
DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
unsigned Reg = FuncInfo->getSRetReturnReg();
assert(Reg &&
"SRetReturnReg should have been set in LowerFormalArguments().");
SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
Flag = Chain.getValue(1);
// RAX now acts like a return value.
MRI.addLiveOut(X86::RAX);
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(X86ISD::RET_FLAG, dl,
MVT::Other, &RetOps[0], RetOps.size());
}
bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
if (N->getNumValues() != 1)
return false;
if (!N->hasNUsesOfValue(1, 0))
return false;
SDValue TCChain = Chain;
SDNode *Copy = *N->use_begin();
if (Copy->getOpcode() == ISD::CopyToReg) {
// If the copy has a glue operand, we conservatively assume it isn't safe to
// perform a tail call.
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
return false;
TCChain = Copy->getOperand(0);
} else if (Copy->getOpcode() != ISD::FP_EXTEND)
return false;
bool HasRet = false;
for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
UI != UE; ++UI) {
if (UI->getOpcode() != X86ISD::RET_FLAG)
return false;
HasRet = true;
}
if (!HasRet)
return false;
Chain = TCChain;
return true;
}
EVT
X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
ISD::NodeType ExtendKind) const {
MVT ReturnMVT;
// TODO: Is this also valid on 32-bit?
if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
ReturnMVT = MVT::i8;
else
ReturnMVT = MVT::i32;
EVT MinVT = getRegisterType(Context, ReturnMVT);
return VT.bitsLT(MinVT) ? MinVT : VT;
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
///
SDValue
X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
bool Is64Bit = Subtarget->is64Bit();
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
EVT CopyVT = VA.getValVT();
// If this is x86-64, and we disabled SSE, we can't return FP values
if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
report_fatal_error("SSE register return with SSE disabled");
}
SDValue Val;
// If this is a call to a function that returns an fp value on the floating
// point stack, we must guarantee the the value is popped from the stack, so
// a CopyFromReg is not good enough - the copy instruction may be eliminated
// if the return value is not used. We use the FpPOP_RETVAL instruction
// instead.
if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
// If we prefer to use the value in xmm registers, copy it out as f80 and
// use a truncate to move it from fp stack reg to xmm reg.
if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
SDValue Ops[] = { Chain, InFlag };
Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
MVT::Other, MVT::Glue, Ops, 2), 1);
Val = Chain.getValue(0);
// Round the f80 to the right size, which also moves it to the appropriate
// xmm register.
if (CopyVT != VA.getValVT())
Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
// This truncation won't change the value.
DAG.getIntPtrConstant(1));
} else {
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
CopyVT, InFlag).getValue(1);
Val = Chain.getValue(0);
}
InFlag = Chain.getValue(2);
InVals.push_back(Val);
}
return Chain;
}
//===----------------------------------------------------------------------===//
// C & StdCall & Fast Calling Convention implementation
//===----------------------------------------------------------------------===//
// StdCall calling convention seems to be standard for many Windows' API
// routines and around. It differs from C calling convention just a little:
// callee should clean up the stack, not caller. Symbols should be also
// decorated in some fancy way :) It doesn't support any vector arguments.
// For info on fast calling convention see Fast Calling Convention (tail call)
// implementation LowerX86_32FastCCCallTo.
/// CallIsStructReturn - Determines whether a call uses struct return
/// semantics.
static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
if (Outs.empty())
return false;
return Outs[0].Flags.isSRet();
}
/// ArgsAreStructReturn - Determines whether a function uses struct
/// return semantics.
static bool
ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
if (Ins.empty())
return false;
return Ins[0].Flags.isSRet();
}
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" with size and alignment information specified by
/// the specific parameter attribute. The copy will be passed as a byval
/// function parameter.
static SDValue
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
DebugLoc dl) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
/*isVolatile*/false, /*AlwaysInline=*/true,
MachinePointerInfo(), MachinePointerInfo());
}
/// IsTailCallConvention - Return true if the calling convention is one that
/// supports tail call optimization.
static bool IsTailCallConvention(CallingConv::ID CC) {
return (CC == CallingConv::Fast || CC == CallingConv::GHC);
}
bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
return false;
CallSite CS(CI);
CallingConv::ID CalleeCC = CS.getCallingConv();
if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
return false;
return true;
}
/// FuncIsMadeTailCallSafe - Return true if the function is being made into
/// a tailcall target by changing its ABI.
static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
bool GuaranteedTailCallOpt) {
return GuaranteedTailCallOpt && IsTailCallConvention(CC);
}
SDValue
X86TargetLowering::LowerMemArgument(SDValue Chain,
CallingConv::ID CallConv,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
const CCValAssign &VA,
MachineFrameInfo *MFI,
unsigned i) const {
// Create the nodes corresponding to a load from this parameter slot.
ISD::ArgFlagsTy Flags = Ins[i].Flags;
bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
getTargetMachine().Options.GuaranteedTailCallOpt);
bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
EVT ValVT;
// If value is passed by pointer we have address passed instead of the value
// itself.
if (VA.getLocInfo() == CCValAssign::Indirect)
ValVT = VA.getLocVT();
else
ValVT = VA.getValVT();
// FIXME: For now, all byval parameter objects are marked mutable. This can be
// changed with more analysis.
// In case of tail call optimization mark all arguments mutable. Since they
// could be overwritten by lowering of arguments in case of a tail call.
if (Flags.isByVal()) {
unsigned Bytes = Flags.getByValSize();
if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
return DAG.getFrameIndex(FI, getPointerTy());
} else {
int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
VA.getLocMemOffset(), isImmutable);
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
return DAG.getLoad(ValVT, dl, Chain, FIN,
MachinePointerInfo::getFixedStack(FI),
false, false, false, 0);
}
}
SDValue
X86TargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals)
const {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const Function* Fn = MF.getFunction();
if (Fn->hasExternalLinkage() &&
Subtarget->isTargetCygMing() &&
Fn->getName() == "main")
FuncInfo->setForceFramePointer(true);
MachineFrameInfo *MFI = MF.getFrameInfo();
bool Is64Bit = Subtarget->is64Bit();
bool IsWindows = Subtarget->isTargetWindows();
bool IsWin64 = Subtarget->isTargetWin64();
assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
"Var args not supported with calling convention fastcc or ghc");
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
ArgLocs, *DAG.getContext());
// Allocate shadow area for Win64
if (IsWin64) {
CCInfo.AllocateStack(32, 8);
}
CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
unsigned LastVal = ~0U;
SDValue ArgValue;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
// TODO: If an arg is passed in two places (e.g. reg and stack), skip later
// places.
assert(VA.getValNo() != LastVal &&
"Don't support value assigned to multiple locs yet");
(void)LastVal;
LastVal = VA.getValNo();
if (VA.isRegLoc()) {
EVT RegVT = VA.getLocVT();
const TargetRegisterClass *RC;
if (RegVT == MVT::i32)
RC = X86::GR32RegisterClass;
else if (Is64Bit && RegVT == MVT::i64)
RC = X86::GR64RegisterClass;
else if (RegVT == MVT::f32)
RC = X86::FR32RegisterClass;
else if (RegVT == MVT::f64)
RC = X86::FR64RegisterClass;
else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
RC = X86::VR256RegisterClass;
else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
RC = X86::VR128RegisterClass;
else if (RegVT == MVT::x86mmx)
RC = X86::VR64RegisterClass;
else
llvm_unreachable("Unknown argument type!");
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
// If this is an 8 or 16-bit value, it is really passed promoted to 32
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
if (VA.getLocInfo() == CCValAssign::SExt)
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::BCvt)
ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
if (VA.isExtInLoc()) {
// Handle MMX values passed in XMM regs.
if (RegVT.isVector()) {
ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
ArgValue);
} else
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
}
} else {
assert(VA.isMemLoc());
ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
}
// If value is passed via pointer - do a load.
if (VA.getLocInfo() == CCValAssign::Indirect)
ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
MachinePointerInfo(), false, false, false, 0);
InVals.push_back(ArgValue);
}
// The x86-64 ABI for returning structs by value requires that we copy
// the sret argument into %rax for the return. Save the argument into
// a virtual register so that we can access it from the return points.
if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
unsigned Reg = FuncInfo->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
FuncInfo->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
}
unsigned StackSize = CCInfo.getNextStackOffset();
// Align stack specially for tail calls.
if (FuncIsMadeTailCallSafe(CallConv,
MF.getTarget().Options.GuaranteedTailCallOpt))
StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
if (isVarArg) {
if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
CallConv != CallingConv::X86_ThisCall)) {
FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
}
if (Is64Bit) {
unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
// FIXME: We should really autogenerate these arrays
static const uint16_t GPR64ArgRegsWin64[] = {
X86::RCX, X86::RDX, X86::R8, X86::R9
};
static const uint16_t GPR64ArgRegs64Bit[] = {
X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
};
static const uint16_t XMMArgRegs64Bit[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
const uint16_t *GPR64ArgRegs;
unsigned NumXMMRegs = 0;
if (IsWin64) {
// The XMM registers which might contain var arg parameters are shadowed
// in their paired GPR. So we only need to save the GPR to their home
// slots.
TotalNumIntRegs = 4;
GPR64ArgRegs = GPR64ArgRegsWin64;
} else {
TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
GPR64ArgRegs = GPR64ArgRegs64Bit;
NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
TotalNumXMMRegs);
}
unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
TotalNumIntRegs);
bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
"SSE register cannot be used when SSE is disabled!");
assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
NoImplicitFloatOps) &&
"SSE register cannot be used when SSE is disabled!");
if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
!Subtarget->hasSSE1())
// Kernel mode asks for SSE to be disabled, so don't push them
// on the stack.
TotalNumXMMRegs = 0;
if (IsWin64) {
const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
// Get to the caller-allocated home save location. Add 8 to account
// for the return address.
int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
FuncInfo->setRegSaveFrameIndex(
MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
// Fixup to set vararg frame on shadow area (4 x i64).
if (NumIntRegs < 4)
FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
} else {
// For X86-64, if there are vararg parameters that are passed via
// registers, then we must store them to their spots on the stack so
// they may be loaded by deferencing the result of va_next.
FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
FuncInfo->setRegSaveFrameIndex(
MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
false));
}
// Store the integer parameter registers.
SmallVector<SDValue, 8> MemOps;
SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
getPointerTy());
unsigned Offset = FuncInfo->getVarArgsGPOffset();
for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
DAG.getIntPtrConstant(Offset));
unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
X86::GR64RegisterClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo::getFixedStack(
FuncInfo->getRegSaveFrameIndex(), Offset),
false, false, 0);
MemOps.push_back(Store);
Offset += 8;
}
if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
// Now store the XMM (fp + vector) parameter registers.
SmallVector<SDValue, 11> SaveXMMOps;
SaveXMMOps.push_back(Chain);
unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
SaveXMMOps.push_back(ALVal);
SaveXMMOps.push_back(DAG.getIntPtrConstant(
FuncInfo->getRegSaveFrameIndex()));
SaveXMMOps.push_back(DAG.getIntPtrConstant(
FuncInfo->getVarArgsFPOffset()));
for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
X86::VR128RegisterClass);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
SaveXMMOps.push_back(Val);
}
MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
MVT::Other,
&SaveXMMOps[0], SaveXMMOps.size()));
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOps[0], MemOps.size());
}
}
// Some CCs need callee pop.
if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
MF.getTarget().Options.GuaranteedTailCallOpt)) {
FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
} else {
FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
// If this is an sret function, the return should pop the hidden pointer.
if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
ArgsAreStructReturn(Ins))
FuncInfo->setBytesToPopOnReturn(4);
}
if (!Is64Bit) {
// RegSaveFrameIndex is X86-64 only.
FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
if (CallConv == CallingConv::X86_FastCall ||
CallConv == CallingConv::X86_ThisCall)
// fastcc functions can't have varargs.
FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
}
FuncInfo->setArgumentStackSize(StackSize);
return Chain;
}
SDValue
X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
SDValue StackPtr, SDValue Arg,
DebugLoc dl, SelectionDAG &DAG,
const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const {
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
if (Flags.isByVal())
return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
return DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo::getStack(LocMemOffset),
false, false, 0);
}
/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
/// optimization is performed and it is required.
SDValue
X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
SDValue &OutRetAddr, SDValue Chain,
bool IsTailCall, bool Is64Bit,
int FPDiff, DebugLoc dl) const {
// Adjust the Return address stack slot.
EVT VT = getPointerTy();
OutRetAddr = getReturnAddressFrameIndex(DAG);
// Load the "old" Return address.
OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
false, false, false, 0);
return SDValue(OutRetAddr.getNode(), 1);
}
/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
/// optimization is performed and it is required (FPDiff!=0).
static SDValue
EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
SDValue Chain, SDValue RetAddrFrIdx,
bool Is64Bit, int FPDiff, DebugLoc dl) {
// Store the return address to the appropriate stack slot.
if (!FPDiff) return Chain;
// Calculate the new stack slot for the return address.
int SlotSize = Is64Bit ? 8 : 4;
int NewReturnAddrFI =
MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
MachinePointerInfo::getFixedStack(NewReturnAddrFI),
false, false, 0);
return Chain;
}
SDValue
X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool doesNotRet, bool &isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
bool Is64Bit = Subtarget->is64Bit();
bool IsWin64 = Subtarget->isTargetWin64();
bool IsWindows = Subtarget->isTargetWindows();
bool IsStructRet = CallIsStructReturn(Outs);
bool IsSibcall = false;
if (MF.getTarget().Options.DisableTailCalls)
isTailCall = false;
if (isTailCall) {
// Check if it's really possible to do a tail call.
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
Outs, OutVals, Ins, DAG);
// Sibcalls are automatically detected tailcalls which do not require
// ABI changes.
if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
IsSibcall = true;
if (isTailCall)
++NumTailCalls;
}
assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
"Var args not supported with calling convention fastcc or ghc");
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
ArgLocs, *DAG.getContext());
// Allocate shadow area for Win64
if (IsWin64) {
CCInfo.AllocateStack(32, 8);
}
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
if (IsSibcall)
// This is a sibcall. The memory operands are available in caller's
// own caller's stack.
NumBytes = 0;
else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
IsTailCallConvention(CallConv))
NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
int FPDiff = 0;
if (isTailCall && !IsSibcall) {
// Lower arguments at fp - stackoffset + fpdiff.
unsigned NumBytesCallerPushed =
MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
FPDiff = NumBytesCallerPushed - NumBytes;
// Set the delta of movement of the returnaddr stackslot.
// But only set if delta is greater than previous delta.
if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
}
if (!IsSibcall)
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
SDValue RetAddrFrIdx;
// Load return address for tail calls.
if (isTailCall && FPDiff)
Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
Is64Bit, FPDiff, dl);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
// Walk the register/memloc assignments, inserting copies/loads. In the case
// of tail call optimization arguments are handle later.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
EVT RegVT = VA.getLocVT();
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
bool isByVal = Flags.isByVal();
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::AExt:
if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
// Special case: passing MMX values in XMM registers.
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
} else
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
break;
case CCValAssign::Indirect: {
// Store the argument.
SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
MachinePointerInfo::getFixedStack(FI),
false, false, 0);
Arg = SpillSlot;
break;
}
}
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
if (isVarArg && IsWin64) {
// Win64 ABI requires argument XMM reg to be copied to the corresponding
// shadow reg if callee is a varargs function.
unsigned ShadowReg = 0;
switch (VA.getLocReg()) {
case X86::XMM0: ShadowReg = X86::RCX; break;
case X86::XMM1: ShadowReg = X86::RDX; break;
case X86::XMM2: ShadowReg = X86::R8; break;
case X86::XMM3: ShadowReg = X86::R9; break;
}
if (ShadowReg)
RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
}
} else if (!IsSibcall && (!isTailCall || isByVal)) {
assert(VA.isMemLoc());
if (StackPtr.getNode() == 0)
StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
dl, DAG, VA, Flags));
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into registers.
SDValue InFlag;
// Tail call byval lowering might overwrite argument registers so in case of
// tail call optimization the copies to registers are lowered later.
if (!isTailCall)
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
if (Subtarget->isPICStyleGOT()) {
// ELF / PIC requires GOT in the EBX register before function calls via PLT
// GOT pointer.
if (!isTailCall) {
Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc(), getPointerTy()),
InFlag);
InFlag = Chain.getValue(1);
} else {
// If we are tail calling and generating PIC/GOT style code load the
// address of the callee into ECX. The value in ecx is used as target of
// the tail jump. This is done to circumvent the ebx/callee-saved problem
// for tail calls on PIC/GOT architectures. Normally we would just put the
// address of GOT into ebx and then call target@PLT. But for tail calls
// ebx would be restored (since ebx is callee saved) before jumping to the
// target@PLT.
// Note: The actual moving to ECX is done further down.
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
if (G && !G->getGlobal()->hasHiddenVisibility() &&
!G->getGlobal()->hasProtectedVisibility())
Callee = LowerGlobalAddress(Callee, DAG);
else if (isa<ExternalSymbolSDNode>(Callee))
Callee = LowerExternalSymbol(Callee, DAG);
}
}
if (Is64Bit && isVarArg && !IsWin64) {
// From AMD64 ABI document:
// For calls that may call functions that use varargs or stdargs
// (prototype-less calls or calls to functions containing ellipsis (...) in
// the declaration) %al is used as hidden argument to specify the number
// of SSE registers used. The contents of %al do not need to match exactly
// the number of registers, but must be an ubound on the number of SSE
// registers used and is in the range 0 - 8 inclusive.
// Count the number of XMM registers allocated.
static const uint16_t XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
assert((Subtarget->hasSSE1() || !NumXMMRegs)
&& "SSE registers cannot be used when SSE is disabled");
Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
InFlag = Chain.getValue(1);
}
// For tail calls lower the arguments to the 'real' stack slot.
if (isTailCall) {
// Force all the incoming stack arguments to be loaded from the stack
// before any new outgoing arguments are stored to the stack, because the
// outgoing stack slots may alias the incoming argument stack slots, and
// the alias isn't otherwise explicit. This is slightly more conservative
// than necessary, because it means that each store effectively depends
// on every argument instead of just those arguments it would clobber.
SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
SmallVector<SDValue, 8> MemOpChains2;
SDValue FIN;
int FI = 0;
// Do not flag preceding copytoreg stuff together with the following stuff.
InFlag = SDValue();
if (getTargetMachine().Options.GuaranteedTailCallOpt) {
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (VA.isRegLoc())
continue;
assert(VA.isMemLoc());
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// Create frame index.
int32_t Offset = VA.getLocMemOffset()+FPDiff;
uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
FIN = DAG.getFrameIndex(FI, getPointerTy());
if (Flags.isByVal()) {
// Copy relative to framepointer.
SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
if (StackPtr.getNode() == 0)
StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
getPointerTy());
Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
ArgChain,
Flags, DAG, dl));
} else {
// Store relative to framepointer.
MemOpChains2.push_back(
DAG.getStore(ArgChain, dl, Arg, FIN,
MachinePointerInfo::getFixedStack(FI),
false, false, 0));
}
}
}
if (!MemOpChains2.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains2[0], MemOpChains2.size());
// Copy arguments to their registers.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
InFlag =SDValue();
// Store the return address to the appropriate stack slot.
Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
FPDiff, dl);
}
if (getTargetMachine().getCodeModel() == CodeModel::Large) {
assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
// In the 64-bit large code model, we have to make all calls
// through a register, since the call instruction's 32-bit
// pc-relative offset may not be large enough to hold the whole
// address.
} else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
// If the callee is a GlobalAddress node (quite common, every direct call
// is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
// it.
// We should use extra load for direct calls to dllimported functions in
// non-JIT mode.
const GlobalValue *GV = G->getGlobal();
if (!GV->hasDLLImportLinkage()) {
unsigned char OpFlags = 0;
bool ExtraLoad = false;
unsigned WrapperKind = ISD::DELETED_NODE;
// On ELF targets, in both X86-64 and X86-32 mode, direct calls to
// external symbols most go through the PLT in PIC mode. If the symbol
// has hidden or protected visibility, or if it is static or local, then
// we don't need to use the PLT - we can directly call it.
if (Subtarget->isTargetELF() &&
getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
OpFlags = X86II::MO_PLT;
} else if (Subtarget->isPICStyleStubAny() &&
(GV->isDeclaration() || GV->isWeakForLinker()) &&
(!Subtarget->getTargetTriple().isMacOSX() ||
Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
// PC-relative references to external symbols should go through $stub,
// unless we're building with the leopard linker or later, which
// automatically synthesizes these stubs.
OpFlags = X86II::MO_DARWIN_STUB;
} else if (Subtarget->isPICStyleRIPRel() &&
isa<Function>(GV) &&
cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
// If the function is marked as non-lazy, generate an indirect call
// which loads from the GOT directly. This avoids runtime overhead
// at the cost of eager binding (and one extra byte of encoding).
OpFlags = X86II::MO_GOTPCREL;
WrapperKind = X86ISD::WrapperRIP;
ExtraLoad = true;
}
Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
G->getOffset(), OpFlags);
// Add a wrapper if needed.
if (WrapperKind != ISD::DELETED_NODE)
Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
// Add extra indirection if needed.
if (ExtraLoad)
Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
MachinePointerInfo::getGOT(),
false, false, false, 0);
}
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
unsigned char OpFlags = 0;
// On ELF targets, in either X86-64 or X86-32 mode, direct calls to
// external symbols should go through the PLT.
if (Subtarget->isTargetELF() &&
getTargetMachine().getRelocationModel() == Reloc::PIC_) {
OpFlags = X86II::MO_PLT;
} else if (Subtarget->isPICStyleStubAny() &&
(!Subtarget->getTargetTriple().isMacOSX() ||
Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
// PC-relative references to external symbols should go through $stub,
// unless we're building with the leopard linker or later, which
// automatically synthesizes these stubs.
OpFlags = X86II::MO_DARWIN_STUB;
}
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
OpFlags);
}
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
if (!IsSibcall && isTailCall) {
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(0, true), InFlag);
InFlag = Chain.getValue(1);
}
Ops.push_back(Chain);
Ops.push_back(Callee);
if (isTailCall)
Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add an implicit use GOT pointer in EBX.
if (!isTailCall && Subtarget->isPICStyleGOT())
Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
// Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
if (Is64Bit && isVarArg && !IsWin64)
Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
if (InFlag.getNode())
Ops.push_back(InFlag);
if (isTailCall) {
// We used to do:
//// If this is the first return lowered for this function, add the regs
//// to the liveout set for the function.
// This isn't right, although it's probably harmless on x86; liveouts
// should be computed from returns not tail calls. Consider a void
// function making a tail call to a function returning int.
return DAG.getNode(X86ISD::TC_RETURN, dl,
NodeTys, &Ops[0], Ops.size());
}
Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
unsigned NumBytesForCalleeToPush;
if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
getTargetMachine().Options.GuaranteedTailCallOpt))
NumBytesForCalleeToPush = NumBytes; // Callee pops everything
else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
IsStructRet)
// If this is a call to a struct-return function, the callee
// pops the hidden struct pointer, so we have to push it back.
// This is common for Darwin/X86, Linux & Mingw32 targets.
// For MSVC Win32 targets, the caller pops the hidden struct pointer.
NumBytesForCalleeToPush = 4;
else
NumBytesForCalleeToPush = 0; // Callee pops nothing.
// Returns a flag for retval copy to use.
if (!IsSibcall) {
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(NumBytesForCalleeToPush,
true),
InFlag);
InFlag = Chain.getValue(1);
}
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
Ins, dl, DAG, InVals);
}
//===----------------------------------------------------------------------===//
// Fast Calling Convention (tail call) implementation
//===----------------------------------------------------------------------===//
// Like std call, callee cleans arguments, convention except that ECX is
// reserved for storing the tail called function address. Only 2 registers are
// free for argument passing (inreg). Tail call optimization is performed
// provided:
// * tailcallopt is enabled
// * caller/callee are fastcc
// On X86_64 architecture with GOT-style position independent code only local
// (within module) calls are supported at the moment.
// To keep the stack aligned according to platform abi the function
// GetAlignedArgumentStackSize ensures that argument delta is always multiples
// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
// If a tail called function callee has more arguments than the caller the
// caller needs to make sure that there is room to move the RETADDR to. This is
// achieved by reserving an area the size of the argument delta right after the
// original REtADDR, but before the saved framepointer or the spilled registers
// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
// stack layout:
// arg1
// arg2
// RETADDR
// [ new RETADDR
// move area ]
// (possible EBP)
// ESI
// EDI
// local1 ..
/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
/// for a 16 byte align requirement.
unsigned
X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
SelectionDAG& DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const TargetMachine &TM = MF.getTarget();
const TargetFrameLowering &TFI = *TM.getFrameLowering();
unsigned StackAlignment = TFI.getStackAlignment();
uint64_t AlignMask = StackAlignment - 1;
int64_t Offset = StackSize;
uint64_t SlotSize = TD->getPointerSize();
if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
// Number smaller than 12 so just add the difference.
Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
} else {
// Mask out lower bits, add stackalignment once plus the 12 bytes.
Offset = ((~AlignMask) & Offset) + StackAlignment +
(StackAlignment-SlotSize);
}
return Offset;
}
/// MatchingStackOffset - Return true if the given stack call argument is
/// already available in the same position (relatively) of the caller's
/// incoming argument stack.
static
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
const X86InstrInfo *TII) {
unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
int FI = INT_MAX;
if (Arg.getOpcode() == ISD::CopyFromReg) {
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
if (!TargetRegisterInfo::isVirtualRegister(VR))
return false;
MachineInstr *Def = MRI->getVRegDef(VR);
if (!Def)
return false;
if (!Flags.isByVal()) {
if (!TII->isLoadFromStackSlot(Def, FI))
return false;
} else {
unsigned Opcode = Def->getOpcode();
if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
Def->getOperand(1).isFI()) {
FI = Def->getOperand(1).getIndex();
Bytes = Flags.getByValSize();
} else
return false;
}
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
if (Flags.isByVal())
// ByVal argument is passed in as a pointer but it's now being
// dereferenced. e.g.
// define @foo(%struct.X* %A) {
// tail call @bar(%struct.X* byval %A)
// }
return false;
SDValue Ptr = Ld->getBasePtr();
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
if (!FINode)
return false;
FI = FINode->getIndex();
} else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
FI = FINode->getIndex();
Bytes = Flags.getByValSize();
} else
return false;
assert(FI != INT_MAX);
if (!MFI->isFixedObjectIndex(FI))
return false;
return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
}
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool
X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
bool isCalleeStructRet,
bool isCallerStructRet,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const {
if (!IsTailCallConvention(CalleeCC) &&
CalleeCC != CallingConv::C)
return false;
// If -tailcallopt is specified, make fastcc functions tail-callable.
const MachineFunction &MF = DAG.getMachineFunction();
const Function *CallerF = DAG.getMachineFunction().getFunction();
CallingConv::ID CallerCC = CallerF->getCallingConv();
bool CCMatch = CallerCC == CalleeCC;
if (getTargetMachine().Options.GuaranteedTailCallOpt) {
if (IsTailCallConvention(CalleeCC) && CCMatch)
return true;
return false;
}
// Look for obvious safe cases to perform tail call optimization that do not
// require ABI changes. This is what gcc calls sibcall.
// Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
// emit a special epilogue.
if (RegInfo->needsStackRealignment(MF))
return false;
// Also avoid sibcall optimization if either caller or callee uses struct
// return semantics.
if (isCalleeStructRet || isCallerStructRet)
return false;
// An stdcall caller is expected to clean up its arguments; the callee
// isn't going to do that.
if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
return false;
// Do not sibcall optimize vararg calls unless all arguments are passed via
// registers.
if (isVarArg && !Outs.empty()) {
// Optimizing for varargs on Win64 is unlikely to be safe without
// additional testing.
if (Subtarget->isTargetWin64())
return false;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
if (!ArgLocs[i].isRegLoc())
return false;
}
// If the call result is in ST0 / ST1, it needs to be popped off the x87
// stack. Therefore, if it's not used by the call it is not safe to optimize
// this into a sibcall.
bool Unused = false;
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
if (!Ins[i].Used) {
Unused = true;
break;
}
}
if (Unused) {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
return false;
}
}
// If the calling conventions do not match, then we'd better make sure the
// results are returned in the same way as what the caller expects.
if (!CCMatch) {
SmallVector<CCValAssign, 16> RVLocs1;
CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
getTargetMachine(), RVLocs1, *DAG.getContext());
CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
SmallVector<CCValAssign, 16> RVLocs2;
CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
getTargetMachine(), RVLocs2, *DAG.getContext());
CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
if (RVLocs1.size() != RVLocs2.size())
return false;
for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
return false;
if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
return false;
if (RVLocs1[i].isRegLoc()) {
if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
return false;
} else {
if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
return false;
}
}
}
// If the callee takes no arguments then go on to check the results of the
// call.
if (!Outs.empty()) {
// Check if stack adjustment is needed. For now, do not do this if any
// argument is passed on the stack.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
// Allocate shadow area for Win64
if (Subtarget->isTargetWin64()) {
CCInfo.AllocateStack(32, 8);
}
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
if (CCInfo.getNextStackOffset()) {
MachineFunction &MF = DAG.getMachineFunction();
if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
return false;
// Check if the arguments are already laid out in the right way as
// the caller's fixed stack objects.
MachineFrameInfo *MFI = MF.getFrameInfo();
const MachineRegisterInfo *MRI = &MF.getRegInfo();
const X86InstrInfo *TII =
((X86TargetMachine&)getTargetMachine()).getInstrInfo();
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
if (!VA.isRegLoc()) {
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
MFI, MRI, TII))
return false;
}
}
}
// If the tailcall address may be in a register, then make sure it's
// possible to register allocate for it. In 32-bit, the call address can
// only target EAX, EDX, or ECX since the tail call must be scheduled after
// callee-saved registers are restored. These happen to be the same
// registers used to pass 'inreg' arguments so watch out for those.
if (!Subtarget->is64Bit() &&
!isa<GlobalAddressSDNode>(Callee) &&
!isa<ExternalSymbolSDNode>(Callee)) {
unsigned NumInRegs = 0;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (!VA.isRegLoc())
continue;
unsigned Reg = VA.getLocReg();
switch (Reg) {
default: break;
case X86::EAX: case X86::EDX: case X86::ECX:
if (++NumInRegs == 3)
return false;
break;
}
}
}
}
return true;
}
FastISel *
X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
return X86::createFastISel(funcInfo);
}
//===----------------------------------------------------------------------===//
// Other Lowering Hooks
//===----------------------------------------------------------------------===//
static bool MayFoldLoad(SDValue Op) {
return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
}
static bool MayFoldIntoStore(SDValue Op) {
return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
}
static bool isTargetShuffle(unsigned Opcode) {
switch(Opcode) {
default: return false;
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
case X86ISD::SHUFP:
case X86ISD::PALIGN:
case X86ISD::MOVLHPS:
case X86ISD::MOVLHPD:
case X86ISD::MOVHLPS:
case X86ISD::MOVLPS:
case X86ISD::MOVLPD:
case X86ISD::MOVSHDUP:
case X86ISD::MOVSLDUP:
case X86ISD::MOVDDUP:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
case X86ISD::VPERMILP:
case X86ISD::VPERM2X128:
return true;
}
}
static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
SDValue V1, SelectionDAG &DAG) {
switch(Opc) {
default: llvm_unreachable("Unknown x86 shuffle node");
case X86ISD::MOVSHDUP:
case X86ISD::MOVSLDUP:
case X86ISD::MOVDDUP:
return DAG.getNode(Opc, dl, VT, V1);
}
}
static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
SDValue V1, unsigned TargetMask,
SelectionDAG &DAG) {
switch(Opc) {
default: llvm_unreachable("Unknown x86 shuffle node");
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
case X86ISD::VPERMILP:
case X86ISD::VPERMI:
return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
}
}
static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
SDValue V1, SDValue V2, unsigned TargetMask,
SelectionDAG &DAG) {
switch(Opc) {
default: llvm_unreachable("Unknown x86 shuffle node");
case X86ISD::PALIGN:
case X86ISD::SHUFP:
case X86ISD::VPERM2X128:
return DAG.getNode(Opc, dl, VT, V1, V2,
DAG.getConstant(TargetMask, MVT::i8));
}
}
static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
SDValue V1, SDValue V2, SelectionDAG &DAG) {
switch(Opc) {
default: llvm_unreachable("Unknown x86 shuffle node");
case X86ISD::MOVLHPS:
case X86ISD::MOVLHPD:
case X86ISD::MOVHLPS:
case X86ISD::MOVLPS:
case X86ISD::MOVLPD:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
return DAG.getNode(Opc, dl, VT, V1, V2);
}
}
SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
int ReturnAddrIndex = FuncInfo->getRAIndex();
if (ReturnAddrIndex == 0) {
// Set up a frame object for the return address.
uint64_t SlotSize = TD->getPointerSize();
ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
false);
FuncInfo->setRAIndex(ReturnAddrIndex);
}
return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
}
bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
bool hasSymbolicDisplacement) {
// Offset should fit into 32 bit immediate field.
if (!isInt<32>(Offset))
return false;
// If we don't have a symbolic displacement - we don't have any extra
// restrictions.
if (!hasSymbolicDisplacement)
return true;
// FIXME: Some tweaks might be needed for medium code model.
if (M != CodeModel::Small && M != CodeModel::Kernel)
return false;
// For small code model we assume that latest object is 16MB before end of 31
// bits boundary. We may also accept pretty large negative constants knowing
// that all objects are in the positive half of address space.
if (M == CodeModel::Small && Offset < 16*1024*1024)
return true;
// For kernel code model we know that all object resist in the negative half
// of 32bits address space. We may not accept negative offsets, since they may
// be just off and we may accept pretty large positive ones.
if (M == CodeModel::Kernel && Offset > 0)
return true;
return false;
}
/// isCalleePop - Determines whether the callee is required to pop its
/// own arguments. Callee pop is necessary to support tail calls.
bool X86::isCalleePop(CallingConv::ID CallingConv,
bool is64Bit, bool IsVarArg, bool TailCallOpt) {
if (IsVarArg)
return false;
switch (CallingConv) {
default:
return false;
case CallingConv::X86_StdCall:
return !is64Bit;
case CallingConv::X86_FastCall:
return !is64Bit;
case CallingConv::X86_ThisCall:
return !is64Bit;
case CallingConv::Fast:
return TailCallOpt;
case CallingConv::GHC:
return TailCallOpt;
}
}
/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
/// specific condition code, returning the condition code and the LHS/RHS of the
/// comparison to make.
static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
if (!isFP) {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
// X > -1 -> X == 0, jump !sign.
RHS = DAG.getConstant(0, RHS.getValueType());
return X86::COND_NS;
} else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
// X < 0 -> X == 0, jump on sign.
return X86::COND_S;
} else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
// X < 1 -> X <= 0
RHS = DAG.getConstant(0, RHS.getValueType());
return X86::COND_LE;
}
}
switch (SetCCOpcode) {
default: llvm_unreachable("Invalid integer condition!");
case ISD::SETEQ: return X86::COND_E;
case ISD::SETGT: return X86::COND_G;
case ISD::SETGE: return X86::COND_GE;
case ISD::SETLT: return X86::COND_L;
case ISD::SETLE: return X86::COND_LE;
case ISD::SETNE: return X86::COND_NE;
case ISD::SETULT: return X86::COND_B;
case ISD::SETUGT: return X86::COND_A;
case ISD::SETULE: return X86::COND_BE;
case ISD::SETUGE: return X86::COND_AE;
}
}
// First determine if it is required or is profitable to flip the operands.
// If LHS is a foldable load, but RHS is not, flip the condition.
if (ISD::isNON_EXTLoad(LHS.getNode()) &&
!ISD::isNON_EXTLoad(RHS.getNode())) {
SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
std::swap(LHS, RHS);
}
switch (SetCCOpcode) {
default: break;
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETUGT:
case ISD::SETUGE:
std::swap(LHS, RHS);
break;
}
// On a floating point condition, the flags are set as follows:
// ZF PF CF op
// 0 | 0 | 0 | X > Y
// 0 | 0 | 1 | X < Y
// 1 | 0 | 0 | X == Y
// 1 | 1 | 1 | unordered
switch (SetCCOpcode) {
default: llvm_unreachable("Condcode should be pre-legalized away");
case ISD::SETUEQ:
case ISD::SETEQ: return X86::COND_E;
case ISD::SETOLT: // flipped
case ISD::SETOGT:
case ISD::SETGT: return X86::COND_A;
case ISD::SETOLE: // flipped
case ISD::SETOGE:
case ISD::SETGE: return X86::COND_AE;
case ISD::SETUGT: // flipped
case ISD::SETULT:
case ISD::SETLT: return X86::COND_B;
case ISD::SETUGE: // flipped
case ISD::SETULE:
case ISD::SETLE: return X86::COND_BE;
case ISD::SETONE:
case ISD::SETNE: return X86::COND_NE;
case ISD::SETUO: return X86::COND_P;
case ISD::SETO: return X86::COND_NP;
case ISD::SETOEQ:
case ISD::SETUNE: return X86::COND_INVALID;
}
}
/// hasFPCMov - is there a floating point cmov for the specific X86 condition
/// code. Current x86 isa includes the following FP cmov instructions:
/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
static bool hasFPCMov(unsigned X86CC) {
switch (X86CC) {
default:
return false;
case X86::COND_B:
case X86::COND_BE:
case X86::COND_E:
case X86::COND_P:
case X86::COND_A:
case X86::COND_AE:
case X86::COND_NE:
case X86::COND_NP:
return true;
}
}
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
return true;
}
return false;
}
/// isUndefOrInRange - Return true if Val is undef or if its value falls within
/// the specified range (L, H].
static bool isUndefOrInRange(int Val, int Low, int Hi) {
return (Val < 0) || (Val >= Low && Val < Hi);
}
/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
/// specified value.
static bool isUndefOrEqual(int Val, int CmpVal) {
if (Val < 0 || Val == CmpVal)
return true;
return false;
}
/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
/// from position Pos and ending in Pos+Size, falls within the specified
/// sequential range (L, L+Pos]. or is undef.
static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
int Pos, int Size, int Low) {
for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
if (!isUndefOrEqual(Mask[i], Low))
return false;
return true;
}
/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
/// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
/// the second operand.
static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
if (VT == MVT::v4f32 || VT == MVT::v4i32 )
return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
if (VT == MVT::v2f64 || VT == MVT::v2i64)
return (Mask[0] < 2 && Mask[1] < 2);
return false;
}
/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
/// is suitable for input to PSHUFHW.
static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
if (VT != MVT::v8i16)
return false;
// Lower quadword copied in order or undef.
if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
return false;
// Upper quadword shuffled.
for (unsigned i = 4; i != 8; ++i)
if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
return false;
return true;
}
/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
/// is suitable for input to PSHUFLW.
static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
if (VT != MVT::v8i16)
return false;
// Upper quadword copied in order.
if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
return false;
// Lower quadword shuffled.
for (unsigned i = 0; i != 4; ++i)
if (Mask[i] >= 4)
return false;
return true;
}
/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
/// is suitable for input to PALIGNR.
static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
const X86Subtarget *Subtarget) {
if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
(VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
return false;
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
// Do not handle 64-bit element shuffles with palignr.
if (NumLaneElts == 2)
return false;
for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
unsigned i;
for (i = 0; i != NumLaneElts; ++i) {
if (Mask[i+l] >= 0)
break;
}
// Lane is all undef, go to next lane
if (i == NumLaneElts)
continue;
int Start = Mask[i+l];
// Make sure its in this lane in one of the sources
if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
!isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
return false;
// If not lane 0, then we must match lane 0
if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
return false;
// Correct second source to be contiguous with first source
if (Start >= (int)NumElts)
Start -= NumElts - NumLaneElts;
// Make sure we're shifting in the right direction.
if (Start <= (int)(i+l))
return false;
Start -= i;
// Check the rest of the elements to see if they are consecutive.
for (++i; i != NumLaneElts; ++i) {
int Idx = Mask[i+l];
// Make sure its in this lane
if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
!isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
return false;
// If not lane 0, then we must match lane 0
if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
return false;
if (Idx >= (int)NumElts)
Idx -= NumElts - NumLaneElts;
if (!isUndefOrEqual(Idx, Start+i))
return false;
}
}
return true;
}
/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
/// the two vector operands have swapped position.
static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
unsigned NumElems) {
for (unsigned i = 0; i != NumElems; ++i) {
int idx = Mask[i];
if (idx < 0)
continue;
else if (idx < (int)NumElems)
Mask[i] = idx + NumElems;
else
Mask[i] = idx - NumElems;
}
}
/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to 128/256-bit
/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
/// reverse of what x86 shuffles want.
static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
bool Commuted = false) {
if (!HasAVX && VT.getSizeInBits() == 256)
return false;
unsigned NumElems = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElems = NumElems/NumLanes;
if (NumLaneElems != 2 && NumLaneElems != 4)
return false;
// VSHUFPSY divides the resulting vector into 4 chunks.
// The sources are also splitted into 4 chunks, and each destination
// chunk must come from a different source chunk.
//
// SRC1 => X7 X6 X5 X4 X3 X2 X1 X0
// SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9
//
// DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4,
// Y3..Y0, Y3..Y0, X3..X0, X3..X0
//
// VSHUFPDY divides the resulting vector into 4 chunks.
// The sources are also splitted into 4 chunks, and each destination
// chunk must come from a different source chunk.
//
// SRC1 => X3 X2 X1 X0
// SRC2 => Y3 Y2 Y1 Y0
//
// DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0
//
unsigned HalfLaneElems = NumLaneElems/2;
for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
for (unsigned i = 0; i != NumLaneElems; ++i) {
int Idx = Mask[i+l];
unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
return false;
// For VSHUFPSY, the mask of the second half must be the same as the
// first but with the appropriate offsets. This works in the same way as
// VPERMILPS works with masks.
if (NumElems != 8 || l == 0 || Mask[i] < 0)
continue;
if (!isUndefOrEqual(Idx, Mask[i]+l))
return false;
}
}
return true;
}
/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
unsigned NumElems = VT.getVectorNumElements();
if (VT.getSizeInBits() != 128)
return false;
if (NumElems != 4)
return false;
// Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
return isUndefOrEqual(Mask[0], 6) &&
isUndefOrEqual(Mask[1], 7) &&
isUndefOrEqual(Mask[2], 2) &&
isUndefOrEqual(Mask[3], 3);
}
/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
/// <2, 3, 2, 3>
static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
unsigned NumElems = VT.getVectorNumElements();
if (VT.getSizeInBits() != 128)
return false;
if (NumElems != 4)
return false;
return isUndefOrEqual(Mask[0], 2) &&
isUndefOrEqual(Mask[1], 3) &&
isUndefOrEqual(Mask[2], 2) &&
isUndefOrEqual(Mask[3], 3);
}
/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
if (VT.getSizeInBits() != 128)
return false;
unsigned NumElems = VT.getVectorNumElements();
if (NumElems != 2 && NumElems != 4)
return false;
for (unsigned i = 0; i != NumElems/2; ++i)
if (!isUndefOrEqual(Mask[i], i + NumElems))
return false;
for (unsigned i = NumElems/2; i != NumElems; ++i)
if (!isUndefOrEqual(Mask[i], i))
return false;
return true;
}
/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
unsigned NumElems = VT.getVectorNumElements();
if ((NumElems != 2 && NumElems != 4)
|| VT.getSizeInBits() > 128)
return false;
for (unsigned i = 0; i != NumElems/2; ++i)
if (!isUndefOrEqual(Mask[i], i))
return false;
for (unsigned i = 0; i != NumElems/2; ++i)
if (!isUndefOrEqual(Mask[i + NumElems/2], i + NumElems))
return false;
return true;
}
/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKL.
static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
bool HasAVX2, bool V2IsSplat = false) {
unsigned NumElts = VT.getVectorNumElements();
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Unsupported vector type for unpckh");
if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
(!HasAVX2 || (NumElts != 16 && NumElts != 32)))
return false;
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
// independently on 128-bit lanes.
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
for (unsigned l = 0; l != NumLanes; ++l) {
for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
i != (l+1)*NumLaneElts;
i += 2, ++j) {
int BitI = Mask[i];
int BitI1 = Mask[i+1];
if (!isUndefOrEqual(BitI, j))
return false;
if (V2IsSplat) {
if (!isUndefOrEqual(BitI1, NumElts))
return false;
} else {
if (!isUndefOrEqual(BitI1, j + NumElts))
return false;
}
}
}
return true;
}
/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKH.
static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
bool HasAVX2, bool V2IsSplat = false) {
unsigned NumElts = VT.getVectorNumElements();
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Unsupported vector type for unpckh");
if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
(!HasAVX2 || (NumElts != 16 && NumElts != 32)))
return false;
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
// independently on 128-bit lanes.
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
for (unsigned l = 0; l != NumLanes; ++l) {
for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
i != (l+1)*NumLaneElts; i += 2, ++j) {
int BitI = Mask[i];
int BitI1 = Mask[i+1];
if (!isUndefOrEqual(BitI, j))
return false;
if (V2IsSplat) {
if (isUndefOrEqual(BitI1, NumElts))
return false;
} else {
if (!isUndefOrEqual(BitI1, j+NumElts))
return false;
}
}
}
return true;
}
/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
/// <0, 0, 1, 1>
static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
bool HasAVX2) {
unsigned NumElts = VT.getVectorNumElements();
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Unsupported vector type for unpckh");
if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
(!HasAVX2 || (NumElts != 16 && NumElts != 32)))
return false;
// For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
// FIXME: Need a better way to get rid of this, there's no latency difference
// between UNPCKLPD and MOVDDUP, the later should always be checked first and
// the former later. We should also remove the "_undef" special mask.
if (NumElts == 4 && VT.getSizeInBits() == 256)
return false;
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
// independently on 128-bit lanes.
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
for (unsigned l = 0; l != NumLanes; ++l) {
for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
i != (l+1)*NumLaneElts;
i += 2, ++j) {
int BitI = Mask[i];
int BitI1 = Mask[i+1];
if (!isUndefOrEqual(BitI, j))
return false;
if (!isUndefOrEqual(BitI1, j))
return false;
}
}
return true;
}
/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
/// <2, 2, 3, 3>
static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
unsigned NumElts = VT.getVectorNumElements();
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Unsupported vector type for unpckh");
if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
(!HasAVX2 || (NumElts != 16 && NumElts != 32)))
return false;
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
// independently on 128-bit lanes.
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
for (unsigned l = 0; l != NumLanes; ++l) {
for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
i != (l+1)*NumLaneElts; i += 2, ++j) {
int BitI = Mask[i];
int BitI1 = Mask[i+1];
if (!isUndefOrEqual(BitI, j))
return false;
if (!isUndefOrEqual(BitI1, j))
return false;
}
}
return true;
}
/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSS,
/// MOVSD, and MOVD, i.e. setting the lowest element.
static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
if (VT.getVectorElementType().getSizeInBits() < 32)
return false;
if (VT.getSizeInBits() == 256)
return false;
unsigned NumElts = VT.getVectorNumElements();
if (!isUndefOrEqual(Mask[0], NumElts))
return false;
for (unsigned i = 1; i != NumElts; ++i)
if (!isUndefOrEqual(Mask[i], i))
return false;
return true;
}
/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
/// as permutations between 128-bit chunks or halves. As an example: this
/// shuffle bellow:
/// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
/// The first half comes from the second half of V1 and the second half from the
/// the second half of V2.
static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
if (!HasAVX || VT.getSizeInBits() != 256)
return false;
// The shuffle result is divided into half A and half B. In total the two
// sources have 4 halves, namely: C, D, E, F. The final values of A and
// B must come from C, D, E or F.
unsigned HalfSize = VT.getVectorNumElements()/2;
bool MatchA = false, MatchB = false;
// Check if A comes from one of C, D, E, F.
for (unsigned Half = 0; Half != 4; ++Half) {
if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
MatchA = true;
break;
}
}
// Check if B comes from one of C, D, E, F.
for (unsigned Half = 0; Half != 4; ++Half) {
if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
MatchB = true;
break;
}
}
return MatchA && MatchB;
}
/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
EVT VT = SVOp->getValueType(0);
unsigned HalfSize = VT.getVectorNumElements()/2;
unsigned FstHalf = 0, SndHalf = 0;
for (unsigned i = 0; i < HalfSize; ++i) {
if (SVOp->getMaskElt(i) > 0) {
FstHalf = SVOp->getMaskElt(i)/HalfSize;
break;
}
}
for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
if (SVOp->getMaskElt(i) > 0) {
SndHalf = SVOp->getMaskElt(i)/HalfSize;
break;
}
}
return (FstHalf | (SndHalf << 4));
}
/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
/// Note that VPERMIL mask matching is different depending whether theunderlying
/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
/// to the same elements of the low, but to the higher half of the source.
/// In VPERMILPD the two lanes could be shuffled independently of each other
/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
if (!HasAVX)
return false;
unsigned NumElts = VT.getVectorNumElements();
// Only match 256-bit with 32/64-bit types
if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
return false;
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned LaneSize = NumElts/NumLanes;
for (unsigned l = 0; l != NumElts; l += LaneSize) {
for (unsigned i = 0; i != LaneSize; ++i) {
if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
return false;
if (NumElts != 8 || l == 0)
continue;
// VPERMILPS handling
if (Mask[i] < 0)
continue;
if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
return false;
}
}
return true;
}
/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
/// of what x86 movss want. X86 movs requires the lowest element to be lowest
/// element of vector 2 and the other elements to come from vector 1 in order.
static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
bool V2IsSplat = false, bool V2IsUndef = false) {
unsigned NumOps = VT.getVectorNumElements();
if (VT.getSizeInBits() == 256)
return false;
if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
return false;
if (!isUndefOrEqual(Mask[0], 0))
return false;
for (unsigned i = 1; i != NumOps; ++i)
if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
(V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
(V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
return false;
return true;
}
/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
const X86Subtarget *Subtarget) {
if (!Subtarget->hasSSE3())
return false;
unsigned NumElems = VT.getVectorNumElements();
if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
(VT.getSizeInBits() == 256 && NumElems != 8))
return false;
// "i+1" is the value the indexed mask element must have
for (unsigned i = 0; i != NumElems; i += 2)
if (!isUndefOrEqual(Mask[i], i+1) ||
!isUndefOrEqual(Mask[i+1], i+1))
return false;
return true;
}
/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
const X86Subtarget *Subtarget) {
if (!Subtarget->hasSSE3())
return false;
unsigned NumElems = VT.getVectorNumElements();
if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
(VT.getSizeInBits() == 256 && NumElems != 8))
return false;
// "i" is the value the indexed mask element must have
for (unsigned i = 0; i != NumElems; i += 2)
if (!isUndefOrEqual(Mask[i], i) ||
!isUndefOrEqual(Mask[i+1], i))
return false;
return true;
}
/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to 256-bit
/// version of MOVDDUP.
static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
unsigned NumElts = VT.getVectorNumElements();
if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
return false;
for (unsigned i = 0; i != NumElts/2; ++i)
if (!isUndefOrEqual(Mask[i], 0))
return false;
for (unsigned i = NumElts/2; i != NumElts; ++i)
if (!isUndefOrEqual(Mask[i], NumElts/2))
return false;
return true;
}
/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to 128-bit
/// version of MOVDDUP.
static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
if (VT.getSizeInBits() != 128)
return false;
unsigned e = VT.getVectorNumElements() / 2;
for (unsigned i = 0; i != e; ++i)
if (!isUndefOrEqual(Mask[i], i))
return false;
for (unsigned i = 0; i != e; ++i)
if (!isUndefOrEqual(Mask[e+i], i))
return false;
return true;
}
/// isVEXTRACTF128Index - Return true if the specified
/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
/// suitable for input to VEXTRACTF128.
bool X86::isVEXTRACTF128Index(SDNode *N) {
if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
return false;
// The index should be aligned on a 128-bit boundary.
uint64_t Index =
cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
unsigned VL = N->getValueType(0).getVectorNumElements();
unsigned VBits = N->getValueType(0).getSizeInBits();
unsigned ElSize = VBits / VL;
bool Result = (Index * ElSize) % 128 == 0;
return Result;
}
/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
/// operand specifies a subvector insert that is suitable for input to
/// VINSERTF128.
bool X86::isVINSERTF128Index(SDNode *N) {
if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
return false;
// The index should be aligned on a 128-bit boundary.
uint64_t Index =
cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
unsigned VL = N->getValueType(0).getVectorNumElements();
unsigned VBits = N->getValueType(0).getSizeInBits();
unsigned ElSize = VBits / VL;
bool Result = (Index * ElSize) % 128 == 0;
return Result;
}
/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
/// Handles 128-bit and 256-bit.
static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
EVT VT = N->getValueType(0);
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Unsupported vector type for PSHUF/SHUFP");
// Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
// independently on 128-bit lanes.
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
assert((NumLaneElts == 2 || NumLaneElts == 4) &&
"Only supports 2 or 4 elements per lane");
unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
unsigned Mask = 0;
for (unsigned i = 0; i != NumElts; ++i) {
int Elt = N->getMaskElt(i);
if (Elt < 0) continue;
Elt %= NumLaneElts;
unsigned ShAmt = i << Shift;
if (ShAmt >= 8) ShAmt -= 8;
Mask |= Elt << ShAmt;
}
return Mask;
}
/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
unsigned Mask = 0;
// 8 nodes, but we only care about the last 4.
for (unsigned i = 7; i >= 4; --i) {
int Val = N->getMaskElt(i);
if (Val >= 0)
Mask |= (Val - 4);
if (i != 4)
Mask <<= 2;
}
return Mask;
}
/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
unsigned Mask = 0;
// 8 nodes, but we only care about the first 4.
for (int i = 3; i >= 0; --i) {
int Val = N->getMaskElt(i);
if (Val >= 0)
Mask |= Val;
if (i != 0)
Mask <<= 2;
}
return Mask;
}
/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
EVT VT = SVOp->getValueType(0);
unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
int Val = 0;
unsigned i;
for (i = 0; i != NumElts; ++i) {
Val = SVOp->getMaskElt(i);
if (Val >= 0)
break;
}
if (Val >= (int)NumElts)
Val -= NumElts - NumLaneElts;
assert(Val - i > 0 && "PALIGNR imm should be positive");
return (Val - i) * EltSize;
}
/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
/// instructions.
unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
uint64_t Index =
cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
EVT VecVT = N->getOperand(0).getValueType();
EVT ElVT = VecVT.getVectorElementType();
unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
return Index / NumElemsPerChunk;
}
/// getInsertVINSERTF128Immediate - Return the appropriate immediate
/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
/// instructions.
unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
llvm_unreachable("Illegal insert subvector for VINSERTF128");
uint64_t Index =
cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
EVT VecVT = N->getValueType(0);
EVT ElVT = VecVT.getVectorElementType();
unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
return Index / NumElemsPerChunk;
}
/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
/// Handles 256-bit.
static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
EVT VT = N->getValueType(0);
unsigned NumElts = VT.getVectorNumElements();
assert((VT.is256BitVector() && NumElts == 4) &&
"Unsupported vector type for VPERMQ/VPERMPD");
unsigned Mask = 0;
for (unsigned i = 0; i != NumElts; ++i) {
int Elt = N->getMaskElt(i);
if (Elt < 0)
continue;
Mask |= Elt << (i*2);
}
return Mask;
}
/// isZeroNode - Returns true if Elt is a constant zero or a floating point
/// constant +0.0.
bool X86::isZeroNode(SDValue Elt) {
return ((isa<ConstantSDNode>(Elt) &&
cast<ConstantSDNode>(Elt)->isNullValue()) ||
(isa<ConstantFPSDNode>(Elt) &&
cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
}
/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
/// their permute mask.
static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
SelectionDAG &DAG) {
EVT VT = SVOp->getValueType(0);
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> MaskVec;
for (unsigned i = 0; i != NumElems; ++i) {
int idx = SVOp->getMaskElt(i);
if (idx < 0)
MaskVec.push_back(idx);
else if (idx < (int)NumElems)
MaskVec.push_back(idx + NumElems);
else
MaskVec.push_back(idx - NumElems);
}
return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
SVOp->getOperand(0), &MaskVec[0]);
}
/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
/// match movhlps. The lower half elements should come from upper half of
/// V1 (and in order), and the upper half elements should come from the upper
/// half of V2 (and in order).
static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
if (VT.getSizeInBits() != 128)
return false;
if (VT.getVectorNumElements() != 4)
return false;
for (unsigned i = 0, e = 2; i != e; ++i)
if (!isUndefOrEqual(Mask[i], i+2))
return false;
for (unsigned i = 2; i != 4; ++i)
if (!isUndefOrEqual(Mask[i], i+4))
return false;
return true;
}
/// isScalarLoadToVector - Returns true if the node is a scalar load that
/// is promoted to a vector. It also returns the LoadSDNode by reference if
/// required.
static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
return false;
N = N->getOperand(0).getNode();
if (!ISD::isNON_EXTLoad(N))
return false;
if (LD)
*LD = cast<LoadSDNode>(N);
return true;
}
// Test whether the given value is a vector value which will be legalized
// into a load.
static bool WillBeConstantPoolLoad(SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
// Check for any non-constant elements.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
switch (N->getOperand(i).getNode()->getOpcode()) {
case ISD::UNDEF:
case ISD::ConstantFP:
case ISD::Constant:
break;
default:
return false;
}
// Vectors of all-zeros and all-ones are materialized with special
// instructions rather than being loaded.
return !ISD::isBuildVectorAllZeros(N) &&
!ISD::isBuildVectorAllOnes(N);
}
/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
/// match movlp{s|d}. The lower half elements should come from lower half of
/// V1 (and in order), and the upper half elements should come from the upper
/// half of V2 (and in order). And since V1 will become the source of the
/// MOVLP, it must be either a vector load or a scalar load to vector.
static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
ArrayRef<int> Mask, EVT VT) {
if (VT.getSizeInBits() != 128)
return false;
if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
return false;
// Is V2 is a vector load, don't do this transformation. We will try to use
// load folding shufps op.
if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
return false;
unsigned NumElems = VT.getVectorNumElements();
if (NumElems != 2 && NumElems != 4)
return false;
for (unsigned i = 0, e = NumElems/2; i != e; ++i)
if (!isUndefOrEqual(Mask[i], i))
return false;
for (unsigned i = NumElems/2; i != NumElems; ++i)
if (!isUndefOrEqual(Mask[i], i+NumElems))
return false;
return true;
}
/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
/// all the same.
static bool isSplatVector(SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
SDValue SplatValue = N->getOperand(0);
for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
if (N->getOperand(i) != SplatValue)
return false;
return true;
}
/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
/// to an zero vector.
/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
static bool isZeroShuffle(ShuffleVectorSDNode *N) {
SDValue V1 = N->getOperand(0);
SDValue V2 = N->getOperand(1);
unsigned NumElems = N->getValueType(0).getVectorNumElements();
for (unsigned i = 0; i != NumElems; ++i) {
int Idx = N->getMaskElt(i);
if (Idx >= (int)NumElems) {
unsigned Opc = V2.getOpcode();
if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
continue;
if (Opc != ISD::BUILD_VECTOR ||
!X86::isZeroNode(V2.getOperand(Idx-NumElems)))
return false;
} else if (Idx >= 0) {
unsigned Opc = V1.getOpcode();
if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
continue;
if (Opc != ISD::BUILD_VECTOR ||
!X86::isZeroNode(V1.getOperand(Idx)))
return false;
}
}
return true;
}
/// getZeroVector - Returns a vector of specified type with all zero elements.
///
static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
SelectionDAG &DAG, DebugLoc dl) {
assert(VT.isVector() && "Expected a vector type");
// Always build SSE zero vectors as <4 x i32> bitcasted
// to their dest type. This ensures they get CSE'd.
SDValue Vec;
if (VT.getSizeInBits() == 128) { // SSE
if (Subtarget->hasSSE2()) { // SSE2
SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
} else { // SSE1
SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
}
} else if (VT.getSizeInBits() == 256) { // AVX
if (Subtarget->hasAVX2()) { // AVX2
SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
} else {
// 256-bit logic and arithmetic instructions in AVX are all
// floating-point, no support for integer ops. Emit fp zeroed vectors.
SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
}
}
return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
}
/// getOnesVector - Returns a vector of specified type with all bits set.
/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
/// Then bitcast to their original type, ensuring they get CSE'd.
static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
DebugLoc dl) {
assert(VT.isVector() && "Expected a vector type");
assert((VT.is128BitVector() || VT.is256BitVector())
&& "Expected a 128-bit or 256-bit vector type");
SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
SDValue Vec;
if (VT.getSizeInBits() == 256) {
if (HasAVX2) { // AVX2
SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
} else { // AVX
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
Vec = Insert128BitVector(InsV, Vec,
DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
}
} else {
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
}
return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
}
/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
/// that point to V2 points to its first element.
static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
for (unsigned i = 0; i != NumElems; ++i) {
if (Mask[i] > (int)NumElems) {
Mask[i] = NumElems;
}
}
}
/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
/// operation of specified width.
static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
Mask.push_back(NumElems);
for (unsigned i = 1; i != NumElems; ++i)
Mask.push_back(i);
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
}
/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
Mask.push_back(i);
Mask.push_back(i + NumElems);
}
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
}
/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
unsigned Half = NumElems/2;
SmallVector<int, 8> Mask;
for (unsigned i = 0; i != Half; ++i) {
Mask.push_back(i + Half);
Mask.push_back(i + NumElems + Half);
}
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
}
// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
// a generic shuffle instruction because the target has no such instructions.
// Generate shuffles which repeat i16 and i8 several times until they can be
// represented by v4f32 and then be manipulated by target suported shuffles.
static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
EVT VT = V.getValueType();
int NumElems = VT.getVectorNumElements();
DebugLoc dl = V.getDebugLoc();
while (NumElems > 4) {
if (EltNo < NumElems/2) {
V = getUnpackl(DAG, dl, VT, V, V);
} else {
V = getUnpackh(DAG, dl, VT, V, V);
EltNo -= NumElems/2;
}
NumElems >>= 1;
}
return V;
}
/// getLegalSplat - Generate a legal splat with supported x86 shuffles
static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
EVT VT = V.getValueType();
DebugLoc dl = V.getDebugLoc();
assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
&& "Vector size not supported");
if (VT.getSizeInBits() == 128) {
V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
&SplatMask[0]);
} else {
// To use VPERMILPS to splat scalars, the second half of indicies must
// refer to the higher part, which is a duplication of the lower one,
// because VPERMILPS can only handle in-lane permutations.
int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
&SplatMask[0]);
}
return DAG.getNode(ISD::BITCAST, dl, VT, V);
}
/// PromoteSplat - Splat is promoted to target supported vector shuffles.
static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
EVT SrcVT = SV->getValueType(0);
SDValue V1 = SV->getOperand(0);
DebugLoc dl = SV->getDebugLoc();
int EltNo = SV->getSplatIndex();
int NumElems = SrcVT.getVectorNumElements();
unsigned Size = SrcVT.getSizeInBits();
assert(((Size == 128 && NumElems > 4) || Size == 256) &&
"Unknown how to promote splat for type");
// Extract the 128-bit part containing the splat element and update
// the splat element index when it refers to the higher register.
if (Size == 256) {
unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
if (Idx > 0)
EltNo -= NumElems/2;
}
// All i16 and i8 vector types can't be used directly by a generic shuffle
// instruction because the target has no such instruction. Generate shuffles
// which repeat i16 and i8 several times until they fit in i32, and then can
// be manipulated by target suported shuffles.
EVT EltVT = SrcVT.getVectorElementType();
if (EltVT == MVT::i8 || EltVT == MVT::i16)
V1 = PromoteSplati8i16(V1, DAG, EltNo);
// Recreate the 256-bit vector and place the same 128-bit vector
// into the low and high part. This is necessary because we want
// to use VPERM* to shuffle the vectors
if (Size == 256) {
SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
DAG.getConstant(0, MVT::i32), DAG, dl);
V1 = Insert128BitVector(InsV, V1,
DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
}
return getLegalSplat(DAG, V1, EltNo);
}
/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
/// vector of zero or undef vector. This produces a shuffle where the low
/// element of V2 is swizzled into the zero/undef vector, landing at element
/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
bool IsZero,
const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
EVT VT = V2.getValueType();
SDValue V1 = IsZero
? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 16> MaskVec;
for (unsigned i = 0; i != NumElems; ++i)
// If this is the insertion idx, put the low elt of V2 here.
MaskVec.push_back(i == Idx ? NumElems : i);
return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
}
/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
/// target specific opcode. Returns true if the Mask could be calculated.
/// Sets IsUnary to true if only uses one source.
static bool getTargetShuffleMask(SDNode *N, EVT VT,
SmallVectorImpl<int> &Mask, bool &IsUnary) {
unsigned NumElems = VT.getVectorNumElements();
SDValue ImmN;
IsUnary = false;
switch(N->getOpcode()) {
case X86ISD::SHUFP:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
break;
case X86ISD::UNPCKH:
DecodeUNPCKHMask(VT, Mask);
break;
case X86ISD::UNPCKL:
DecodeUNPCKLMask(VT, Mask);
break;
case X86ISD::MOVHLPS:
DecodeMOVHLPSMask(NumElems, Mask);
break;
case X86ISD::MOVLHPS:
DecodeMOVLHPSMask(NumElems, Mask);
break;
case X86ISD::PSHUFD:
case X86ISD::VPERMILP:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
break;
case X86ISD::PSHUFHW:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
break;
case X86ISD::PSHUFLW:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
break;
case X86ISD::MOVSS:
case X86ISD::MOVSD: {
// The index 0 always comes from the first element of the second source,
// this is why MOVSS and MOVSD are used in the first place. The other
// elements come from the other positions of the first source vector
Mask.push_back(NumElems);
for (unsigned i = 1; i != NumElems; ++i) {
Mask.push_back(i);
}
break;
}
case X86ISD::VPERM2X128:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
if (Mask.empty()) return false;
break;
case X86ISD::MOVDDUP:
case X86ISD::MOVLHPD:
case X86ISD::MOVLPD:
case X86ISD::MOVLPS:
case X86ISD::MOVSHDUP:
case X86ISD::MOVSLDUP:
case X86ISD::PALIGN:
// Not yet implemented
return false;
default: llvm_unreachable("unknown target shuffle node");
}
return true;
}
/// getShuffleScalarElt - Returns the scalar element that will make up the ith
/// element of the result of the vector shuffle.
static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
unsigned Depth) {
if (Depth == 6)
return SDValue(); // Limit search depth.
SDValue V = SDValue(N, 0);
EVT VT = V.getValueType();
unsigned Opcode = V.getOpcode();
// Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
int Elt = SV->getMaskElt(Index);
if (Elt < 0)
return DAG.getUNDEF(VT.getVectorElementType());
unsigned NumElems = VT.getVectorNumElements();
SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
: SV->getOperand(1);
return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
}
// Recurse into target specific vector shuffles to find scalars.
if (isTargetShuffle(Opcode)) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 16> ShuffleMask;
SDValue ImmN;
bool IsUnary;
if (!getTargetShuffleMask(N, VT, ShuffleMask, IsUnary))
return SDValue();
int Elt = ShuffleMask[Index];
if (Elt < 0)
return DAG.getUNDEF(VT.getVectorElementType());
SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
: N->getOperand(1);
return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
Depth+1);
}
// Actual nodes that may contain scalar elements
if (Opcode == ISD::BITCAST) {
V = V.getOperand(0);
EVT SrcVT = V.getValueType();
unsigned NumElems = VT.getVectorNumElements();
if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
return SDValue();
}
if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
return (Index == 0) ? V.getOperand(0)
: DAG.getUNDEF(VT.getVectorElementType());
if (V.getOpcode() == ISD::BUILD_VECTOR)
return V.getOperand(Index);
return SDValue();
}
/// getNumOfConsecutiveZeros - Return the number of elements of a vector
/// shuffle operation which come from a consecutively from a zero. The
/// search can start in two different directions, from left or right.
static
unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
bool ZerosFromLeft, SelectionDAG &DAG) {
unsigned i;
for (i = 0; i != NumElems; ++i) {
unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
if (!(Elt.getNode() &&
(Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
break;
}
return i;
}
/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
/// correspond consecutively to elements from one of the vector operands,
/// starting from its index OpIdx. Also tell OpNum which source vector operand.
static
bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
unsigned MaskI, unsigned MaskE, unsigned OpIdx,
unsigned NumElems, unsigned &OpNum) {
bool SeenV1 = false;
bool SeenV2 = false;
for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
int Idx = SVOp->getMaskElt(i);
// Ignore undef indicies
if (Idx < 0)
continue;
if (Idx < (int)NumElems)
SeenV1 = true;
else
SeenV2 = true;
// Only accept consecutive elements from the same vector
if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
return false;
}
OpNum = SeenV1 ? 0 : 1;
return true;
}
/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
/// logical left shift of a vector.
static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
false /* check zeros from right */, DAG);
unsigned OpSrc;
if (!NumZeros)
return false;
// Considering the elements in the mask that are not consecutive zeros,
// check if they consecutively come from only one of the source vectors.
//
// V1 = {X, A, B, C} 0
// \ \ \ /
// vector_shuffle V1, V2 <1, 2, 3, X>
//
if (!isShuffleMaskConsecutive(SVOp,
0, // Mask Start Index
NumElems-NumZeros, // Mask End Index(exclusive)
NumZeros, // Where to start looking in the src vector
NumElems, // Number of elements in vector
OpSrc)) // Which source operand ?
return false;
isLeft = false;
ShAmt = NumZeros;
ShVal = SVOp->getOperand(OpSrc);
return true;
}
/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
/// logical left shift of a vector.
static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
true /* check zeros from left */, DAG);
unsigned OpSrc;
if (!NumZeros)
return false;
// Considering the elements in the mask that are not consecutive zeros,
// check if they consecutively come from only one of the source vectors.
//
// 0 { A, B, X, X } = V2
// / \ / /
// vector_shuffle V1, V2 <X, X, 4, 5>
//
if (!isShuffleMaskConsecutive(SVOp,
NumZeros, // Mask Start Index
NumElems, // Mask End Index(exclusive)
0, // Where to start looking in the src vector
NumElems, // Number of elements in vector
OpSrc)) // Which source operand ?
return false;
isLeft = true;
ShAmt = NumZeros;
ShVal = SVOp->getOperand(OpSrc);
return true;
}
/// isVectorShift - Returns true if the shuffle can be implemented as a
/// logical left or right shift of a vector.
static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
// Although the logic below support any bitwidth size, there are no
// shift instructions which handle more than 128-bit vectors.
if (SVOp->getValueType(0).getSizeInBits() > 128)
return false;
if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
return true;
return false;
}
/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
///
static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG,
const X86Subtarget* Subtarget,
const TargetLowering &TLI) {
if (NumNonZero > 8)
return SDValue();
DebugLoc dl = Op.getDebugLoc();
SDValue V(0, 0);
bool First = true;
for (unsigned i = 0; i < 16; ++i) {
bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
if (ThisIsNonZero && First) {
if (NumZero)
V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
else
V = DAG.getUNDEF(MVT::v8i16);
First = false;
}
if ((i & 1) != 0) {
SDValue ThisElt(0, 0), LastElt(0, 0);
bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
if (LastIsNonZero) {
LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
MVT::i16, Op.getOperand(i-1));
}
if (ThisIsNonZero) {
ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
ThisElt, DAG.getConstant(8, MVT::i8));
if (LastIsNonZero)
ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
} else
ThisElt = LastElt;
if (ThisElt.getNode())
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
DAG.getIntPtrConstant(i/2));
}
}
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
}
/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
///
static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG,
const X86Subtarget* Subtarget,
const TargetLowering &TLI) {
if (NumNonZero > 4)
return SDValue();
DebugLoc dl = Op.getDebugLoc();
SDValue V(0, 0);
bool First = true;
for (unsigned i = 0; i < 8; ++i) {
bool isNonZero = (NonZeros & (1 << i)) != 0;
if (isNonZero) {
if (First) {
if (NumZero)
V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
else
V = DAG.getUNDEF(MVT::v8i16);
First = false;
}
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
MVT::v8i16, V, Op.getOperand(i),
DAG.getIntPtrConstant(i));
}
}
return V;
}
/// getVShift - Return a vector logical shift node.
///
static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
unsigned NumBits, SelectionDAG &DAG,
const TargetLowering &TLI, DebugLoc dl) {
assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
EVT ShVT = MVT::v2i64;
unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getNode(Opc, dl, ShVT, SrcOp,
DAG.getConstant(NumBits,
TLI.getShiftAmountTy(SrcOp.getValueType()))));
}
SDValue
X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
SelectionDAG &DAG) const {
// Check if the scalar load can be widened into a vector load. And if
// the address is "base + cst" see if the cst can be "absorbed" into
// the shuffle mask.
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
SDValue Ptr = LD->getBasePtr();
if (!ISD::isNormalLoad(LD) || LD->isVolatile())
return SDValue();
EVT PVT = LD->getValueType(0);
if (PVT != MVT::i32 && PVT != MVT::f32)
return SDValue();
int FI = -1;
int64_t Offset = 0;
if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
FI = FINode->getIndex();
Offset = 0;
} else if (DAG.isBaseWithConstantOffset(Ptr) &&
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
Offset = Ptr.getConstantOperandVal(1);
Ptr = Ptr.getOperand(0);
} else {
return SDValue();
}
// FIXME: 256-bit vector instructions don't require a strict alignment,
// improve this code to support it better.
unsigned RequiredAlign = VT.getSizeInBits()/8;
SDValue Chain = LD->getChain();
// Make sure the stack object alignment is at least 16 or 32.
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
if (MFI->isFixedObjectIndex(FI)) {
// Can't change the alignment. FIXME: It's possible to compute
// the exact stack offset and reference FI + adjust offset instead.
// If someone *really* cares about this. That's the way to implement it.
return SDValue();
} else {
MFI->setObjectAlignment(FI, RequiredAlign);
}
}
// (Offset % 16 or 32) must be multiple of 4. Then address is then
// Ptr + (Offset & ~15).
if (Offset < 0)
return SDValue();
if ((Offset % RequiredAlign) & 3)
return SDValue();
int64_t StartOffset = Offset & ~(RequiredAlign-1);
if (StartOffset)
Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
int EltNo = (Offset - StartOffset) >> 2;
int NumElems = VT.getVectorNumElements();
EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
LD->getPointerInfo().getWithOffset(StartOffset),
false, false, false, 0);
SmallVector<int, 8> Mask;
for (int i = 0; i < NumElems; ++i)
Mask.push_back(EltNo);
return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
}
return SDValue();
}
/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
/// vector of type 'VT', see if the elements can be replaced by a single large
/// load which has the same value as a build_vector whose operands are 'elts'.
///
/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
///
/// FIXME: we'd also like to handle the case where the last elements are zero
/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
/// There's even a handy isZeroNode for that purpose.
static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
DebugLoc &DL, SelectionDAG &DAG) {
EVT EltVT = VT.getVectorElementType();
unsigned NumElems = Elts.size();
LoadSDNode *LDBase = NULL;
unsigned LastLoadedElt = -1U;
// For each element in the initializer, see if we've found a load or an undef.
// If we don't find an initial load element, or later load elements are
// non-consecutive, bail out.
for (unsigned i = 0; i < NumElems; ++i) {
SDValue Elt = Elts[i];
if (!Elt.getNode() ||
(Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
return SDValue();
if (!LDBase) {
if (Elt.getNode()->getOpcode() == ISD::UNDEF)
return SDValue();
LDBase = cast<LoadSDNode>(Elt.getNode());
LastLoadedElt = i;
continue;
}
if (Elt.getOpcode() == ISD::UNDEF)
continue;
LoadSDNode *LD = cast<LoadSDNode>(Elt);
if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
return SDValue();
LastLoadedElt = i;
}
// If we have found an entire vector of loads and undefs, then return a large
// load of the entire vector width starting at the base pointer. If we found
// consecutive loads for the low half, generate a vzext_load node.
if (LastLoadedElt == NumElems - 1) {
if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
LDBase->getPointerInfo(),
LDBase->isVolatile(), LDBase->isNonTemporal(),
LDBase->isInvariant(), 0);
return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
LDBase->getPointerInfo(),
LDBase->isVolatile(), LDBase->isNonTemporal(),
LDBase->isInvariant(), LDBase->getAlignment());
} else if (NumElems == 4 && LastLoadedElt == 1 &&
DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
SDValue ResNode =
DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
LDBase->getPointerInfo(),
LDBase->getAlignment(),
false/*isVolatile*/, true/*ReadMem*/,
false/*WriteMem*/);
return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
}
return SDValue();
}
/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
/// to generate a splat value for the following cases:
/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
/// a scalar load, or a constant.
/// The VBROADCAST node is returned when a pattern is found,
/// or SDValue() otherwise.
SDValue
X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
if (!Subtarget->hasAVX())
return SDValue();
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
SDValue Ld;
bool ConstSplatVal;
switch (Op.getOpcode()) {
default:
// Unknown pattern found.
return SDValue();
case ISD::BUILD_VECTOR: {
// The BUILD_VECTOR node must be a splat.
if (!isSplatVector(Op.getNode()))
return SDValue();
Ld = Op.getOperand(0);
ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
Ld.getOpcode() == ISD::ConstantFP);
// The suspected load node has several users. Make sure that all
// of its users are from the BUILD_VECTOR node.
// Constants may have multiple users.
if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
return SDValue();
break;
}
case ISD::VECTOR_SHUFFLE: {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
// Shuffles must have a splat mask where the first element is
// broadcasted.
if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
return SDValue();
SDValue Sc = Op.getOperand(0);
if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
return SDValue();
Ld = Sc.getOperand(0);
ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
Ld.getOpcode() == ISD::ConstantFP);
// The scalar_to_vector node and the suspected
// load node must have exactly one user.
// Constants may have multiple users.
if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
return SDValue();
break;
}
}
bool Is256 = VT.getSizeInBits() == 256;
bool Is128 = VT.getSizeInBits() == 128;
// Handle the broadcasting a single constant scalar from the constant pool
// into a vector. On Sandybridge it is still better to load a constant vector
// from the constant pool and not to broadcast it from a scalar.
if (ConstSplatVal && Subtarget->hasAVX2()) {
EVT CVT = Ld.getValueType();
assert(!CVT.isVector() && "Must not broadcast a vector type");
unsigned ScalarSize = CVT.getSizeInBits();
if ((Is256 && (ScalarSize == 32 || ScalarSize == 64)) ||
(Is128 && (ScalarSize == 32))) {
const Constant *C = 0;
if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
C = CI->getConstantIntValue();
else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
C = CF->getConstantFPValue();
assert(C && "Invalid constant type");
SDValue CP = DAG.getConstantPool(C, getPointerTy());
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(),
false, false, false, Alignment);
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
}
}
// The scalar source must be a normal load.
if (!ISD::isNormalLoad(Ld.getNode()))
return SDValue();
// Reject loads that have uses of the chain result
if (Ld->hasAnyUseOfValue(1))
return SDValue();
unsigned ScalarSize = Ld.getValueType().getSizeInBits();
// VBroadcast to YMM
if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
// VBroadcast to XMM
if (Is128 && (ScalarSize == 32))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
// The integer check is needed for the 64-bit into 128-bit so it doesn't match
// double since there is vbroadcastsd xmm
if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
// VBroadcast to YMM
if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
// VBroadcast to XMM
if (Is128 && (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
}
// Unsupported broadcast.
return SDValue();
}
SDValue
X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
EVT VT = Op.getValueType();
EVT ExtVT = VT.getVectorElementType();
unsigned NumElems = Op.getNumOperands();
// Vectors containing all zeros can be matched by pxor and xorps later
if (ISD::isBuildVectorAllZeros(Op.getNode())) {
// Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
// and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
if (VT == MVT::v4i32 || VT == MVT::v8i32)
return Op;
return getZeroVector(VT, Subtarget, DAG, dl);
}
// Vectors containing all ones can be matched by pcmpeqd on 128-bit width
// vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
// vpcmpeqd on 256-bit vectors.
if (ISD::isBuildVectorAllOnes(Op.getNode())) {
if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
return Op;
return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
}
SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
if (Broadcast.getNode())
return Broadcast;
unsigned EVTBits = ExtVT.getSizeInBits();
unsigned NumZero = 0;
unsigned NumNonZero = 0;
unsigned NonZeros = 0;
bool IsAllConstants = true;
SmallSet<SDValue, 8> Values;
for (unsigned i = 0; i < NumElems; ++i) {
SDValue Elt = Op.getOperand(i);
if (Elt.getOpcode() == ISD::UNDEF)
continue;
Values.insert(Elt);
if (Elt.getOpcode() != ISD::Constant &&
Elt.getOpcode() != ISD::ConstantFP)
IsAllConstants = false;
if (X86::isZeroNode(Elt))
NumZero++;
else {
NonZeros |= (1 << i);
NumNonZero++;
}
}
// All undef vector. Return an UNDEF. All zero vectors were handled above.
if (NumNonZero == 0)
return DAG.getUNDEF(VT);
// Special case for single non-zero, non-undef, element.
if (NumNonZero == 1) {
unsigned Idx = CountTrailingZeros_32(NonZeros);
SDValue Item = Op.getOperand(Idx);
// If this is an insertion of an i64 value on x86-32, and if the top bits of
// the value are obviously zero, truncate the value to i32 and do the
// insertion that way. Only do this if the value is non-constant or if the
// value is a constant being inserted into element 0. It is cheaper to do
// a constant pool load than it is to do a movd + shuffle.
if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
(!IsAllConstants || Idx == 0)) {
if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
// Handle SSE only.
assert(VT == MVT::v2i64 && "Expected an SSE value type!");
EVT VecVT = MVT::v4i32;
unsigned VecElts = 4;
// Truncate the value (which may itself be a constant) to i32, and
// convert it to a vector with movd (S2V+shuffle to zero extend).
Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
// Now we have our 32-bit value zero extended in the low element of
// a vector. If Idx != 0, swizzle it into place.
if (Idx != 0) {
SmallVector<int, 4> Mask;
Mask.push_back(Idx);
for (unsigned i = 1; i != VecElts; ++i)
Mask.push_back(i);
Item = DAG.getVectorShuffle(VecVT, dl, Item,
DAG.getUNDEF(Item.getValueType()),
&Mask[0]);
}
return DAG.getNode(ISD::BITCAST, dl, VT, Item);
}
}
// If we have a constant or non-constant insertion into the low element of
// a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
// the rest of the elements. This will be matched as movd/movq/movss/movsd
// depending on what the source datatype is.
if (Idx == 0) {
if (NumZero == 0)
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
(ExtVT == MVT::i64 && Subtarget->is64Bit())) {
if (VT.getSizeInBits() == 256) {
SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
Item, DAG.getIntPtrConstant(0));
}
assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
// Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
}
if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
if (VT.getSizeInBits() == 256) {
SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
DAG, dl);
} else {
assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
}
return DAG.getNode(ISD::BITCAST, dl, VT, Item);
}
}
// Is it a vector logical left shift?
if (NumElems == 2 && Idx == 1 &&
X86::isZeroNode(Op.getOperand(0)) &&
!X86::isZeroNode(Op.getOperand(1))) {
unsigned NumBits = VT.getSizeInBits();
return getVShift(true, VT,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
VT, Op.getOperand(1)),
NumBits/2, DAG, *this, dl);
}
if (IsAllConstants) // Otherwise, it's better to do a constpool load.
return SDValue();
// Otherwise, if this is a vector with i32 or f32 elements, and the element
// is a non-constant being inserted into an element other than the low one,
// we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
// movd/movss) to move this into the low element, then shuffle it into
// place.
if (EVTBits == 32) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
// Turn it into a shuffle of zero and zero-extended scalar to vector.
Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
SmallVector<int, 8> MaskVec;
for (unsigned i = 0; i < NumElems; i++)
MaskVec.push_back(i == Idx ? 0 : 1);
return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
}
}
// Splat is obviously ok. Let legalizer expand it to a shuffle.
if (Values.size() == 1) {
if (EVTBits == 32) {
// Instead of a shuffle like this:
// shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
// Check if it's possible to issue this instead.
// shuffle (vload ptr)), undef, <1, 1, 1, 1>
unsigned Idx = CountTrailingZeros_32(NonZeros);
SDValue Item = Op.getOperand(Idx);
if (Op.getNode()->isOnlyUserOf(Item.getNode()))
return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
}
return SDValue();
}
// A vector full of immediates; various special cases are already
// handled, so this is best done with a single constant-pool load.
if (IsAllConstants)
return SDValue();
// For AVX-length vectors, build the individual 128-bit pieces and use
// shuffles to put them in place.
if (VT.getSizeInBits() == 256) {
SmallVector<SDValue, 32> V;
for (unsigned i = 0; i != NumElems; ++i)
V.push_back(Op.getOperand(i));
EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
// Build both the lower and upper subvector.
SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
NumElems/2);
// Recreate the wider vector with the lower and upper part.
SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
DAG.getConstant(0, MVT::i32), DAG, dl);
return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
DAG, dl);
}
// Let legalizer expand 2-wide build_vectors.
if (EVTBits == 64) {
if (NumNonZero == 1) {
// One half is zero or undef.
unsigned Idx = CountTrailingZeros_32(NonZeros);
SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
Op.getOperand(Idx));
return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
}
return SDValue();
}
// If element VT is < 32 bits, convert it to inserts into a zero vector.
if (EVTBits == 8 && NumElems == 16) {
SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
Subtarget, *this);
if (V.getNode()) return V;
}
if (EVTBits == 16 && NumElems == 8) {
SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
Subtarget, *this);
if (V.getNode()) return V;
}
// If element VT is == 32 bits, turn it into a number of shuffles.
SmallVector<SDValue, 8> V(NumElems);
if (NumElems == 4 && NumZero > 0) {
for (unsigned i = 0; i < 4; ++i) {
bool isZero = !(NonZeros & (1 << i));
if (isZero)
V[i] = getZeroVector(VT, Subtarget, DAG, dl);
else
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
}
for (unsigned i = 0; i < 2; ++i) {
switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
default: break;
case 0:
V[i] = V[i*2]; // Must be a zero vector.
break;
case 1:
V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
break;
case 2:
V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
break;
case 3:
V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
break;
}
}
bool Reverse1 = (NonZeros & 0x3) == 2;
bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
int MaskVec[] = {
Reverse1 ? 1 : 0,
Reverse1 ? 0 : 1,
static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
static_cast<int>(Reverse2 ? NumElems : NumElems+1)
};
return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
}
if (Values.size() > 1 && VT.getSizeInBits() == 128) {
// Check for a build vector of consecutive loads.
for (unsigned i = 0; i < NumElems; ++i)
V[i] = Op.getOperand(i);
// Check for elements which are consecutive loads.
SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
if (LD.getNode())
return LD;
// For SSE 4.1, use insertps to put the high elements into the low element.
if (getSubtarget()->hasSSE41()) {
SDValue Result;
if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
else
Result = DAG.getUNDEF(VT);
for (unsigned i = 1; i < NumElems; ++i) {
if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
Op.getOperand(i), DAG.getIntPtrConstant(i));
}
return Result;
}
// Otherwise, expand into a number of unpckl*, start by extending each of
// our (non-undef) elements to the full vector width with the element in the
// bottom slot of the vector (which generates no code for SSE).
for (unsigned i = 0; i < NumElems; ++i) {
if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
else
V[i] = DAG.getUNDEF(VT);
}
// Next, we iteratively mix elements, e.g. for v4f32:
// Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
// : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
// Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
unsigned EltStride = NumElems >> 1;
while (EltStride != 0) {
for (unsigned i = 0; i < EltStride; ++i) {
// If V[i+EltStride] is undef and this is the first round of mixing,
// then it is safe to just drop this shuffle: V[i] is already in the
// right place, the one element (since it's the first round) being
// inserted as undef can be dropped. This isn't safe for successive
// rounds because they will permute elements within both vectors.
if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
EltStride == NumElems/2)
continue;
V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
}
EltStride >>= 1;
}
return V[0];
}
return SDValue();
}
// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
// them in a MMX register. This is better than doing a stack convert.
static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
EVT ResVT = Op.getValueType();
assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
int Mask[2];
SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
InVec = Op.getOperand(1);
if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
unsigned NumElts = ResVT.getVectorNumElements();
VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
} else {
InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
Mask[0] = 0; Mask[1] = 2;
VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
}
return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
}
// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
// to create 256-bit vectors from two other 128-bit ones.
static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
EVT ResVT = Op.getValueType();
assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
unsigned NumElems = ResVT.getVectorNumElements();
SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
DAG.getConstant(0, MVT::i32), DAG, dl);
return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
DAG, dl);
}
SDValue
X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
EVT ResVT = Op.getValueType();
assert(Op.getNumOperands() == 2);
assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
"Unsupported CONCAT_VECTORS for value type");
// We support concatenate two MMX registers and place them in a MMX register.
// This is better than doing a stack convert.
if (ResVT.is128BitVector())
return LowerMMXCONCAT_VECTORS(Op, DAG);
// 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
// from two other 128-bit ones.
return LowerAVXCONCAT_VECTORS(Op, DAG);
}
// Try to lower a shuffle node into a simple blend instruction.
static SDValue LowerVECTOR_SHUFFLEtoBlend(SDValue Op,
const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
DebugLoc dl = SVOp->getDebugLoc();
EVT VT = Op.getValueType();
EVT InVT = V1.getValueType();
int MaskSize = VT.getVectorNumElements();
int InSize = InVT.getVectorNumElements();
if (!Subtarget->hasSSE41())
return SDValue();
if (MaskSize != InSize)
return SDValue();
int ISDNo = 0;
MVT OpTy;
switch (VT.getSimpleVT().SimpleTy) {
default: return SDValue();
case MVT::v8i16:
ISDNo = X86ISD::BLENDPW;
OpTy = MVT::v8i16;
break;
case MVT::v4i32:
case MVT::v4f32:
ISDNo = X86ISD::BLENDPS;
OpTy = MVT::v4f32;
break;
case MVT::v2i64:
case MVT::v2f64:
ISDNo = X86ISD::BLENDPD;
OpTy = MVT::v2f64;
break;
case MVT::v8i32:
case MVT::v8f32:
if (!Subtarget->hasAVX())
return SDValue();
ISDNo = X86ISD::BLENDPS;
OpTy = MVT::v8f32;
break;
case MVT::v4i64:
case MVT::v4f64:
if (!Subtarget->hasAVX())
return SDValue();
ISDNo = X86ISD::BLENDPD;
OpTy = MVT::v4f64;
break;
case MVT::v16i16:
if (!Subtarget->hasAVX2())
return SDValue();
ISDNo = X86ISD::BLENDPW;
OpTy = MVT::v16i16;
break;
}
assert(ISDNo && "Invalid Op Number");
unsigned MaskVals = 0;
for (int i = 0; i < MaskSize; ++i) {
int EltIdx = SVOp->getMaskElt(i);
if (EltIdx == i || EltIdx == -1)
MaskVals |= (1<<i);
else if (EltIdx == (i + MaskSize))
continue; // Bit is set to zero;
else return SDValue();
}
V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
SDValue Ret = DAG.getNode(ISDNo, dl, OpTy, V1, V2,
DAG.getConstant(MaskVals, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
}
// v8i16 shuffles - Prefer shuffles in the following order:
// 1. [all] pshuflw, pshufhw, optional move
// 2. [ssse3] 1 x pshufb
// 3. [ssse3] 2 x pshufb + 1 x por
// 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
SDValue
X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
SelectionDAG &DAG) const {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
DebugLoc dl = SVOp->getDebugLoc();
SmallVector<int, 8> MaskVals;
// Determine if more than 1 of the words in each of the low and high quadwords
// of the result come from the same quadword of one of the two inputs. Undef
// mask values count as coming from any quadword, for better codegen.
unsigned LoQuad[] = { 0, 0, 0, 0 };
unsigned HiQuad[] = { 0, 0, 0, 0 };
std::bitset<4> InputQuads;
for (unsigned i = 0; i < 8; ++i) {
unsigned *Quad = i < 4 ? LoQuad : HiQuad;
int EltIdx = SVOp->getMaskElt(i);
MaskVals.push_back(EltIdx);
if (EltIdx < 0) {
++Quad[0];
++Quad[1];
++Quad[2];
++Quad[3];
continue;
}
++Quad[EltIdx / 4];
InputQuads.set(EltIdx / 4);
}
int BestLoQuad = -1;
unsigned MaxQuad = 1;
for (unsigned i = 0; i < 4; ++i) {
if (LoQuad[i] > MaxQuad) {
BestLoQuad = i;
MaxQuad = LoQuad[i];
}
}
int BestHiQuad = -1;
MaxQuad = 1;
for (unsigned i = 0; i < 4; ++i) {
if (HiQuad[i] > MaxQuad) {
BestHiQuad = i;
MaxQuad = HiQuad[i];
}
}
// For SSSE3, If all 8 words of the result come from only 1 quadword of each
// of the two input vectors, shuffle them into one input vector so only a
// single pshufb instruction is necessary. If There are more than 2 input
// quads, disable the next transformation since it does not help SSSE3.
bool V1Used = InputQuads[0] || InputQuads[1];
bool V2Used = InputQuads[2] || InputQuads[3];
if (Subtarget->hasSSSE3()) {
if (InputQuads.count() == 2 && V1Used && V2Used) {
BestLoQuad = InputQuads[0] ? 0 : 1;
BestHiQuad = InputQuads[2] ? 2 : 3;
}
if (InputQuads.count() > 2) {
BestLoQuad = -1;
BestHiQuad = -1;
}
}
// If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
// the shuffle mask. If a quad is scored as -1, that means that it contains
// words from all 4 input quadwords.
SDValue NewV;
if (BestLoQuad >= 0 || BestHiQuad >= 0) {
int MaskV[] = {
BestLoQuad < 0 ? 0 : BestLoQuad,
BestHiQuad < 0 ? 1 : BestHiQuad
};
NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
// Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
// source words for the shuffle, to aid later transformations.
bool AllWordsInNewV = true;
bool InOrder[2] = { true, true };
for (unsigned i = 0; i != 8; ++i) {
int idx = MaskVals[i];
if (idx != (int)i)
InOrder[i/4] = false;
if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
continue;
AllWordsInNewV = false;
break;
}
bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
if (AllWordsInNewV) {
for (int i = 0; i != 8; ++i) {
int idx = MaskVals[i];
if (idx < 0)
continue;
idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
if ((idx != i) && idx < 4)
pshufhw = false;
if ((idx != i) && idx > 3)
pshuflw = false;
}
V1 = NewV;
V2Used = false;
BestLoQuad = 0;
BestHiQuad = 1;
}
// If we've eliminated the use of V2, and the new mask is a pshuflw or
// pshufhw, that's as cheap as it gets. Return the new shuffle.
if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
unsigned TargetMask = 0;
NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
getShufflePSHUFLWImmediate(SVOp);
V1 = NewV.getOperand(0);
return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
}
}
// If we have SSSE3, and all words of the result are from 1 input vector,
// case 2 is generated, otherwise case 3 is generated. If no SSSE3
// is present, fall back to case 4.
if (Subtarget->hasSSSE3()) {
SmallVector<SDValue,16> pshufbMask;
// If we have elements from both input vectors, set the high bit of the
// shuffle mask element to zero out elements that come from V2 in the V1
// mask, and elements that come from V1 in the V2 mask, so that the two
// results can be OR'd together.
bool TwoInputs = V1Used && V2Used;
for (unsigned i = 0; i != 8; ++i) {
int EltIdx = MaskVals[i] * 2;
if (TwoInputs && (EltIdx >= 16)) {
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
continue;
}
pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
}
V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
DAG.getNode(ISD::BUILD_VECTOR, dl,
MVT::v16i8, &pshufbMask[0], 16));
if (!TwoInputs)
return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
// Calculate the shuffle mask for the second input, shuffle it, and
// OR it with the first shuffled input.
pshufbMask.clear();
for (unsigned i = 0; i != 8; ++i) {
int EltIdx = MaskVals[i] * 2;
if (EltIdx < 16) {
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
continue;
}
pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
}
V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
DAG.getNode(ISD::BUILD_VECTOR, dl,
MVT::v16i8, &pshufbMask[0], 16));
V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
}
// If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
// and update MaskVals with new element order.
std::bitset<8> InOrder;
if (BestLoQuad >= 0) {
int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
for (int i = 0; i != 4; ++i) {
int idx = MaskVals[i];
if (idx < 0) {
InOrder.set(i);
} else if ((idx / 4) == BestLoQuad) {
MaskV[i] = idx & 3;
InOrder.set(i);
}
}
NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
&MaskV[0]);
if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
NewV.getOperand(0),
getShufflePSHUFLWImmediate(SVOp), DAG);
}
}
// If BestHi >= 0, generate a pshufhw to put the high elements in order,
// and update MaskVals with the new element order.
if (BestHiQuad >= 0) {
int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
for (unsigned i = 4; i != 8; ++i) {
int idx = MaskVals[i];
if (idx < 0) {
InOrder.set(i);
} else if ((idx / 4) == BestHiQuad) {
MaskV[i] = (idx & 3) + 4;
InOrder.set(i);
}
}
NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
&MaskV[0]);
if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
NewV.getOperand(0),
getShufflePSHUFHWImmediate(SVOp), DAG);
}
}
// In case BestHi & BestLo were both -1, which means each quadword has a word
// from each of the four input quadwords, calculate the InOrder bitvector now
// before falling through to the insert/extract cleanup.
if (BestLoQuad == -1 && BestHiQuad == -1) {
NewV = V1;
for (int i = 0; i != 8; ++i)
if (MaskVals[i] < 0 || MaskVals[i] == i)
InOrder.set(i);
}
// The other elements are put in the right place using pextrw and pinsrw.
for (unsigned i = 0; i != 8; ++i) {
if (InOrder[i])
continue;
int EltIdx = MaskVals[i];
if (EltIdx < 0)
continue;
SDValue ExtOp = (EltIdx < 8)
? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
DAG.getIntPtrConstant(EltIdx))
: DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
DAG.getIntPtrConstant(EltIdx - 8));
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
DAG.getIntPtrConstant(i));
}
return NewV;
}
// v16i8 shuffles - Prefer shuffles in the following order:
// 1. [ssse3] 1 x pshufb
// 2. [ssse3] 2 x pshufb + 1 x por
// 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
static
SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
SelectionDAG &DAG,
const X86TargetLowering &TLI) {
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
DebugLoc dl = SVOp->getDebugLoc();
ArrayRef<int> MaskVals = SVOp->getMask();
// If we have SSSE3, case 1 is generated when all result bytes come from
// one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
// present, fall back to case 3.
// FIXME: kill V2Only once shuffles are canonizalized by getNode.
bool V1Only = true;
bool V2Only = true;
for (unsigned i = 0; i < 16; ++i) {
int EltIdx = MaskVals[i];
if (EltIdx < 0)
continue;
if (EltIdx < 16)
V2Only = false;
else
V1Only = false;
}
// If SSSE3, use 1 pshufb instruction per vector with elements in the result.
if (TLI.getSubtarget()->hasSSSE3()) {
SmallVector<SDValue,16> pshufbMask;
// If all result elements are from one input vector, then only translate
// undef mask values to 0x80 (zero out result) in the pshufb mask.
//
// Otherwise, we have elements from both input vectors, and must zero out
// elements that come from V2 in the first mask, and V1 in the second mask
// so that we can OR them together.
bool TwoInputs = !(V1Only || V2Only);
for (unsigned i = 0; i != 16; ++i) {
int EltIdx = MaskVals[i];
if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
continue;
}
pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
}
// If all the elements are from V2, assign it to V1 and return after
// building the first pshufb.
if (V2Only)
V1 = V2;
V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
DAG.getNode(ISD::BUILD_VECTOR, dl,
MVT::v16i8, &pshufbMask[0], 16));
if (!TwoInputs)
return V1;
// Calculate the shuffle mask for the second input, shuffle it, and
// OR it with the first shuffled input.
pshufbMask.clear();
for (unsigned i = 0; i != 16; ++i) {
int EltIdx = MaskVals[i];
if (EltIdx < 16) {
pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
continue;
}
pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
}
V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
DAG.getNode(ISD::BUILD_VECTOR, dl,
MVT::v16i8, &pshufbMask[0], 16));
return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
}
// No SSSE3 - Calculate in place words and then fix all out of place words
// With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
// the 16 different words that comprise the two doublequadword input vectors.
V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
SDValue NewV = V2Only ? V2 : V1;
for (int i = 0; i != 8; ++i) {
int Elt0 = MaskVals[i*2];
int Elt1 = MaskVals[i*2+1];
// This word of the result is all undef, skip it.
if (Elt0 < 0 && Elt1 < 0)
continue;
// This word of the result is already in the correct place, skip it.
if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
continue;
if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
continue;
SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
SDValue InsElt;
// If Elt0 and Elt1 are defined, are consecutive, and can be load
// using a single extract together, load it and store it.
if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
DAG.getIntPtrConstant(Elt1 / 2));
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
DAG.getIntPtrConstant(i));
continue;
}
// If Elt1 is defined, extract it from the appropriate source. If the
// source byte is not also odd, shift the extracted word left 8 bits
// otherwise clear the bottom 8 bits if we need to do an or.
if (Elt1 >= 0) {
InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
DAG.getIntPtrConstant(Elt1 / 2));
if ((Elt1 & 1) == 0)
InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
DAG.getConstant(8,
TLI.getShiftAmountTy(InsElt.getValueType())));
else if (Elt0 >= 0)
InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
DAG.getConstant(0xFF00, MVT::i16));
}
// If Elt0 is defined, extract it from the appropriate source. If the
// source byte is not also even, shift the extracted word right 8 bits. If
// Elt1 was also defined, OR the extracted values together before
// inserting them in the result.
if (Elt0 >= 0) {
SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
if ((Elt0 & 1) != 0)
InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
DAG.getConstant(8,
TLI.getShiftAmountTy(InsElt0.getValueType())));
else if (Elt1 >= 0)
InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
DAG.getConstant(0x00FF, MVT::i16));
InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
: InsElt0;
}
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
DAG.getIntPtrConstant(i));
}
return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
}
/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
/// done when every pair / quad of shuffle mask elements point to elements in
/// the right sequence. e.g.
/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
static
SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
SelectionDAG &DAG, DebugLoc dl) {
EVT VT = SVOp->getValueType(0);
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
unsigned NumElems = VT.getVectorNumElements();
unsigned NewWidth = (NumElems == 4) ? 2 : 4;
EVT NewVT;
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unexpected!");
case MVT::v4f32: NewVT = MVT::v2f64; break;
case MVT::v4i32: NewVT = MVT::v2i64; break;
case MVT::v8i16: NewVT = MVT::v4i32; break;
case MVT::v16i8: NewVT = MVT::v4i32; break;
}
int Scale = NumElems / NewWidth;
SmallVector<int, 8> MaskVec;
for (unsigned i = 0; i < NumElems; i += Scale) {
int StartIdx = -1;
for (int j = 0; j < Scale; ++j) {
int EltIdx = SVOp->getMaskElt(i+j);
if (EltIdx < 0)
continue;
if (StartIdx == -1)
StartIdx = EltIdx - (EltIdx % Scale);
if (EltIdx != StartIdx + j)
return SDValue();
}
if (StartIdx == -1)
MaskVec.push_back(-1);
else
MaskVec.push_back(StartIdx / Scale);
}
V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
}
/// getVZextMovL - Return a zero-extending vector move low node.
///
static SDValue getVZextMovL(EVT VT, EVT OpVT,
SDValue SrcOp, SelectionDAG &DAG,
const X86Subtarget *Subtarget, DebugLoc dl) {
if (VT == MVT::v2f64 || VT == MVT::v4f32) {
LoadSDNode *LD = NULL;
if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
LD = dyn_cast<LoadSDNode>(SrcOp);
if (!LD) {
// movssrr and movsdrr do not clear top bits. Try to use movd, movq
// instead.
MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
// PR2108
OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
OpVT,
SrcOp.getOperand(0)
.getOperand(0))));
}
}
}
return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
DAG.getNode(ISD::BITCAST, dl,
OpVT, SrcOp)));
}
/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
/// which could not be matched by any known target speficic shuffle
static SDValue
LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
EVT VT = SVOp->getValueType(0);
unsigned NumElems = VT.getVectorNumElements();
unsigned NumLaneElems = NumElems / 2;
DebugLoc dl = SVOp->getDebugLoc();
MVT EltVT = VT.getVectorElementType().getSimpleVT();
EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
SDValue Shufs[2];
SmallVector<int, 16> Mask;
for (unsigned l = 0; l < 2; ++l) {
// Build a shuffle mask for the output, discovering on the fly which
// input vectors to use as shuffle operands (recorded in InputUsed).
// If building a suitable shuffle vector proves too hard, then bail
// out with useBuildVector set.
int InputUsed[2] = { -1, -1 }; // Not yet discovered.
unsigned LaneStart = l * NumLaneElems;
for (unsigned i = 0; i != NumLaneElems; ++i) {
// The mask element. This indexes into the input.
int Idx = SVOp->getMaskElt(i+LaneStart);
if (Idx < 0) {
// the mask element does not index into any input vector.
Mask.push_back(-1);
continue;
}
// The input vector this mask element indexes into.
int Input = Idx / NumLaneElems;
// Turn the index into an offset from the start of the input vector.
Idx -= Input * NumLaneElems;
// Find or create a shuffle vector operand to hold this input.
unsigned OpNo;
for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
if (InputUsed[OpNo] == Input)
// This input vector is already an operand.
break;
if (InputUsed[OpNo] < 0) {
// Create a new operand for this input vector.
InputUsed[OpNo] = Input;
break;
}
}
if (OpNo >= array_lengthof(InputUsed)) {
// More than two input vectors used! Give up.
return SDValue();
}
// Add the mask index for the new shuffle vector.
Mask.push_back(Idx + OpNo * NumLaneElems);
}
if (InputUsed[0] < 0) {
// No input vectors were used! The result is undefined.
Shufs[l] = DAG.getUNDEF(NVT);
} else {
SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
DAG.getConstant((InputUsed[0] % 2) * NumLaneElems, MVT::i32),
DAG, dl);
// If only one input was used, use an undefined vector for the other.
SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
DAG.getConstant((InputUsed[1] % 2) * NumLaneElems, MVT::i32),
DAG, dl);
// At least one input vector was used. Create a new shuffle vector.
Shufs[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
}
Mask.clear();
}
// Concatenate the result back
SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shufs[0],
DAG.getConstant(0, MVT::i32), DAG, dl);
return Insert128BitVector(V, Shufs[1],DAG.getConstant(NumLaneElems, MVT::i32),
DAG, dl);
}
/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
/// 4 elements, and match them with several different shuffle types.
static SDValue
LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
DebugLoc dl = SVOp->getDebugLoc();
EVT VT = SVOp->getValueType(0);
assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
std::pair<int, int> Locs[4];
int Mask1[] = { -1, -1, -1, -1 };
SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
unsigned NumHi = 0;
unsigned NumLo = 0;
for (unsigned i = 0; i != 4; ++i) {
int Idx = PermMask[i];
if (Idx < 0) {
Locs[i] = std::make_pair(-1, -1);
} else {
assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
if (Idx < 4) {
Locs[i] = std::make_pair(0, NumLo);
Mask1[NumLo] = Idx;
NumLo++;
} else {
Locs[i] = std::make_pair(1, NumHi);
if (2+NumHi < 4)
Mask1[2+NumHi] = Idx;
NumHi++;
}
}
}
if (NumLo <= 2 && NumHi <= 2) {
// If no more than two elements come from either vector. This can be
// implemented with two shuffles. First shuffle gather the elements.
// The second shuffle, which takes the first shuffle as both of its
// vector operands, put the elements into the right order.
V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
int Mask2[] = { -1, -1, -1, -1 };
for (unsigned i = 0; i != 4; ++i)
if (Locs[i].first != -1) {
unsigned Idx = (i < 2) ? 0 : 4;
Idx += Locs[i].first * 2 + Locs[i].second;
Mask2[i] = Idx;
}
return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
} else if (NumLo == 3 || NumHi == 3) {
// Otherwise, we must have three elements from one vector, call it X, and
// one element from the other, call it Y. First, use a shufps to build an
// intermediate vector with the one element from Y and the element from X
// that will be in the same half in the final destination (the indexes don't
// matter). Then, use a shufps to build the final vector, taking the half
// containing the element from Y from the intermediate, and the other half
// from X.
if (NumHi == 3) {
// Normalize it so the 3 elements come from V1.
CommuteVectorShuffleMask(PermMask, 4);
std::swap(V1, V2);
}
// Find the element from V2.
unsigned HiIndex;
for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
int Val = PermMask[HiIndex];
if (Val < 0)
continue;
if (Val >= 4)
break;
}
Mask1[0] = PermMask[HiIndex];
Mask1[1] = -1;
Mask1[2] = PermMask[HiIndex^1];
Mask1[3] = -1;
V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
if (HiIndex >= 2) {
Mask1[0] = PermMask[0];
Mask1[1] = PermMask[1];
Mask1[2] = HiIndex & 1 ? 6 : 4;
Mask1[3] = HiIndex & 1 ? 4 : 6;
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
} else {
Mask1[0] = HiIndex & 1 ? 2 : 0;
Mask1[1] = HiIndex & 1 ? 0 : 2;
Mask1[2] = PermMask[2];
Mask1[3] = PermMask[3];
if (Mask1[2] >= 0)
Mask1[2] += 4;
if (Mask1[3] >= 0)
Mask1[3] += 4;
return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
}
}
// Break it into (shuffle shuffle_hi, shuffle_lo).
int LoMask[] = { -1, -1, -1, -1 };
int HiMask[] = { -1, -1, -1, -1 };
int *MaskPtr = LoMask;
unsigned MaskIdx = 0;
unsigned LoIdx = 0;
unsigned HiIdx = 2;
for (unsigned i = 0; i != 4; ++i) {
if (i == 2) {
MaskPtr = HiMask;
MaskIdx = 1;
LoIdx = 0;
HiIdx = 2;
}
int Idx = PermMask[i];
if (Idx < 0) {
Locs[i] = std::make_pair(-1, -1);
} else if (Idx < 4) {
Locs[i] = std::make_pair(MaskIdx, LoIdx);
MaskPtr[LoIdx] = Idx;
LoIdx++;
} else {
Locs[i] = std::make_pair(MaskIdx, HiIdx);
MaskPtr[HiIdx] = Idx;
HiIdx++;
}
}
SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
int MaskOps[] = { -1, -1, -1, -1 };
for (unsigned i = 0; i != 4; ++i)
if (Locs[i].first != -1)
MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
}
static bool MayFoldVectorLoad(SDValue V) {
if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
V = V.getOperand(0);
if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
V = V.getOperand(0);
if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
// BUILD_VECTOR (load), undef
V = V.getOperand(0);
if (MayFoldLoad(V))
return true;
return false;
}
// FIXME: the version above should always be used. Since there's
// a bug where several vector shuffles can't be folded because the
// DAG is not updated during lowering and a node claims to have two
// uses while it only has one, use this version, and let isel match
// another instruction if the load really happens to have more than
// one use. Remove this version after this bug get fixed.
// rdar://8434668, PR8156
static bool RelaxedMayFoldVectorLoad(SDValue V) {
if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
V = V.getOperand(0);
if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
V = V.getOperand(0);
if (ISD::isNormalLoad(V.getNode()))
return true;
return false;
}
static
SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
// Canonizalize to v2f64.
V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
return DAG.getNode(ISD::BITCAST, dl, VT,
getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
V1, DAG));
}
static
SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
bool HasSSE2) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
EVT VT = Op.getValueType();
assert(VT != MVT::v2i64 && "unsupported shuffle type");
if (HasSSE2 && VT == MVT::v2f64)
return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
// v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
return DAG.getNode(ISD::BITCAST, dl, VT,
getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
}
static
SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
EVT VT = Op.getValueType();
assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
"unsupported shuffle type");
if (V2.getOpcode() == ISD::UNDEF)
V2 = V1;
// v4i32 or v4f32
return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
}
static
SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
EVT VT = Op.getValueType();
unsigned NumElems = VT.getVectorNumElements();
// Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
// operand of these instructions is only memory, so check if there's a
// potencial load folding here, otherwise use SHUFPS or MOVSD to match the
// same masks.
bool CanFoldLoad = false;
// Trivial case, when V2 comes from a load.
if (MayFoldVectorLoad(V2))
CanFoldLoad = true;
// When V1 is a load, it can be folded later into a store in isel, example:
// (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
// turns into:
// (MOVLPSmr addr:$src1, VR128:$src2)
// So, recognize this potential and also use MOVLPS or MOVLPD
else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
CanFoldLoad = true;
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
if (CanFoldLoad) {
if (HasSSE2 && NumElems == 2)
return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
if (NumElems == 4)
// If we don't care about the second element, procede to use movss.
if (SVOp->getMaskElt(1) != -1)
return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
}
// movl and movlp will both match v2i64, but v2i64 is never matched by
// movl earlier because we make it strict to avoid messing with the movlp load
// folding logic (see the code above getMOVLP call). Match it here then,
// this is horrible, but will stay like this until we move all shuffle
// matching to x86 specific nodes. Note that for the 1st condition all
// types are matched with movsd.
if (HasSSE2) {
// FIXME: isMOVLMask should be checked and matched before getMOVLP,
// as to remove this logic from here, as much as possible
if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
}
assert(VT != MVT::v4i32 && "unsupported shuffle type");
// Invert the operand order and use SHUFPS to match it.
return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
getShuffleSHUFImmediate(SVOp), DAG);
}
SDValue
X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
if (isZeroShuffle(SVOp))
return getZeroVector(VT, Subtarget, DAG, dl);
// Handle splat operations
if (SVOp->isSplat()) {
unsigned NumElem = VT.getVectorNumElements();
int Size = VT.getSizeInBits();
// Use vbroadcast whenever the splat comes from a foldable load
SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
if (Broadcast.getNode())
return Broadcast;
// Handle splats by matching through known shuffle masks
if ((Size == 128 && NumElem <= 4) ||
(Size == 256 && NumElem < 8))
return SDValue();
// All remaning splats are promoted to target supported vector shuffles.
return PromoteSplat(SVOp, DAG);
}
// If the shuffle can be profitably rewritten as a narrower shuffle, then
// do it!
if (VT == MVT::v8i16 || VT == MVT::v16i8) {
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
if (NewOp.getNode())
return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
} else if ((VT == MVT::v4i32 ||
(VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
// FIXME: Figure out a cleaner way to do this.
// Try to make use of movq to zero out the top part.
if (ISD::isBuildVectorAllZeros(V2.getNode())) {
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
if (NewOp.getNode()) {
EVT NewVT = NewOp.getValueType();
if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
NewVT, true, false))
return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
DAG, Subtarget, dl);
}
} else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
if (NewOp.getNode()) {
EVT NewVT = NewOp.getValueType();
if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
DAG, Subtarget, dl);
}
}
}
return SDValue();
}
SDValue
X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
unsigned NumElems = VT.getVectorNumElements();
bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
bool V1IsSplat = false;
bool V2IsSplat = false;
bool HasSSE2 = Subtarget->hasSSE2();
bool HasAVX = Subtarget->hasAVX();
bool HasAVX2 = Subtarget->hasAVX2();
MachineFunction &MF = DAG.getMachineFunction();
bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
if (V1IsUndef && V2IsUndef)
return DAG.getUNDEF(VT);
assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
// Vector shuffle lowering takes 3 steps:
//
// 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
// narrowing and commutation of operands should be handled.
// 2) Matching of shuffles with known shuffle masks to x86 target specific
// shuffle nodes.
// 3) Rewriting of unmatched masks into new generic shuffle operations,
// so the shuffle can be broken into other shuffles and the legalizer can
// try the lowering again.
//
// The general idea is that no vector_shuffle operation should be left to
// be matched during isel, all of them must be converted to a target specific
// node here.
// Normalize the input vectors. Here splats, zeroed vectors, profitable
// narrowing and commutation of operands should be handled. The actual code
// doesn't include all of those, work in progress...
SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
if (NewOp.getNode())
return NewOp;
SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
// NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
// unpckh_undef). Only use pshufd if speed is more important than size.
if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
V2IsUndef && RelaxedMayFoldVectorLoad(V1))
return getMOVDDup(Op, dl, V1, DAG);
if (isMOVHLPS_v_undef_Mask(M, VT))
return getMOVHighToLow(Op, dl, DAG);
// Use to match splats
if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
(VT == MVT::v2f64 || VT == MVT::v2i64))
return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
if (isPSHUFDMask(M, VT)) {
// The actual implementation will match the mask in the if above and then
// during isel it can match several different instructions, not only pshufd
// as its name says, sad but true, emulate the behavior for now...
if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
TargetMask, DAG);
}
// Check if this can be converted into a logical shift.
bool isLeft = false;
unsigned ShAmt = 0;
SDValue ShVal;
bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
if (isShift && ShVal.hasOneUse()) {
// If the shifted value has multiple uses, it may be cheaper to use
// v_set0 + movlhps or movhlps, etc.
EVT EltVT = VT.getVectorElementType();
ShAmt *= EltVT.getSizeInBits();
return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
}
if (isMOVLMask(M, VT)) {
if (ISD::isBuildVectorAllZeros(V1.getNode()))
return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
if (!isMOVLPMask(M, VT)) {
if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
if (VT == MVT::v4i32 || VT == MVT::v4f32)
return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
}
}
// FIXME: fold these into legal mask.
if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
if (isMOVHLPSMask(M, VT))
return getMOVHighToLow(Op, dl, DAG);
if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
if (isMOVLPMask(M, VT))
return getMOVLP(Op, dl, DAG, HasSSE2);
if (ShouldXformToMOVHLPS(M, VT) ||
ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
return CommuteVectorShuffle(SVOp, DAG);
if (isShift) {
// No better options. Use a vshldq / vsrldq.
EVT EltVT = VT.getVectorElementType();
ShAmt *= EltVT.getSizeInBits();
return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
}
bool Commuted = false;
// FIXME: This should also accept a bitcast of a splat? Be careful, not
// 1,1,1,1 -> v8i16 though.
V1IsSplat = isSplatVector(V1.getNode());
V2IsSplat = isSplatVector(V2.getNode());
// Canonicalize the splat or undef, if present, to be on the RHS.
if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
CommuteVectorShuffleMask(M, NumElems);
std::swap(V1, V2);
std::swap(V1IsSplat, V2IsSplat);
Commuted = true;
}
if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
// Shuffling low element of v1 into undef, just return v1.
if (V2IsUndef)
return V1;
// If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
// the instruction selector will not match, so get a canonical MOVL with
// swapped operands to undo the commute.
return getMOVL(DAG, dl, VT, V2, V1);
}
if (isUNPCKLMask(M, VT, HasAVX2))
return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
if (isUNPCKHMask(M, VT, HasAVX2))
return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
if (V2IsSplat) {
// Normalize mask so all entries that point to V2 points to its first
// element then try to match unpck{h|l} again. If match, return a
// new vector_shuffle with the corrected mask.p
SmallVector<int, 8> NewMask(M.begin(), M.end());
NormalizeMask(NewMask, NumElems);
if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) {
return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
} else if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) {
return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
}
}
if (Commuted) {
// Commute is back and try unpck* again.
// FIXME: this seems wrong.
CommuteVectorShuffleMask(M, NumElems);
std::swap(V1, V2);
std::swap(V1IsSplat, V2IsSplat);
Commuted = false;
if (isUNPCKLMask(M, VT, HasAVX2))
return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
if (isUNPCKHMask(M, VT, HasAVX2))
return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
}
// Normalize the node to match x86 shuffle ops if needed
if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
return CommuteVectorShuffle(SVOp, DAG);
// The checks below are all present in isShuffleMaskLegal, but they are
// inlined here right now to enable us to directly emit target specific
// nodes, and remove one by one until they don't return Op anymore.
if (isPALIGNRMask(M, VT, Subtarget))
return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
getShufflePALIGNRImmediate(SVOp),
DAG);
if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
SVOp->getSplatIndex() == 0 && V2IsUndef) {
if (VT == MVT::v2f64 || VT == MVT::v2i64)
return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
}
if (isPSHUFHWMask(M, VT))
return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
getShufflePSHUFHWImmediate(SVOp),
DAG);
if (isPSHUFLWMask(M, VT))
return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
getShufflePSHUFLWImmediate(SVOp),
DAG);
if (isSHUFPMask(M, VT, HasAVX))
return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
getShuffleSHUFImmediate(SVOp), DAG);
if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
//===--------------------------------------------------------------------===//
// Generate target specific nodes for 128 or 256-bit shuffles only
// supported in the AVX instruction set.
//
// Handle VMOVDDUPY permutations
if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
// Handle VPERMILPS/D* permutations
if (isVPERMILPMask(M, VT, HasAVX)) {
if (HasAVX2 && VT == MVT::v8i32)
return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
getShuffleSHUFImmediate(SVOp), DAG);
return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
getShuffleSHUFImmediate(SVOp), DAG);
}
// Handle VPERM2F128/VPERM2I128 permutations
if (isVPERM2X128Mask(M, VT, HasAVX))
return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(Op, Subtarget, DAG);
if (BlendOp.getNode())
return BlendOp;
if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
SmallVector<SDValue, 8> permclMask;
for (unsigned i = 0; i != 8; ++i) {
permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
}
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
&permclMask[0], 8);
// Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
return DAG.getNode(X86ISD::VPERMV, dl, VT,
DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
}
if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
getShuffleCLImmediate(SVOp), DAG);
//===--------------------------------------------------------------------===//
// Since no target specific shuffle was selected for this generic one,
// lower it into other known shuffles. FIXME: this isn't true yet, but
// this is the plan.
//
// Handle v8i16 specifically since SSE can do byte extraction and insertion.
if (VT == MVT::v8i16) {
SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
if (NewOp.getNode())
return NewOp;
}
if (VT == MVT::v16i8) {
SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
if (NewOp.getNode())
return NewOp;
}
// Handle all 128-bit wide vectors with 4 elements, and match them with
// several different shuffle types.
if (NumElems == 4 && VT.getSizeInBits() == 128)
return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
// Handle general 256-bit shuffles
if (VT.is256BitVector())
return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
return SDValue();
}
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
return SDValue();
if (VT.getSizeInBits() == 8) {
SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
} else if (VT.getSizeInBits() == 16) {
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
// If Idx is 0, it's cheaper to do a move instead of a pextrw.
if (Idx == 0)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getNode(ISD::BITCAST, dl,
MVT::v4i32,
Op.getOperand(0)),
Op.getOperand(1)));
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
} else if (VT == MVT::f32) {
// EXTRACTPS outputs to a GPR32 register which will require a movd to copy
// the result back to FR32 register. It's only worth matching if the
// result has a single use which is a store or a bitcast to i32. And in
// the case of a store, it's not worth it if the index is a constant 0,
// because a MOVSSmr can be used instead, which is smaller and faster.
if (!Op.hasOneUse())
return SDValue();
SDNode *User = *Op.getNode()->use_begin();
if ((User->getOpcode() != ISD::STORE ||
(isa<ConstantSDNode>(Op.getOperand(1)) &&
cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
(User->getOpcode() != ISD::BITCAST ||
User->getValueType(0) != MVT::i32))
return SDValue();
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
Op.getOperand(0)),
Op.getOperand(1));
return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
} else if (VT == MVT::i32 || VT == MVT::i64) {
// ExtractPS/pextrq works with constant index.
if (isa<ConstantSDNode>(Op.getOperand(1)))
return Op;
}
return SDValue();
}
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
if (!isa<ConstantSDNode>(Op.getOperand(1)))
return SDValue();
SDValue Vec = Op.getOperand(0);
EVT VecVT = Vec.getValueType();
// If this is a 256-bit vector result, first extract the 128-bit vector and
// then extract the element from the 128-bit vector.
if (VecVT.getSizeInBits() == 256) {
DebugLoc dl = Op.getNode()->getDebugLoc();
unsigned NumElems = VecVT.getVectorNumElements();
SDValue Idx = Op.getOperand(1);
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
// Get the 128-bit vector.
bool Upper = IdxVal >= NumElems/2;
Vec = Extract128BitVector(Vec,
DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
}
assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
if (Subtarget->hasSSE41()) {
SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
if (Res.getNode())
return Res;
}
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
// TODO: handle v16i8.
if (VT.getSizeInBits() == 16) {
SDValue Vec = Op.getOperand(0);
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getNode(ISD::BITCAST, dl,
MVT::v4i32, Vec),
Op.getOperand(1)));
// Transform it so it match pextrw which produces a 32-bit result.
EVT EltVT = MVT::i32;
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
} else if (VT.getSizeInBits() == 32) {
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return Op;
// SHUFPS the element to the lowest double word, then movss.
int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
EVT VVT = Op.getOperand(0).getValueType();
SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
DAG.getUNDEF(VVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0));
} else if (VT.getSizeInBits() == 64) {
// FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
// FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
// to match extract_elt for f64.
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return Op;
// UNPCKHPD the element to the lowest double word, then movsd.
// Note if the lower 64 bits of the result of the UNPCKHPD is then stored
// to a f64mem, the whole operation is folded into a single MOVHPDmr.
int Mask[2] = { 1, -1 };
EVT VVT = Op.getOperand(0).getValueType();
SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
DAG.getUNDEF(VVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0));
}
return SDValue();
}
SDValue
X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
EVT EltVT = VT.getVectorElementType();
DebugLoc dl = Op.getDebugLoc();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
if (VT.getSizeInBits() == 256)
return SDValue();
if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
isa<ConstantSDNode>(N2)) {
unsigned Opc;
if (VT == MVT::v8i16)
Opc = X86ISD::PINSRW;
else if (VT == MVT::v16i8)
Opc = X86ISD::PINSRB;
else
Opc = X86ISD::PINSRB;
// Transform it so it match pinsr{b,w} which expects a GR32 as its second
// argument.
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
return DAG.getNode(Opc, dl, VT, N0, N1, N2);
} else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
// Bits [7:6] of the constant are the source select. This will always be
// zero here. The DAG Combiner may combine an extract_elt index into these
// bits. For example (insert (extract, 3), 2) could be matched by putting
// the '3' into bits [7:6] of X86ISD::INSERTPS.
// Bits [5:4] of the constant are the destination select. This is the
// value of the incoming immediate.
// Bits [3:0] of the constant are the zero mask. The DAG Combiner may
// combine either bitwise AND or insert of float 0.0 to set these bits.
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
// Create this as a scalar to vector..
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
} else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
isa<ConstantSDNode>(N2)) {
// PINSR* works with constant index.
return Op;
}
return SDValue();
}
SDValue
X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
EVT EltVT = VT.getVectorElementType();
DebugLoc dl = Op.getDebugLoc();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
// If this is a 256-bit vector result, first extract the 128-bit vector,
// insert the element into the extracted half and then place it back.
if (VT.getSizeInBits() == 256) {
if (!isa<ConstantSDNode>(N2))
return SDValue();
// Get the desired 128-bit vector half.
unsigned NumElems = VT.getVectorNumElements();
unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
bool Upper = IdxVal >= NumElems/2;
SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
// Insert the element into the desired half.
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
// Insert the changed part back to the 256-bit vector
return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
}
if (Subtarget->hasSSE41())
return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
if (EltVT == MVT::i8)
return SDValue();
if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
// Transform it so it match pinsrw which expects a 16-bit value in a GR32
// as its second argument.
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
}
return SDValue();
}
SDValue
X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
LLVMContext *Context = DAG.getContext();
DebugLoc dl = Op.getDebugLoc();
EVT OpVT = Op.getValueType();
// If this is a 256-bit vector result, first insert into a 128-bit
// vector and then insert into the 256-bit vector.
if (OpVT.getSizeInBits() > 128) {
// Insert into a 128-bit vector.
EVT VT128 = EVT::getVectorVT(*Context,
OpVT.getVectorElementType(),
OpVT.getVectorNumElements() / 2);
Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
// Insert the 128-bit vector.
return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
DAG.getConstant(0, MVT::i32),
DAG, dl);
}
if (Op.getValueType() == MVT::v1i64 &&
Op.getOperand(0).getValueType() == MVT::i64)
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
"Expected an SSE type!");
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
}
// Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
// a simple subregister reference or explicit instructions to grab
// upper bits of a vector.
SDValue
X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
if (Subtarget->hasAVX()) {
DebugLoc dl = Op.getNode()->getDebugLoc();
SDValue Vec = Op.getNode()->getOperand(0);
SDValue Idx = Op.getNode()->getOperand(1);
if (Op.getNode()->getValueType(0).getSizeInBits() == 128
&& Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
return Extract128BitVector(Vec, Idx, DAG, dl);
}
}
return SDValue();
}
// Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
// simple superregister reference or explicit instructions to insert
// the upper bits of a vector.
SDValue
X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
if (Subtarget->hasAVX()) {
DebugLoc dl = Op.getNode()->getDebugLoc();
SDValue Vec = Op.getNode()->getOperand(0);
SDValue SubVec = Op.getNode()->getOperand(1);
SDValue Idx = Op.getNode()->getOperand(2);
if (Op.getNode()->getValueType(0).getSizeInBits() == 256
&& SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
}
}
return SDValue();
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOV32ri.
SDValue
X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = 0;
unsigned WrapperKind = X86ISD::Wrapper;
CodeModel::Model M = getTargetMachine().getCodeModel();
if (Subtarget->isPICStyleRIPRel() &&
(M == CodeModel::Small || M == CodeModel::Kernel))
WrapperKind = X86ISD::WrapperRIP;
else if (Subtarget->isPICStyleGOT())
OpFlag = X86II::MO_GOTOFF;
else if (Subtarget->isPICStyleStubPIC())
OpFlag = X86II::MO_PIC_BASE_OFFSET;
SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
CP->getAlignment(),
CP->getOffset(), OpFlag);
DebugLoc DL = CP->getDebugLoc();
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (OpFlag) {
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc(), getPointerTy()),
Result);
}
return Result;
}
SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = 0;
unsigned WrapperKind = X86ISD::Wrapper;
CodeModel::Model M = getTargetMachine().getCodeModel();
if (Subtarget->isPICStyleRIPRel() &&
(M == CodeModel::Small || M == CodeModel::Kernel))
WrapperKind = X86ISD::WrapperRIP;
else if (Subtarget->isPICStyleGOT())
OpFlag = X86II::MO_GOTOFF;
else if (Subtarget->isPICStyleStubPIC())
OpFlag = X86II::MO_PIC_BASE_OFFSET;
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
OpFlag);
DebugLoc DL = JT->getDebugLoc();
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (OpFlag)
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc(), getPointerTy()),
Result);
return Result;
}
SDValue
X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = 0;
unsigned WrapperKind = X86ISD::Wrapper;
CodeModel::Model M = getTargetMachine().getCodeModel();
if (Subtarget->isPICStyleRIPRel() &&
(M == CodeModel::Small || M == CodeModel::Kernel)) {
if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
OpFlag = X86II::MO_GOTPCREL;
WrapperKind = X86ISD::WrapperRIP;
} else if (Subtarget->isPICStyleGOT()) {
OpFlag = X86II::MO_GOT;
} else if (Subtarget->isPICStyleStubPIC()) {
OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
} else if (Subtarget->isPICStyleStubNoDynamic()) {
OpFlag = X86II::MO_DARWIN_NONLAZY;
}
SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
DebugLoc DL = Op.getDebugLoc();
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
!Subtarget->is64Bit()) {
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc(), getPointerTy()),
Result);
}
// For symbols that require a load from a stub to get the address, emit the
// load.
if (isGlobalStubReference(OpFlag))
Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(), false, false, false, 0);
return Result;
}
SDValue
X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
// Create the TargetBlockAddressAddress node.
unsigned char OpFlags =
Subtarget->ClassifyBlockAddressReference();
CodeModel::Model M = getTargetMachine().getCodeModel();
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
DebugLoc dl = Op.getDebugLoc();
SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
/*isTarget=*/true, OpFlags);
if (Subtarget->isPICStyleRIPRel() &&
(M == CodeModel::Small || M == CodeModel::Kernel))
Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
else
Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (isGlobalRelativeToPICBase(OpFlags)) {
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
Result);
}
return Result;
}
SDValue
X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
int64_t Offset,
SelectionDAG &DAG) const {
// Create the TargetGlobalAddress node, folding in the constant
// offset if it is legal.
unsigned char OpFlags =
Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
CodeModel::Model M = getTargetMachine().getCodeModel();
SDValue Result;
if (OpFlags == X86II::MO_NO_FLAG &&
X86::isOffsetSuitableForCodeModel(Offset, M)) {
// A direct static reference to a global.
Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
Offset = 0;
} else {
Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
}
if (Subtarget->isPICStyleRIPRel() &&
(M == CodeModel::Small || M == CodeModel::Kernel))
Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
else
Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (isGlobalRelativeToPICBase(OpFlags)) {
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
Result);
}
// For globals that require a load from a stub to get the address, emit the
// load.
if (isGlobalStubReference(OpFlags))
Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(), false, false, false, 0);
// If there was a non-zero offset that we didn't fold, create an explicit
// addition for it.
if (Offset != 0)
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
DAG.getConstant(Offset, getPointerTy()));
return Result;
}
SDValue
X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
}
static SDValue
GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
unsigned char OperandFlags) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
DebugLoc dl = GA->getDebugLoc();
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(),
OperandFlags);
if (InFlag) {
SDValue Ops[] = { Chain, TGA, *InFlag };
Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
} else {
SDValue Ops[] = { Chain, TGA };
Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
}
// TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
MFI->setAdjustsStack(true);
SDValue Flag = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
static SDValue
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT) {
SDValue InFlag;
DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc(), PtrVT), InFlag);
InFlag = Chain.getValue(1);
return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
static SDValue
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT) {
return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
X86::RAX, X86II::MO_TLSGD);
}
// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
// "local exec" model.
static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT, TLSModel::Model model,
bool is64Bit) {
DebugLoc dl = GA->getDebugLoc();
// Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
is64Bit ? 257 : 256));
SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
DAG.getIntPtrConstant(0),
MachinePointerInfo(Ptr),
false, false, false, 0);
unsigned char OperandFlags = 0;
// Most TLS accesses are not RIP relative, even on x86-64. One exception is
// initialexec.
unsigned WrapperKind = X86ISD::Wrapper;
if (model == TLSModel::LocalExec) {
OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
} else if (is64Bit) {
assert(model == TLSModel::InitialExec);
OperandFlags = X86II::MO_GOTTPOFF;
WrapperKind = X86ISD::WrapperRIP;
} else {
assert(model == TLSModel::InitialExec);
OperandFlags = X86II::MO_INDNTPOFF;
}
// emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
// exec)
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(), OperandFlags);
SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
if (model == TLSModel::InitialExec)
Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
MachinePointerInfo::getGOT(), false, false, false, 0);
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
}
SDValue
X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GA->getGlobal();
if (Subtarget->isTargetELF()) {
// TODO: implement the "local dynamic" model
// TODO: implement the "initial exec"model for pic executables
// If GV is an alias then use the aliasee for determining
// thread-localness.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
GV = GA->resolveAliasedGlobal(false);
TLSModel::Model model = getTargetMachine().getTLSModel(GV);
switch (model) {
case TLSModel::GeneralDynamic:
case TLSModel::LocalDynamic: // not implemented
if (Subtarget->is64Bit())
return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
case TLSModel::InitialExec:
case TLSModel::LocalExec:
return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
Subtarget->is64Bit());
}
} else if (Subtarget->isTargetDarwin()) {
// Darwin only has one model of TLS. Lower to that.
unsigned char OpFlag = 0;
unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
X86ISD::WrapperRIP : X86ISD::Wrapper;
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
!Subtarget->is64Bit();
if (PIC32)
OpFlag = X86II::MO_TLVP_PIC_BASE;
else
OpFlag = X86II::MO_TLVP;
DebugLoc DL = Op.getDebugLoc();
SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
GA->getValueType(0),
GA->getOffset(), OpFlag);
SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
// With PIC32, the address is actually $g + Offset.
if (PIC32)
Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc(), getPointerTy()),
Offset);
// Lowering the machine isd will make sure everything is in the right
// location.
SDValue Chain = DAG.getEntryNode();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Args[] = { Chain, Offset };
Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
// TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setAdjustsStack(true);
// And our return value (tls address) is in the standard call return value
// location.
unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
Chain.getValue(1));
} else if (Subtarget->isTargetWindows()) {
// Just use the implicit TLS architecture
// Need to generate someting similar to:
// mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
// ; from TEB
// mov ecx, dword [rel _tls_index]: Load index (from C runtime)
// mov rcx, qword [rdx+rcx*8]
// mov eax, .tls$:tlsvar
// [rax+rcx] contains the address
// Windows 64bit: gs:0x58
// Windows 32bit: fs:__tls_array
// If GV is an alias then use the aliasee for determining
// thread-localness.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
GV = GA->resolveAliasedGlobal(false);
DebugLoc dl = GA->getDebugLoc();
SDValue Chain = DAG.getEntryNode();
// Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
// %gs:0x58 (64-bit).
Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
? Type::getInt8PtrTy(*DAG.getContext(),
256)
: Type::getInt32PtrTy(*DAG.getContext(),
257));
SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
Subtarget->is64Bit()
? DAG.getIntPtrConstant(0x58)
: DAG.getExternalSymbol("_tls_array",
getPointerTy()),
MachinePointerInfo(Ptr),
false, false, false, 0);
// Load the _tls_index variable
SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
if (Subtarget->is64Bit())
IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
IDX, MachinePointerInfo(), MVT::i32,
false, false, 0);
else
IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
false, false, false, 0);
SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
getPointerTy());
IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
false, false, false, 0);
// Get the offset of start of .tls section
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(), X86II::MO_SECREL);
SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
}
llvm_unreachable("TLS not implemented for this target.");
}
/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
/// and take a 2 x i32 value to shift plus a shift amount.
SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
DebugLoc dl = Op.getDebugLoc();
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
DAG.getConstant(VTBits - 1, MVT::i8))
: DAG.getConstant(0, VT);
SDValue Tmp2, Tmp3;
if (Op.getOpcode() == ISD::SHL_PARTS) {
Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
} else {
Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
}
SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
DAG.getConstant(VTBits, MVT::i8));
SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
AndNode, DAG.getConstant(0, MVT::i8));
SDValue Hi, Lo;
SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
if (Op.getOpcode() == ISD::SHL_PARTS) {
Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
} else {
Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
}
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, 2, dl);
}
SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
EVT SrcVT = Op.getOperand(0).getValueType();
if (SrcVT.isVector())
return SDValue();
assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
"Unknown SINT_TO_FP to lower!");
// These are really Legal; return the operand so the caller accepts it as
// Legal.
if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
return Op;
if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
Subtarget->is64Bit()) {
return Op;
}
DebugLoc dl = Op.getDebugLoc();
unsigned Size = SrcVT.getSizeInBits()/8;
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
StackSlot,
MachinePointerInfo::getFixedStack(SSFI),
false, false, 0);
return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
}
SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
SDValue StackSlot,
SelectionDAG &DAG) const {
// Build the FILD
DebugLoc DL = Op.getDebugLoc();
SDVTList Tys;
bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
if (useSSE)
Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
else
Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
unsigned ByteSize = SrcVT.getSizeInBits()/8;
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
MachineMemOperand *MMO;
if (FI) {
int SSFI = FI->getIndex();
MMO =
DAG.getMachineFunction()
.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
MachineMemOperand::MOLoad, ByteSize, ByteSize);
} else {
MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
StackSlot = StackSlot.getOperand(1);
}
SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
X86ISD::FILD, DL,
Tys, Ops, array_lengthof(Ops),
SrcVT, MMO);
if (useSSE) {
Chain = Result.getValue(1);
SDValue InFlag = Result.getValue(2);
// FIXME: Currently the FST is flagged to the FILD_FLAG. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Tys = DAG.getVTList(MVT::Other);
SDValue Ops[] = {
Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
};
MachineMemOperand *MMO =
DAG.getMachineFunction()
.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
MachineMemOperand::MOStore, SSFISize, SSFISize);
Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
Ops, array_lengthof(Ops),
Op.getValueType(), MMO);
Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
MachinePointerInfo::getFixedStack(SSFI),
false, false, false, 0);
}
return Result;
}
// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
SelectionDAG &DAG) const {
// This algorithm is not obvious. Here it is what we're trying to output:
/*
movq %rax, %xmm0
punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
#ifdef __SSE3__
haddpd %xmm0, %xmm0
#else
pshufd $0x4e, %xmm0, %xmm1
addpd %xmm1, %xmm0
#endif
*/
DebugLoc dl = Op.getDebugLoc();
LLVMContext *Context = DAG.getContext();
// Build some magic constants.
const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
Constant *C0 = ConstantDataVector::get(*Context, CV0);
SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
SmallVector<Constant*,2> CV1;
CV1.push_back(
ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
CV1.push_back(
ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
Constant *C1 = ConstantVector::get(CV1);
SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
// Load the 64-bit value into an XMM register.
SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
Op.getOperand(0));
SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
MachinePointerInfo::getConstantPool(),
false, false, false, 16);
SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
CLod0);
SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
MachinePointerInfo::getConstantPool(),
false, false, false, 16);
SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
SDValue Result;
if (Subtarget->hasSSE3()) {
// FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
} else {
SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
S2F, 0x4E, DAG);
Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
Sub);
}
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
DAG.getIntPtrConstant(0));
}
// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
// FP constant to bias correct the final result.
SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
MVT::f64);
// Load the 32-bit value into an XMM register.
SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
Op.getOperand(0));
// Zero out the upper parts of the register.
Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
DAG.getIntPtrConstant(0));
// Or the load with the bias.
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
MVT::v2f64, Load)),
DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
MVT::v2f64, Bias)));
Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
DAG.getIntPtrConstant(0));
// Subtract the bias.
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
// Handle final rounding.
EVT DestVT = Op.getValueType();
if (DestVT.bitsLT(MVT::f64)) {
return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
DAG.getIntPtrConstant(0));
} else if (DestVT.bitsGT(MVT::f64)) {
return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
}
// Handle final rounding.
return Sub;
}
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
SDValue N0 = Op.getOperand(0);
DebugLoc dl = Op.getDebugLoc();
// Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
// optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
// the optimization here.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
EVT SrcVT = N0.getValueType();
EVT DstVT = Op.getValueType();
if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
return LowerUINT_TO_FP_i64(Op, DAG);
else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
return LowerUINT_TO_FP_i32(Op, DAG);
else if (Subtarget->is64Bit() &&
SrcVT == MVT::i64 && DstVT == MVT::f32)
return SDValue();
// Make a 64-bit buffer, and use it to build an FILD.
SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
if (SrcVT == MVT::i32) {
SDValue WordOff = DAG.getConstant(4, getPointerTy());
SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
getPointerTy(), StackSlot, WordOff);
SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
StackSlot, MachinePointerInfo(),
false, false, 0);
SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
OffsetSlot, MachinePointerInfo(),
false, false, 0);
SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
return Fild;
}
assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
StackSlot, MachinePointerInfo(),
false, false, 0);
// For i64 source, we need to add the appropriate power of 2 if the input
// was negative. This is the same as the optimization in
// DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
// we must be careful to do the computation in x87 extended precision, not
// in SSE. (The generic code can't know it's OK to do this, or how to.)
int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
MachineMemOperand *MMO =
DAG.getMachineFunction()
.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
MachineMemOperand::MOLoad, 8, 8);
SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
MVT::i64, MMO);
APInt FF(32, 0x5F800000ULL);
// Check whether the sign bit is set.
SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
Op.getOperand(0), DAG.getConstant(0, MVT::i64),
ISD::SETLT);
// Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
SDValue FudgePtr = DAG.getConstantPool(
ConstantInt::get(*DAG.getContext(), FF.zext(64)),
getPointerTy());
// Get a pointer to FF if the sign bit was set, or to 0 otherwise.
SDValue Zero = DAG.getIntPtrConstant(0);
SDValue Four = DAG.getIntPtrConstant(4);
SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
Zero, Four);
FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
// Load the value out, extending it from f32 to f80.
// FIXME: Avoid the extend by constructing the right constant pool?
SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
FudgePtr, MachinePointerInfo::getConstantPool(),
MVT::f32, false, false, 4);
// Extend everything to 80 bits to force it to be done on x87.
SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
}
std::pair<SDValue,SDValue> X86TargetLowering::
FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
DebugLoc DL = Op.getDebugLoc();
EVT DstTy = Op.getValueType();
if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
DstTy = MVT::i64;
}
assert(DstTy.getSimpleVT() <= MVT::i64 &&
DstTy.getSimpleVT() >= MVT::i16 &&
"Unknown FP_TO_INT to lower!");
// These are really Legal.
if (DstTy == MVT::i32 &&
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
return std::make_pair(SDValue(), SDValue());
if (Subtarget->is64Bit() &&
DstTy == MVT::i64 &&
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
return std::make_pair(SDValue(), SDValue());
// We lower FP->int64 either into FISTP64 followed by a load from a temporary
// stack slot, or into the FTOL runtime function.
MachineFunction &MF = DAG.getMachineFunction();
unsigned MemSize = DstTy.getSizeInBits()/8;
int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
unsigned Opc;
if (!IsSigned && isIntegerTypeFTOL(DstTy))
Opc = X86ISD::WIN_FTOL;
else
switch (DstTy.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
}
SDValue Chain = DAG.getEntryNode();
SDValue Value = Op.getOperand(0);
EVT TheVT = Op.getOperand(0).getValueType();
// FIXME This causes a redundant load/store if the SSE-class value is already
// in memory, such as if it is on the callstack.
if (isScalarFPTypeInSSEReg(TheVT)) {
assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
Chain = DAG.getStore(Chain, DL, Value, StackSlot,
MachinePointerInfo::getFixedStack(SSFI),
false, false, 0);
SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
SDValue Ops[] = {
Chain, StackSlot, DAG.getValueType(TheVT)
};
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
MachineMemOperand::MOLoad, MemSize, MemSize);
Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
DstTy, MMO);
Chain = Value.getValue(1);
SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
}
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
MachineMemOperand::MOStore, MemSize, MemSize);
if (Opc != X86ISD::WIN_FTOL) {
// Build the FP_TO_INT*_IN_MEM
SDValue Ops[] = { Chain, Value, StackSlot };
SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
Ops, 3, DstTy, MMO);
return std::make_pair(FIST, StackSlot);
} else {
SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
DAG.getVTList(MVT::Other, MVT::Glue),
Chain, Value);
SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
MVT::i32, ftol.getValue(1));
SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
MVT::i32, eax.getValue(2));
SDValue Ops[] = { eax, edx };
SDValue pair = IsReplace
? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
: DAG.getMergeValues(Ops, 2, DL);
return std::make_pair(pair, SDValue());
}
}
SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
SelectionDAG &DAG) const {
if (Op.getValueType().isVector())
return SDValue();
std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
/*IsSigned=*/ true, /*IsReplace=*/ false);
SDValue FIST = Vals.first, StackSlot = Vals.second;
// If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
if (FIST.getNode() == 0) return Op;
if (StackSlot.getNode())
// Load the result.
return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
FIST, StackSlot, MachinePointerInfo(),
false, false, false, 0);
else
// The node is the result.
return FIST;
}
SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
SelectionDAG &DAG) const {
std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
/*IsSigned=*/ false, /*IsReplace=*/ false);
SDValue FIST = Vals.first, StackSlot = Vals.second;
assert(FIST.getNode() && "Unexpected failure");
if (StackSlot.getNode())
// Load the result.
return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
FIST, StackSlot, MachinePointerInfo(),
false, false, false, 0);
else
// The node is the result.
return FIST;
}
SDValue X86TargetLowering::LowerFABS(SDValue Op,
SelectionDAG &DAG) const {
LLVMContext *Context = DAG.getContext();
DebugLoc dl = Op.getDebugLoc();
EVT VT = Op.getValueType();
EVT EltVT = VT;
if (VT.isVector())
EltVT = VT.getVectorElementType();
Constant *C;
if (EltVT == MVT::f64) {
C = ConstantVector::getSplat(2,
ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
} else {
C = ConstantVector::getSplat(4,
ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
}
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(),
false, false, false, 16);
return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
}
SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
LLVMContext *Context = DAG.getContext();
DebugLoc dl = Op.getDebugLoc();
EVT VT = Op.getValueType();
EVT EltVT = VT;
unsigned NumElts = VT == MVT::f64 ? 2 : 4;
if (VT.isVector()) {
EltVT = VT.getVectorElementType();
NumElts = VT.getVectorNumElements();
}
Constant *C;
if (EltVT == MVT::f64)
C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
else
C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
C = ConstantVector::getSplat(NumElts, C);
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(),
false, false, false, 16);
if (VT.isVector()) {
MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getNode(ISD::XOR, dl, XORVT,
DAG.getNode(ISD::BITCAST, dl, XORVT,
Op.getOperand(0)),
DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
} else {
return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
}
}
SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
LLVMContext *Context = DAG.getContext();
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
DebugLoc dl = Op.getDebugLoc();
EVT VT = Op.getValueType();
EVT SrcVT = Op1.getValueType();
// If second operand is smaller, extend it first.
if (SrcVT.bitsLT(VT)) {
Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
SrcVT = VT;
}
// And if it is bigger, shrink it first.
if (SrcVT.bitsGT(VT)) {
Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
SrcVT = VT;
}
// At this point the operands and the result should have the same
// type, and that won't be f80 since that is not custom lowered.
// First get the sign bit of second operand.
SmallVector<Constant*,4> CV;
if (SrcVT == MVT::f64) {
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
} else {
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
}
Constant *C = ConstantVector::get(CV);
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(),
false, false, false, 16);
SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
// Shift sign bit right or left if the two operands have different types.
if (SrcVT.bitsGT(VT)) {
// Op0 is MVT::f32, Op1 is MVT::f64.
SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
DAG.getConstant(32, MVT::i32));
SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
DAG.getIntPtrConstant(0));
}
// Clear first operand sign bit.
CV.clear();
if (VT == MVT::f64) {
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
} else {
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
}
C = ConstantVector::get(CV);
CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(),
false, false, false, 16);
SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
// Or the value with the sign bit.
return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
}
SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
SDValue N0 = Op.getOperand(0);
DebugLoc dl = Op.getDebugLoc();
EVT VT = Op.getValueType();
// Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
DAG.getConstant(1, VT));
return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
}
/// Emit nodes that will be selected as "test Op0,Op0", or something
/// equivalent.
SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
// CF and OF aren't always set the way we want. Determine which
// of these we need.
bool NeedCF = false;
bool NeedOF = false;
switch (X86CC) {
default: break;
case X86::COND_A: case X86::COND_AE:
case X86::COND_B: case X86::COND_BE:
NeedCF = true;
break;
case X86::COND_G: case X86::COND_GE:
case X86::COND_L: case X86::COND_LE:
case X86::COND_O: case X86::COND_NO:
NeedOF = true;
break;
}
// See if we can use the EFLAGS value from the operand instead of
// doing a separate TEST. TEST always sets OF and CF to 0, so unless
// we prove that the arithmetic won't overflow, we can't use OF or CF.
if (Op.getResNo() != 0 || NeedOF || NeedCF)
// Emit a CMP with 0, which is the TEST pattern.
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
DAG.getConstant(0, Op.getValueType()));
unsigned Opcode = 0;
unsigned NumOperands = 0;
switch (Op.getNode()->getOpcode()) {
case ISD::ADD:
// Due to an isel shortcoming, be conservative if this add is likely to be
// selected as part of a load-modify-store instruction. When the root node
// in a match is a store, isel doesn't know how to remap non-chain non-flag
// uses of other nodes in the match, such as the ADD in this case. This
// leads to the ADD being left around and reselected, with the result being
// two adds in the output. Alas, even if none our users are stores, that
// doesn't prove we're O.K. Ergo, if we have any parents that aren't
// CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
// climbing the DAG back to the root, and it doesn't seem to be worth the
// effort.
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
UE = Op.getNode()->use_end(); UI != UE; ++UI)
if (UI->getOpcode() != ISD::CopyToReg &&
UI->getOpcode() != ISD::SETCC &&
UI->getOpcode() != ISD::STORE)
goto default_case;
if (ConstantSDNode *C =
dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
// An add of one will be selected as an INC.
if (C->getAPIntValue() == 1) {
Opcode = X86ISD::INC;
NumOperands = 1;
break;
}
// An add of negative one (subtract of one) will be selected as a DEC.
if (C->getAPIntValue().isAllOnesValue()) {
Opcode = X86ISD::DEC;
NumOperands = 1;
break;
}
}
// Otherwise use a regular EFLAGS-setting add.
Opcode = X86ISD::ADD;
NumOperands = 2;
break;
case ISD::AND: {
// If the primary and result isn't used, don't bother using X86ISD::AND,
// because a TEST instruction will be better.
bool NonFlagUse = false;
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
UE = Op.getNode()->use_end(); UI != UE; ++UI) {
SDNode *User = *UI;
unsigned UOpNo = UI.getOperandNo();
if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
// Look pass truncate.
UOpNo = User->use_begin().getOperandNo();
User = *User->use_begin();
}
if (User->getOpcode() != ISD::BRCOND &&
User->getOpcode() != ISD::SETCC &&
(User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
NonFlagUse = true;
break;
}
}
if (!NonFlagUse)
break;
}
// FALL THROUGH
case ISD::SUB:
case ISD::OR:
case ISD::XOR:
// Due to the ISEL shortcoming noted above, be conservative if this op is
// likely to be selected as part of a load-modify-store instruction.
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
UE = Op.getNode()->use_end(); UI != UE; ++UI)
if (UI->getOpcode() == ISD::STORE)
goto default_case;
// Otherwise use a regular EFLAGS-setting instruction.
switch (Op.getNode()->getOpcode()) {
default: llvm_unreachable("unexpected operator!");
case ISD::SUB: Opcode = X86ISD::SUB; break;
case ISD::OR: Opcode = X86ISD::OR; break;
case ISD::XOR: Opcode = X86ISD::XOR; break;
case ISD::AND: Opcode = X86ISD::AND; break;
}
NumOperands = 2;
break;
case X86ISD::ADD:
case X86ISD::SUB:
case X86ISD::INC:
case X86ISD::DEC:
case X86ISD::OR:
case X86ISD::XOR:
case X86ISD::AND:
return SDValue(Op.getNode(), 1);
default:
default_case:
break;
}
if (Opcode == 0)
// Emit a CMP with 0, which is the TEST pattern.
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
DAG.getConstant(0, Op.getValueType()));
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
SmallVector<SDValue, 4> Ops;
for (unsigned i = 0; i != NumOperands; ++i)
Ops.push_back(Op.getOperand(i));
SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
DAG.ReplaceAllUsesWith(Op, New);
return SDValue(New.getNode(), 1);
}
/// Emit nodes that will be selected as "cmp Op0,Op1", or something
/// equivalent.
SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
SelectionDAG &DAG) const {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
if (C->getAPIntValue() == 0)
return EmitTest(Op0, X86CC, DAG);
DebugLoc dl = Op0.getDebugLoc();
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
}
/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
/// if it's possible.
SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
DebugLoc dl, SelectionDAG &DAG) const {
SDValue Op0 = And.getOperand(0);
SDValue Op1 = And.getOperand(1);
if (Op0.getOpcode() == ISD::TRUNCATE)
Op0 = Op0.getOperand(0);
if (Op1.getOpcode() == ISD::TRUNCATE)
Op1 = Op1.getOperand(0);
SDValue LHS, RHS;
if (Op1.getOpcode() == ISD::SHL)
std::swap(Op0, Op1);
if (Op0.getOpcode() == ISD::SHL) {
if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
if (And00C->getZExtValue() == 1) {
// If we looked past a truncate, check that it's only truncating away
// known zeros.
unsigned BitWidth = Op0.getValueSizeInBits();
unsigned AndBitWidth = And.getValueSizeInBits();
if (BitWidth > AndBitWidth) {
APInt Zeros, Ones;
DAG.ComputeMaskedBits(Op0, Zeros, Ones);
if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
return SDValue();
}
LHS = Op1;
RHS = Op0.getOperand(1);
}
} else if (Op1.getOpcode() == ISD::Constant) {
ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
uint64_t AndRHSVal = AndRHS->getZExtValue();
SDValue AndLHS = Op0;
if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
LHS = AndLHS.getOperand(0);
RHS = AndLHS.getOperand(1);
}
// Use BT if the immediate can't be encoded in a TEST instruction.
if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
LHS = AndLHS;
RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
}
}
if (LHS.getNode()) {
// If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
// instruction. Since the shift amount is in-range-or-undefined, we know
// that doing a bittest on the i32 value is ok. We extend to i32 because
// the encoding for the i16 version is larger than the i32 version.
// Also promote i16 to i32 for performance / code size reason.
if (LHS.getValueType() == MVT::i8 ||
LHS.getValueType() == MVT::i16)
LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
// If the operand types disagree, extend the shift amount to match. Since
// BT ignores high bits (like shifts) we can use anyextend.
if (LHS.getValueType() != RHS.getValueType())
RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(Cond, MVT::i8), BT);
}
return SDValue();
}
SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
DebugLoc dl = Op.getDebugLoc();
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
// Optimize to BT if possible.
// Lower (X & (1 << N)) == 0 to BT(X, N).
// Lower ((X >>u N) & 1) != 0 to BT(X, N).
// Lower ((X >>s N) & 1) != 0 to BT(X, N).
if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
Op1.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(Op1)->isNullValue() &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
if (NewSetCC.getNode())
return NewSetCC;
}
// Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
// these.
if (Op1.getOpcode() == ISD::Constant &&
(cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
cast<ConstantSDNode>(Op1)->isNullValue()) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
// If the input is a setcc, then reuse the input setcc or use a new one with
// the inverted condition.
if (Op0.getOpcode() == X86ISD::SETCC) {
X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
bool Invert = (CC == ISD::SETNE) ^
cast<ConstantSDNode>(Op1)->isNullValue();
if (!Invert) return Op0;
CCode = X86::GetOppositeBranchCondition(CCode);
return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
}
}
bool isFP = Op1.getValueType().isFloatingPoint();
unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
if (X86CC == X86::COND_INVALID)
return SDValue();
SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86CC, MVT::i8), EFLAGS);
}
// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
// ones, and then concatenate the result back.
static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
"Unsupported value type for operation");
int NumElems = VT.getVectorNumElements();
DebugLoc dl = Op.getDebugLoc();
SDValue CC = Op.getOperand(2);
SDValue Idx0 = DAG.getConstant(0, MVT::i32);
SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
// Extract the RHS vectors
SDValue RHS = Op.getOperand(1);
SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
// Issue the operation on the smaller types and concatenate the result back
MVT EltVT = VT.getVectorElementType().getSimpleVT();
EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
}
SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
SDValue Cond;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
EVT VT = Op.getValueType();
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
DebugLoc dl = Op.getDebugLoc();
if (isFP) {
unsigned SSECC = 8;
EVT EltVT = Op0.getValueType().getVectorElementType();
assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
bool Swap = false;
// SSE Condition code mapping:
// 0 - EQ
// 1 - LT
// 2 - LE
// 3 - UNORD
// 4 - NEQ
// 5 - NLT
// 6 - NLE
// 7 - ORD
switch (SetCCOpcode) {
default: break;
case ISD::SETOEQ:
case ISD::SETEQ: SSECC = 0; break;
case ISD::SETOGT:
case ISD::SETGT: Swap = true; // Fallthrough
case ISD::SETLT:
case ISD::SETOLT: SSECC = 1; break;
case ISD::SETOGE:
case ISD::SETGE: Swap = true; // Fallthrough
case ISD::SETLE:
case ISD::SETOLE: SSECC = 2; break;
case ISD::SETUO: SSECC = 3; break;
case ISD::SETUNE:
case ISD::SETNE: SSECC = 4; break;
case ISD::SETULE: Swap = true;
case ISD::SETUGE: SSECC = 5; break;
case ISD::SETULT: Swap = true;
case ISD::SETUGT: SSECC = 6; break;
case ISD::SETO: SSECC = 7; break;
}
if (Swap)
std::swap(Op0, Op1);
// In the two special cases we can't handle, emit two comparisons.
if (SSECC == 8) {
if (SetCCOpcode == ISD::SETUEQ) {
SDValue UNORD, EQ;
UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
DAG.getConstant(3, MVT::i8));
EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
DAG.getConstant(0, MVT::i8));
return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
} else if (SetCCOpcode == ISD::SETONE) {
SDValue ORD, NEQ;
ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
DAG.getConstant(7, MVT::i8));
NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
DAG.getConstant(4, MVT::i8));
return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
}
llvm_unreachable("Illegal FP comparison");
}
// Handle all other FP comparisons here.
return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
DAG.getConstant(SSECC, MVT::i8));
}
// Break 256-bit integer vector compare into smaller ones.
if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
return Lower256IntVSETCC(Op, DAG);
// We are handling one of the integer comparisons here. Since SSE only has
// GT and EQ comparisons for integer, swapping operands and multiple
// operations may be required for some comparisons.
unsigned Opc = 0;
bool Swap = false, Invert = false, FlipSigns = false;
switch (SetCCOpcode) {
default: break;
case ISD::SETNE: Invert = true;
case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break;
case ISD::SETLT: Swap = true;
case ISD::SETGT: Opc = X86ISD::PCMPGT; break;
case ISD::SETGE: Swap = true;
case ISD::SETLE: Opc = X86ISD::PCMPGT; Invert = true; break;
case ISD::SETULT: Swap = true;
case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
case ISD::SETUGE: Swap = true;
case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
}
if (Swap)
std::swap(Op0, Op1);
// Check that the operation in question is available (most are plain SSE2,
// but PCMPGTQ and PCMPEQQ have different requirements).
if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
return SDValue();
if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
return SDValue();
// Since SSE has no unsigned integer comparisons, we need to flip the sign
// bits of the inputs before performing those operations.
if (FlipSigns) {
EVT EltVT = VT.getVectorElementType();
SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
EltVT);
std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
SignBits.size());
Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
}
SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
// If the logical-not of the result is required, perform that now.
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
static bool isX86LogicalCmp(SDValue Op) {
unsigned Opc = Op.getNode()->getOpcode();
if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
return true;
if (Op.getResNo() == 1 &&
(Opc == X86ISD::ADD ||
Opc == X86ISD::SUB ||
Opc == X86ISD::ADC ||
Opc == X86ISD::SBB ||
Opc == X86ISD::SMUL ||
Opc == X86ISD::UMUL ||
Opc == X86ISD::INC ||
Opc == X86ISD::DEC ||
Opc == X86ISD::OR ||
Opc == X86ISD::XOR ||
Opc == X86ISD::AND))
return true;
if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
return true;
return false;
}
static bool isZero(SDValue V) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
return C && C->isNullValue();
}
static bool isAllOnes(SDValue V) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
return C && C->isAllOnesValue();
}
SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
bool addTest = true;
SDValue Cond = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Op2 = Op.getOperand(2);
DebugLoc DL = Op.getDebugLoc();
SDValue CC;
if (Cond.getOpcode() == ISD::SETCC) {
SDValue NewCond = LowerSETCC(Cond, DAG);
if (NewCond.getNode())
Cond = NewCond;
}
// (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
// (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
// (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
// (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
if (Cond.getOpcode() == X86ISD::SETCC &&
Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
isZero(Cond.getOperand(1).getOperand(1))) {
SDValue Cmp = Cond.getOperand(1);
unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
(CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
SDValue CmpOp0 = Cmp.getOperand(0);
Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
SDValue Res = // Res = 0 or -1.
DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
if (isAllOnes(Op1) != (CondCode == X86::COND_E))
Res = DAG.getNOT(DL, Res, Res.getValueType());
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
if (N2C == 0 || !N2C->isNullValue())
Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
return Res;
}
}
// Look past (and (setcc_carry (cmp ...)), 1).
if (Cond.getOpcode() == ISD::AND &&
Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
if (C && C->getAPIntValue() == 1)
Cond = Cond.getOperand(0);
}
// If condition flag is set by a X86ISD::CMP, then use it as the condition
// setting operand in place of the X86ISD::SETCC.
unsigned CondOpcode = Cond.getOpcode();
if (CondOpcode == X86ISD::SETCC ||
CondOpcode == X86ISD::SETCC_CARRY) {
CC = Cond.getOperand(0);
SDValue Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
EVT VT = Op.getValueType();
bool IllegalFPCMov = false;
if (VT.isFloatingPoint() && !VT.isVector() &&
!isScalarFPTypeInSSEReg(VT)) // FPStack?
IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
Opc == X86ISD::BT) { // FIXME
Cond = Cmp;
addTest = false;
}
} else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
Cond.getOperand(0).getValueType() != MVT::i8)) {
SDValue LHS = Cond.getOperand(0);
SDValue RHS = Cond.getOperand(1);
unsigned X86Opcode;
unsigned X86Cond;
SDVTList VTs;
switch (CondOpcode) {
case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
default: llvm_unreachable("unexpected overflowing operator");
}
if (CondOpcode == ISD::UMULO)
VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
MVT::i32);
else
VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
if (CondOpcode == ISD::UMULO)
Cond = X86Op.getValue(2);
else
Cond = X86Op.getValue(1);
CC = DAG.getConstant(X86Cond, MVT::i8);
addTest = false;
}
if (addTest) {
// Look pass the truncate.
if (Cond.getOpcode() == ISD::TRUNCATE)
Cond = Cond.getOperand(0);
// We know the result of AND is compared against zero. Try to match
// it to BT.
if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
if (NewSetCC.getNode()) {
CC = NewSetCC.getOperand(0);
Cond = NewSetCC.getOperand(1);
addTest = false;
}
}
}
if (addTest) {
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Cond = EmitTest(Cond, X86::COND_NE, DAG);
}
// a < b ? -1 : 0 -> RES = ~setcc_carry
// a < b ? 0 : -1 -> RES = setcc_carry
// a >= b ? -1 : 0 -> RES = setcc_carry
// a >= b ? 0 : -1 -> RES = ~setcc_carry
if (Cond.getOpcode() == X86ISD::CMP) {
unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
(isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
DAG.getConstant(X86::COND_B, MVT::i8), Cond);
if (isAllOnes(Op1) != (CondCode == X86::COND_B))
return DAG.getNOT(DL, Res, Res.getValueType());
return Res;
}
}
// X86ISD::CMOV means set the result (which is operand 1) to the RHS if
// condition is true.
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
SDValue Ops[] = { Op2, Op1, CC, Cond };
return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
}
// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
// from the AND / OR.
static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
Opc = Op.getOpcode();
if (Opc != ISD::OR && Opc != ISD::AND)
return false;
return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
Op.getOperand(0).hasOneUse() &&
Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
Op.getOperand(1).hasOneUse());
}
// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
// 1 and that the SETCC node has a single use.
static bool isXor1OfSetCC(SDValue Op) {
if (Op.getOpcode() != ISD::XOR)
return false;
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (N1C && N1C->getAPIntValue() == 1) {
return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
Op.getOperand(0).hasOneUse();
}
return false;
}
SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
bool addTest = true;
SDValue Chain = Op.getOperand(0);
SDValue Cond = Op.getOperand(1);
SDValue Dest = Op.getOperand(2);
DebugLoc dl = Op.getDebugLoc();
SDValue CC;
bool Inverted = false;
if (Cond.getOpcode() == ISD::SETCC) {
// Check for setcc([su]{add,sub,mul}o == 0).
if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
isa<ConstantSDNode>(Cond.getOperand(1)) &&
cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
Cond.getOperand(0).getResNo() == 1 &&
(Cond.getOperand(0).getOpcode() == ISD::SADDO ||
Cond.getOperand(0).getOpcode() == ISD::UADDO ||
Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
Cond.getOperand(0).getOpcode() == ISD::USUBO ||
Cond.getOperand(0).getOpcode() == ISD::SMULO ||
Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
Inverted = true;
Cond = Cond.getOperand(0);
} else {
SDValue NewCond = LowerSETCC(Cond, DAG);
if (NewCond.getNode())
Cond = NewCond;
}
}
#if 0
// FIXME: LowerXALUO doesn't handle these!!
else if (Cond.getOpcode() == X86ISD::ADD ||
Cond.getOpcode() == X86ISD::SUB ||
Cond.getOpcode() == X86ISD::SMUL ||
Cond.getOpcode() == X86ISD::UMUL)
Cond = LowerXALUO(Cond, DAG);
#endif
// Look pass (and (setcc_carry (cmp ...)), 1).
if (Cond.getOpcode() == ISD::AND &&
Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
if (C && C->getAPIntValue() == 1)
Cond = Cond.getOperand(0);
}
// If condition flag is set by a X86ISD::CMP, then use it as the condition
// setting operand in place of the X86ISD::SETCC.
unsigned CondOpcode = Cond.getOpcode();
if (CondOpcode == X86ISD::SETCC ||
CondOpcode == X86ISD::SETCC_CARRY) {
CC = Cond.getOperand(0);
SDValue Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
// FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
Cond = Cmp;
addTest = false;
} else {
switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
default: break;
case X86::COND_O:
case X86::COND_B:
// These can only come from an arithmetic instruction with overflow,
// e.g. SADDO, UADDO.
Cond = Cond.getNode()->getOperand(1);
addTest = false;
break;
}
}
}
CondOpcode = Cond.getOpcode();
if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
Cond.getOperand(0).getValueType() != MVT::i8)) {
SDValue LHS = Cond.getOperand(0);
SDValue RHS = Cond.getOperand(1);
unsigned X86Opcode;
unsigned X86Cond;
SDVTList VTs;
switch (CondOpcode) {
case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
default: llvm_unreachable("unexpected overflowing operator");
}
if (Inverted)
X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
if (CondOpcode == ISD::UMULO)
VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
MVT::i32);
else
VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
if (CondOpcode == ISD::UMULO)
Cond = X86Op.getValue(2);
else
Cond = X86Op.getValue(1);
CC = DAG.getConstant(X86Cond, MVT::i8);
addTest = false;
} else {
unsigned CondOpc;
if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
SDValue Cmp = Cond.getOperand(0).getOperand(1);
if (CondOpc == ISD::OR) {
// Also, recognize the pattern generated by an FCMP_UNE. We can emit
// two branches instead of an explicit OR instruction with a
// separate test.
if (Cmp == Cond.getOperand(1).getOperand(1) &&
isX86LogicalCmp(Cmp)) {
CC = Cond.getOperand(0).getOperand(0);
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
CC = Cond.getOperand(1).getOperand(0);
Cond = Cmp;
addTest = false;
}
} else { // ISD::AND
// Also, recognize the pattern generated by an FCMP_OEQ. We can emit
// two branches instead of an explicit AND instruction with a
// separate test. However, we only do this if this block doesn't
// have a fall-through edge, because this requires an explicit
// jmp when the condition is false.
if (Cmp == Cond.getOperand(1).getOperand(1) &&
isX86LogicalCmp(Cmp) &&
Op.getNode()->hasOneUse()) {
X86::CondCode CCode =
(X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
CCode = X86::GetOppositeBranchCondition(CCode);
CC = DAG.getConstant(CCode, MVT::i8);
SDNode *User = *Op.getNode()->use_begin();
// Look for an unconditional branch following this conditional branch.
// We need this because we need to reverse the successors in order
// to implement FCMP_OEQ.
if (User->getOpcode() == ISD::BR) {
SDValue FalseBB = User->getOperand(1);
SDNode *NewBR =
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
assert(NewBR == User);
(void)NewBR;
Dest = FalseBB;
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
X86::CondCode CCode =
(X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
CCode = X86::GetOppositeBranchCondition(CCode);
CC = DAG.getConstant(CCode, MVT::i8);
Cond = Cmp;
addTest = false;
}
}
}
} else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
// Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
// It should be transformed during dag combiner except when the condition
// is set by a arithmetics with overflow node.
X86::CondCode CCode =
(X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
CCode = X86::GetOppositeBranchCondition(CCode);
CC = DAG.getConstant(CCode, MVT::i8);
Cond = Cond.getOperand(0).getOperand(1);
addTest = false;
} else if (Cond.getOpcode() == ISD::SETCC &&
cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
// For FCMP_OEQ, we can emit
// two branches instead of an explicit AND instruction with a
// separate test. However, we only do this if this block doesn't
// have a fall-through edge, because this requires an explicit
// jmp when the condition is false.
if (Op.getNode()->hasOneUse()) {
SDNode *User = *Op.getNode()->use_begin();
// Look for an unconditional branch following this conditional branch.
// We need this because we need to reverse the successors in order
// to implement FCMP_OEQ.
if (User->getOpcode() == ISD::BR) {
SDValue FalseBB = User->getOperand(1);
SDNode *NewBR =
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
assert(NewBR == User);
(void)NewBR;
Dest = FalseBB;
SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
Cond.getOperand(0), Cond.getOperand(1));
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
CC = DAG.getConstant(X86::COND_P, MVT::i8);
Cond = Cmp;
addTest = false;
}
}
} else if (Cond.getOpcode() == ISD::SETCC &&
cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
// For FCMP_UNE, we can emit
// two branches instead of an explicit AND instruction with a
// separate test. However, we only do this if this block doesn't
// have a fall-through edge, because this requires an explicit
// jmp when the condition is false.
if (Op.getNode()->hasOneUse()) {
SDNode *User = *Op.getNode()->use_begin();
// Look for an unconditional branch following this conditional branch.
// We need this because we need to reverse the successors in order
// to implement FCMP_UNE.
if (User->getOpcode() == ISD::BR) {
SDValue FalseBB = User->getOperand(1);
SDNode *NewBR =
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
assert(NewBR == User);
(void)NewBR;
SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
Cond.getOperand(0), Cond.getOperand(1));
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
CC = DAG.getConstant(X86::COND_NP, MVT::i8);
Cond = Cmp;
addTest = false;
Dest = FalseBB;
}
}
}
}
if (addTest) {
// Look pass the truncate.
if (Cond.getOpcode() == ISD::TRUNCATE)
Cond = Cond.getOperand(0);
// We know the result of AND is compared against zero. Try to match
// it to BT.
if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
if (NewSetCC.getNode()) {
CC = NewSetCC.getOperand(0);
Cond = NewSetCC.getOperand(1);
addTest = false;
}
}
}
if (addTest) {
CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Cond = EmitTest(Cond, X86::COND_NE, DAG);
}
return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cond);
}
// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
// Calls to _alloca is needed to probe the stack when allocating more than 4k
// bytes in one go. Touching the stack at 4K increments is necessary to ensure
// that the guard pages used by the OS virtual memory manager are allocated in
// correct sequence.
SDValue
X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
getTargetMachine().Options.EnableSegmentedStacks) &&
"This should be used only on Windows targets or when segmented stacks "
"are being used");
assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
DebugLoc dl = Op.getDebugLoc();
// Get the inputs.
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
// FIXME: Ensure alignment here
bool Is64Bit = Subtarget->is64Bit();
EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
if (getTargetMachine().Options.EnableSegmentedStacks) {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
if (Is64Bit) {
// The 64 bit implementation of segmented stacks needs to clobber both r10
// r11. This makes it impossible to use it along with nested parameters.
const Function *F = MF.getFunction();
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; I++)
if (I->hasNestAttr())
report_fatal_error("Cannot use segmented stacks with functions that "
"have nested arguments.");
}
const TargetRegisterClass *AddrRegClass =
getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
DAG.getRegister(Vreg, SPTy));
SDValue Ops1[2] = { Value, Chain };
return DAG.getMergeValues(Ops1, 2, dl);
} else {
SDValue Flag;
unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
Flag = Chain.getValue(1);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
Flag = Chain.getValue(1);
Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
SDValue Ops1[2] = { Chain.getValue(0), Chain };
return DAG.getMergeValues(Ops1, 2, dl);
}
}
SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
DebugLoc DL = Op.getDebugLoc();
if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
getPointerTy());
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
MachinePointerInfo(SV), false, false, 0);
}
// __va_list_tag:
// gp_offset (0 - 6 * 8)
// fp_offset (48 - 48 + 8 * 16)
// overflow_arg_area (point to parameters coming in memory).
// reg_save_area
SmallVector<SDValue, 8> MemOps;
SDValue FIN = Op.getOperand(1);
// Store gp_offset
SDValue Store = DAG.getStore(Op.getOperand(0), DL,
DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
MVT::i32),
FIN, MachinePointerInfo(SV), false, false, 0);
MemOps.push_back(Store);
// Store fp_offset
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
FIN, DAG.getIntPtrConstant(4));
Store = DAG.getStore(Op.getOperand(0), DL,
DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
MVT::i32),
FIN, MachinePointerInfo(SV, 4), false, false, 0);
MemOps.push_back(Store);
// Store ptr to overflow_arg_area
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
FIN, DAG.getIntPtrConstant(4));
SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
getPointerTy());
Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
MachinePointerInfo(SV, 8),
false, false, 0);
MemOps.push_back(Store);
// Store ptr to reg_save_area.
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
FIN, DAG.getIntPtrConstant(8));
SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
getPointerTy());
Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
MachinePointerInfo(SV, 16), false, false, 0);
MemOps.push_back(Store);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
&MemOps[0], MemOps.size());
}
SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget->is64Bit() &&
"LowerVAARG only handles 64-bit va_arg!");
assert((Subtarget->isTargetLinux() ||
Subtarget->isTargetDarwin()) &&
"Unhandled target in LowerVAARG");
assert(Op.getNode()->getNumOperands() == 4);
SDValue Chain = Op.getOperand(0);
SDValue SrcPtr = Op.getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
unsigned Align = Op.getConstantOperandVal(3);
DebugLoc dl = Op.getDebugLoc();
EVT ArgVT = Op.getNode()->getValueType(0);
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
uint8_t ArgMode;
// Decide which area this value should be read from.
// TODO: Implement the AMD64 ABI in its entirety. This simple
// selection mechanism works only for the basic types.
if (ArgVT == MVT::f80) {
llvm_unreachable("va_arg for f80 not yet implemented");
} else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
} else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
} else {
llvm_unreachable("Unhandled argument type in LowerVAARG");
}
if (ArgMode == 2) {
// Sanity Check: Make sure using fp_offset makes sense.
assert(!getTargetMachine().Options.UseSoftFloat &&
!(DAG.getMachineFunction()
.getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
Subtarget->hasSSE1());
}
// Insert VAARG_64 node into the DAG
// VAARG_64 returns two values: Variable Argument Address, Chain
SmallVector<SDValue, 11> InstOps;
InstOps.push_back(Chain);
InstOps.push_back(SrcPtr);
InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
InstOps.push_back(DAG.getConstant(Align, MVT::i32));
SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
VTs, &InstOps[0], InstOps.size(),
MVT::i64,
MachinePointerInfo(SV),
/*Align=*/0,
/*Volatile=*/false,
/*ReadMem=*/true,
/*WriteMem=*/true);
Chain = VAARG.getValue(1);
// Load the next argument and return it
return DAG.getLoad(ArgVT, dl,
Chain,
VAARG,
MachinePointerInfo(),
false, false, false, 0);
}
SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
// X86-64 va_list is a struct { i32, i32, i8*, i8* }.
assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
SDValue Chain = Op.getOperand(0);
SDValue DstPtr = Op.getOperand(1);
SDValue SrcPtr = Op.getOperand(2);
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
DebugLoc DL = Op.getDebugLoc();
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
false,
MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
}
// getTargetVShiftNOde - Handle vector element shifts where the shift amount
// may or may not be a constant. Takes immediate version of shift as input.
static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
SDValue SrcOp, SDValue ShAmt,
SelectionDAG &DAG) {
assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
if (isa<ConstantSDNode>(ShAmt)) {
switch (Opc) {
default: llvm_unreachable("Unknown target vector shift node");
case X86ISD::VSHLI:
case X86ISD::VSRLI:
case X86ISD::VSRAI:
return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
}
}
// Change opcode to non-immediate version
switch (Opc) {
default: llvm_unreachable("Unknown target vector shift node");
case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
}
// Need to build a vector containing shift amount
// Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
SDValue ShOps[4];
ShOps[0] = ShAmt;
ShOps[1] = DAG.getConstant(0, MVT::i32);
ShOps[2] = DAG.getUNDEF(MVT::i32);
ShOps[3] = DAG.getUNDEF(MVT::i32);
ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
}
SDValue
X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
// Comparison intrinsics.
case Intrinsic::x86_sse_comieq_ss:
case Intrinsic::x86_sse_comilt_ss:
case Intrinsic::x86_sse_comile_ss:
case Intrinsic::x86_sse_comigt_ss:
case Intrinsic::x86_sse_comige_ss:
case Intrinsic::x86_sse_comineq_ss:
case Intrinsic::x86_sse_ucomieq_ss:
case Intrinsic::x86_sse_ucomilt_ss:
case Intrinsic::x86_sse_ucomile_ss:
case Intrinsic::x86_sse_ucomigt_ss:
case Intrinsic::x86_sse_ucomige_ss:
case Intrinsic::x86_sse_ucomineq_ss:
case Intrinsic::x86_sse2_comieq_sd:
case Intrinsic::x86_sse2_comilt_sd:
case Intrinsic::x86_sse2_comile_sd:
case Intrinsic::x86_sse2_comigt_sd:
case Intrinsic::x86_sse2_comige_sd:
case Intrinsic::x86_sse2_comineq_sd:
case Intrinsic::x86_sse2_ucomieq_sd:
case Intrinsic::x86_sse2_ucomilt_sd:
case Intrinsic::x86_sse2_ucomile_sd:
case Intrinsic::x86_sse2_ucomigt_sd:
case Intrinsic::x86_sse2_ucomige_sd:
case Intrinsic::x86_sse2_ucomineq_sd: {
unsigned Opc = 0;
ISD::CondCode CC = ISD::SETCC_INVALID;
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
case Intrinsic::x86_sse_comieq_ss:
case Intrinsic::x86_sse2_comieq_sd:
Opc = X86ISD::COMI;
CC = ISD::SETEQ;
break;
case Intrinsic::x86_sse_comilt_ss:
case Intrinsic::x86_sse2_comilt_sd:
Opc = X86ISD::COMI;
CC = ISD::SETLT;
break;
case Intrinsic::x86_sse_comile_ss:
case Intrinsic::x86_sse2_comile_sd:
Opc = X86ISD::COMI;
CC = ISD::SETLE;
break;
case Intrinsic::x86_sse_comigt_ss:
case Intrinsic::x86_sse2_comigt_sd:
Opc = X86ISD::COMI;
CC = ISD::SETGT;
break;
case Intrinsic::x86_sse_comige_ss:
case Intrinsic::x86_sse2_comige_sd:
Opc = X86ISD::COMI;
CC = ISD::SETGE;
break;
case Intrinsic::x86_sse_comineq_ss:
case Intrinsic::x86_sse2_comineq_sd:
Opc = X86ISD::COMI;
CC = ISD::SETNE;
break;
case Intrinsic::x86_sse_ucomieq_ss:
case Intrinsic::x86_sse2_ucomieq_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETEQ;
break;
case Intrinsic::x86_sse_ucomilt_ss:
case Intrinsic::x86_sse2_ucomilt_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETLT;
break;
case Intrinsic::x86_sse_ucomile_ss:
case Intrinsic::x86_sse2_ucomile_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETLE;
break;
case Intrinsic::x86_sse_ucomigt_ss:
case Intrinsic::x86_sse2_ucomigt_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETGT;
break;
case Intrinsic::x86_sse_ucomige_ss:
case Intrinsic::x86_sse2_ucomige_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETGE;
break;
case Intrinsic::x86_sse_ucomineq_ss:
case Intrinsic::x86_sse2_ucomineq_sd:
Opc = X86ISD::UCOMI;
CC = ISD::SETNE;
break;
}
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86CC, MVT::i8), Cond);
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
// XOP comparison intrinsics
case Intrinsic::x86_xop_vpcomltb:
case Intrinsic::x86_xop_vpcomltw:
case Intrinsic::x86_xop_vpcomltd:
case Intrinsic::x86_xop_vpcomltq:
case Intrinsic::x86_xop_vpcomltub:
case Intrinsic::x86_xop_vpcomltuw:
case Intrinsic::x86_xop_vpcomltud:
case Intrinsic::x86_xop_vpcomltuq:
case Intrinsic::x86_xop_vpcomleb:
case Intrinsic::x86_xop_vpcomlew:
case Intrinsic::x86_xop_vpcomled:
case Intrinsic::x86_xop_vpcomleq:
case Intrinsic::x86_xop_vpcomleub:
case Intrinsic::x86_xop_vpcomleuw:
case Intrinsic::x86_xop_vpcomleud:
case Intrinsic::x86_xop_vpcomleuq:
case Intrinsic::x86_xop_vpcomgtb:
case Intrinsic::x86_xop_vpcomgtw:
case Intrinsic::x86_xop_vpcomgtd:
case Intrinsic::x86_xop_vpcomgtq:
case Intrinsic::x86_xop_vpcomgtub:
case Intrinsic::x86_xop_vpcomgtuw:
case Intrinsic::x86_xop_vpcomgtud:
case Intrinsic::x86_xop_vpcomgtuq:
case Intrinsic::x86_xop_vpcomgeb:
case Intrinsic::x86_xop_vpcomgew:
case Intrinsic::x86_xop_vpcomged:
case Intrinsic::x86_xop_vpcomgeq:
case Intrinsic::x86_xop_vpcomgeub:
case Intrinsic::x86_xop_vpcomgeuw:
case Intrinsic::x86_xop_vpcomgeud:
case Intrinsic::x86_xop_vpcomgeuq:
case Intrinsic::x86_xop_vpcomeqb:
case Intrinsic::x86_xop_vpcomeqw:
case Intrinsic::x86_xop_vpcomeqd:
case Intrinsic::x86_xop_vpcomeqq:
case Intrinsic::x86_xop_vpcomequb:
case Intrinsic::x86_xop_vpcomequw:
case Intrinsic::x86_xop_vpcomequd:
case Intrinsic::x86_xop_vpcomequq:
case Intrinsic::x86_xop_vpcomneb:
case Intrinsic::x86_xop_vpcomnew:
case Intrinsic::x86_xop_vpcomned:
case Intrinsic::x86_xop_vpcomneq:
case Intrinsic::x86_xop_vpcomneub:
case Intrinsic::x86_xop_vpcomneuw:
case Intrinsic::x86_xop_vpcomneud:
case Intrinsic::x86_xop_vpcomneuq:
case Intrinsic::x86_xop_vpcomfalseb:
case Intrinsic::x86_xop_vpcomfalsew:
case Intrinsic::x86_xop_vpcomfalsed:
case Intrinsic::x86_xop_vpcomfalseq:
case Intrinsic::x86_xop_vpcomfalseub:
case Intrinsic::x86_xop_vpcomfalseuw:
case Intrinsic::x86_xop_vpcomfalseud:
case Intrinsic::x86_xop_vpcomfalseuq:
case Intrinsic::x86_xop_vpcomtrueb:
case Intrinsic::x86_xop_vpcomtruew:
case Intrinsic::x86_xop_vpcomtrued:
case Intrinsic::x86_xop_vpcomtrueq:
case Intrinsic::x86_xop_vpcomtrueub:
case Intrinsic::x86_xop_vpcomtrueuw:
case Intrinsic::x86_xop_vpcomtrueud:
case Intrinsic::x86_xop_vpcomtrueuq: {
unsigned CC = 0;
unsigned Opc = 0;
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
case Intrinsic::x86_xop_vpcomltb:
case Intrinsic::x86_xop_vpcomltw:
case Intrinsic::x86_xop_vpcomltd:
case Intrinsic::x86_xop_vpcomltq:
CC = 0;
Opc = X86ISD::VPCOM;
break;
case Intrinsic::x86_xop_vpcomltub:
case Intrinsic::x86_xop_vpcomltuw:
case Intrinsic::x86_xop_vpcomltud:
case Intrinsic::x86_xop_vpcomltuq:
CC = 0;
Opc = X86ISD::VPCOMU;
break;
case Intrinsic::x86_xop_vpcomleb:
case Intrinsic::x86_xop_vpcomlew:
case Intrinsic::x86_xop_vpcomled:
case Intrinsic::x86_xop_vpcomleq:
CC = 1;
Opc = X86ISD::VPCOM;
break;
case Intrinsic::x86_xop_vpcomleub:
case Intrinsic::x86_xop_vpcomleuw:
case Intrinsic::x86_xop_vpcomleud:
case Intrinsic::x86_xop_vpcomleuq:
CC = 1;
Opc = X86ISD::VPCOMU;
break;
case Intrinsic::x86_xop_vpcomgtb:
case Intrinsic::x86_xop_vpcomgtw:
case Intrinsic::x86_xop_vpcomgtd:
case Intrinsic::x86_xop_vpcomgtq:
CC = 2;
Opc = X86ISD::VPCOM;
break;
case Intrinsic::x86_xop_vpcomgtub:
case Intrinsic::x86_xop_vpcomgtuw:
case Intrinsic::x86_xop_vpcomgtud:
case Intrinsic::x86_xop_vpcomgtuq:
CC = 2;
Opc = X86ISD::VPCOMU;
break;
case Intrinsic::x86_xop_vpcomgeb:
case Intrinsic::x86_xop_vpcomgew:
case Intrinsic::x86_xop_vpcomged:
case Intrinsic::x86_xop_vpcomgeq:
CC = 3;
Opc = X86ISD::VPCOM;
break;
case Intrinsic::x86_xop_vpcomgeub:
case Intrinsic::x86_xop_vpcomgeuw:
case Intrinsic::x86_xop_vpcomgeud:
case Intrinsic::x86_xop_vpcomgeuq:
CC = 3;
Opc = X86ISD::VPCOMU;
break;
case Intrinsic::x86_xop_vpcomeqb:
case Intrinsic::x86_xop_vpcomeqw:
case Intrinsic::x86_xop_vpcomeqd:
case Intrinsic::x86_xop_vpcomeqq:
CC = 4;
Opc = X86ISD::VPCOM;
break;
case Intrinsic::x86_xop_vpcomequb:
case Intrinsic::x86_xop_vpcomequw:
case Intrinsic::x86_xop_vpcomequd:
case Intrinsic::x86_xop_vpcomequq:
CC = 4;
Opc = X86ISD::VPCOMU;
break;
case Intrinsic::x86_xop_vpcomneb:
case Intrinsic::x86_xop_vpcomnew:
case Intrinsic::x86_xop_vpcomned:
case Intrinsic::x86_xop_vpcomneq:
CC = 5;
Opc = X86ISD::VPCOM;
break;
case Intrinsic::x86_xop_vpcomneub:
case Intrinsic::x86_xop_vpcomneuw:
case Intrinsic::x86_xop_vpcomneud:
case Intrinsic::x86_xop_vpcomneuq:
CC = 5;
Opc = X86ISD::VPCOMU;
break;
case Intrinsic::x86_xop_vpcomfalseb:
case Intrinsic::x86_xop_vpcomfalsew:
case Intrinsic::x86_xop_vpcomfalsed:
case Intrinsic::x86_xop_vpcomfalseq:
CC = 6;
Opc = X86ISD::VPCOM;
break;
case Intrinsic::x86_xop_vpcomfalseub:
case Intrinsic::x86_xop_vpcomfalseuw:
case Intrinsic::x86_xop_vpcomfalseud:
case Intrinsic::x86_xop_vpcomfalseuq:
CC = 6;
Opc = X86ISD::VPCOMU;
break;
case Intrinsic::x86_xop_vpcomtrueb:
case Intrinsic::x86_xop_vpcomtruew:
case Intrinsic::x86_xop_vpcomtrued:
case Intrinsic::x86_xop_vpcomtrueq:
CC = 7;
Opc = X86ISD::VPCOM;
break;
case Intrinsic::x86_xop_vpcomtrueub:
case Intrinsic::x86_xop_vpcomtrueuw:
case Intrinsic::x86_xop_vpcomtrueud:
case Intrinsic::x86_xop_vpcomtrueuq:
CC = 7;
Opc = X86ISD::VPCOMU;
break;
}
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
DAG.getConstant(CC, MVT::i8));
}
// Arithmetic intrinsics.
case Intrinsic::x86_sse2_pmulu_dq:
case Intrinsic::x86_avx2_pmulu_dq:
return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_sse3_hadd_ps:
case Intrinsic::x86_sse3_hadd_pd:
case Intrinsic::x86_avx_hadd_ps_256:
case Intrinsic::x86_avx_hadd_pd_256:
return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_sse3_hsub_ps:
case Intrinsic::x86_sse3_hsub_pd:
case Intrinsic::x86_avx_hsub_ps_256:
case Intrinsic::x86_avx_hsub_pd_256:
return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_ssse3_phadd_w_128:
case Intrinsic::x86_ssse3_phadd_d_128:
case Intrinsic::x86_avx2_phadd_w:
case Intrinsic::x86_avx2_phadd_d:
return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_ssse3_phsub_w_128:
case Intrinsic::x86_ssse3_phsub_d_128:
case Intrinsic::x86_avx2_phsub_w:
case Intrinsic::x86_avx2_phsub_d:
return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_avx2_psllv_d:
case Intrinsic::x86_avx2_psllv_q:
case Intrinsic::x86_avx2_psllv_d_256:
case Intrinsic::x86_avx2_psllv_q_256:
return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_avx2_psrlv_d:
case Intrinsic::x86_avx2_psrlv_q:
case Intrinsic::x86_avx2_psrlv_d_256:
case Intrinsic::x86_avx2_psrlv_q_256:
return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_avx2_psrav_d:
case Intrinsic::x86_avx2_psrav_d_256:
return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_ssse3_pshuf_b_128:
case Intrinsic::x86_avx2_pshuf_b:
return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_ssse3_psign_b_128:
case Intrinsic::x86_ssse3_psign_w_128:
case Intrinsic::x86_ssse3_psign_d_128:
case Intrinsic::x86_avx2_psign_b:
case Intrinsic::x86_avx2_psign_w:
case Intrinsic::x86_avx2_psign_d:
return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_sse41_insertps:
return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::x86_avx_vperm2f128_ps_256:
case Intrinsic::x86_avx_vperm2f128_pd_256:
case Intrinsic::x86_avx_vperm2f128_si_256:
case Intrinsic::x86_avx2_vperm2i128:
return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::x86_avx2_permd:
case Intrinsic::x86_avx2_permps:
// Operands intentionally swapped. Mask is last operand to intrinsic,
// but second operand for node/intruction.
return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(1));
// ptest and testp intrinsics. The intrinsic these come from are designed to
// return an integer value, not just an instruction so lower it to the ptest
// or testp pattern and a setcc for the result.
case Intrinsic::x86_sse41_ptestz:
case Intrinsic::x86_sse41_ptestc:
case Intrinsic::x86_sse41_ptestnzc:
case Intrinsic::x86_avx_ptestz_256:
case Intrinsic::x86_avx_ptestc_256:
case Intrinsic::x86_avx_ptestnzc_256:
case Intrinsic::x86_avx_vtestz_ps:
case Intrinsic::x86_avx_vtestc_ps:
case Intrinsic::x86_avx_vtestnzc_ps:
case Intrinsic::x86_avx_vtestz_pd:
case Intrinsic::x86_avx_vtestc_pd:
case Intrinsic::x86_avx_vtestnzc_pd:
case Intrinsic::x86_avx_vtestz_ps_256:
case Intrinsic::x86_avx_vtestc_ps_256:
case Intrinsic::x86_avx_vtestnzc_ps_256:
case Intrinsic::x86_avx_vtestz_pd_256:
case Intrinsic::x86_avx_vtestc_pd_256:
case Intrinsic::x86_avx_vtestnzc_pd_256: {
bool IsTestPacked = false;
unsigned X86CC = 0;
switch (IntNo) {
default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
case Intrinsic::x86_avx_vtestz_ps:
case Intrinsic::x86_avx_vtestz_pd:
case Intrinsic::x86_avx_vtestz_ps_256:
case Intrinsic::x86_avx_vtestz_pd_256:
IsTestPacked = true; // Fallthrough
case Intrinsic::x86_sse41_ptestz:
case Intrinsic::x86_avx_ptestz_256:
// ZF = 1
X86CC = X86::COND_E;
break;
case Intrinsic::x86_avx_vtestc_ps:
case Intrinsic::x86_avx_vtestc_pd:
case Intrinsic::x86_avx_vtestc_ps_256:
case Intrinsic::x86_avx_vtestc_pd_256:
IsTestPacked = true; // Fallthrough
case Intrinsic::x86_sse41_ptestc:
case Intrinsic::x86_avx_ptestc_256:
// CF = 1
X86CC = X86::COND_B;
break;
case Intrinsic::x86_avx_vtestnzc_ps:
case Intrinsic::x86_avx_vtestnzc_pd:
case Intrinsic::x86_avx_vtestnzc_ps_256:
case Intrinsic::x86_avx_vtestnzc_pd_256:
IsTestPacked = true; // Fallthrough
case Intrinsic::x86_sse41_ptestnzc:
case Intrinsic::x86_avx_ptestnzc_256:
// ZF and CF = 0
X86CC = X86::COND_A;
break;
}
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
SDValue CC = DAG.getConstant(X86CC, MVT::i8);
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
// SSE/AVX shift intrinsics
case Intrinsic::x86_sse2_psll_w:
case Intrinsic::x86_sse2_psll_d:
case Intrinsic::x86_sse2_psll_q:
case Intrinsic::x86_avx2_psll_w:
case Intrinsic::x86_avx2_psll_d:
case Intrinsic::x86_avx2_psll_q:
return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_sse2_psrl_w:
case Intrinsic::x86_sse2_psrl_d:
case Intrinsic::x86_sse2_psrl_q:
case Intrinsic::x86_avx2_psrl_w:
case Intrinsic::x86_avx2_psrl_d:
case Intrinsic::x86_avx2_psrl_q:
return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_sse2_psra_w:
case Intrinsic::x86_sse2_psra_d:
case Intrinsic::x86_avx2_psra_w:
case Intrinsic::x86_avx2_psra_d:
return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::x86_sse2_pslli_w:
case Intrinsic::x86_sse2_pslli_d:
case Intrinsic::x86_sse2_pslli_q:
case Intrinsic::x86_avx2_pslli_w:
case Intrinsic::x86_avx2_pslli_d:
case Intrinsic::x86_avx2_pslli_q:
return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), DAG);
case Intrinsic::x86_sse2_psrli_w:
case Intrinsic::x86_sse2_psrli_d:
case Intrinsic::x86_sse2_psrli_q:
case Intrinsic::x86_avx2_psrli_w:
case Intrinsic::x86_avx2_psrli_d:
case Intrinsic::x86_avx2_psrli_q:
return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), DAG);
case Intrinsic::x86_sse2_psrai_w:
case Intrinsic::x86_sse2_psrai_d:
case Intrinsic::x86_avx2_psrai_w:
case Intrinsic::x86_avx2_psrai_d:
return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), DAG);
// Fix vector shift instructions where the last operand is a non-immediate
// i32 value.
case Intrinsic::x86_mmx_pslli_w:
case Intrinsic::x86_mmx_pslli_d:
case Intrinsic::x86_mmx_pslli_q:
case Intrinsic::x86_mmx_psrli_w:
case Intrinsic::x86_mmx_psrli_d:
case Intrinsic::x86_mmx_psrli_q:
case Intrinsic::x86_mmx_psrai_w:
case Intrinsic::x86_mmx_psrai_d: {
SDValue ShAmt = Op.getOperand(2);
if (isa<ConstantSDNode>(ShAmt))
return SDValue();
unsigned NewIntNo = 0;
switch (IntNo) {
case Intrinsic::x86_mmx_pslli_w:
NewIntNo = Intrinsic::x86_mmx_psll_w;
break;
case Intrinsic::x86_mmx_pslli_d:
NewIntNo = Intrinsic::x86_mmx_psll_d;
break;
case Intrinsic::x86_mmx_pslli_q:
NewIntNo = Intrinsic::x86_mmx_psll_q;
break;
case Intrinsic::x86_mmx_psrli_w:
NewIntNo = Intrinsic::x86_mmx_psrl_w;
break;
case Intrinsic::x86_mmx_psrli_d:
NewIntNo = Intrinsic::x86_mmx_psrl_d;
break;
case Intrinsic::x86_mmx_psrli_q:
NewIntNo = Intrinsic::x86_mmx_psrl_q;
break;
case Intrinsic::x86_mmx_psrai_w:
NewIntNo = Intrinsic::x86_mmx_psra_w;
break;
case Intrinsic::x86_mmx_psrai_d:
NewIntNo = Intrinsic::x86_mmx_psra_d;
break;
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
}
// The vector shift intrinsics with scalars uses 32b shift amounts but
// the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
// to be zero.
ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
DAG.getConstant(0, MVT::i32));
// FIXME this must be lowered to get rid of the invalid type.
EVT VT = Op.getValueType();
ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getConstant(NewIntNo, MVT::i32),
Op.getOperand(1), ShAmt);
}
}
}
SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setReturnAddressIsTaken(true);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
DebugLoc dl = Op.getDebugLoc();
if (Depth > 0) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset =
DAG.getConstant(TD->getPointerSize(),
Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, getPointerTy(),
FrameAddr, Offset),
MachinePointerInfo(), false, false, false, 0);
}
// Just load the return address.
SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
RetAddrFI, MachinePointerInfo(), false, false, false, 0);
}
SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo(),
false, false, false, 0);
return FrameAddr;
}
SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
SelectionDAG &DAG) const {
return DAG.getIntPtrConstant(2*TD->getPointerSize());
}
SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SDValue Chain = Op.getOperand(0);
SDValue Offset = Op.getOperand(1);
SDValue Handler = Op.getOperand(2);
DebugLoc dl = Op.getDebugLoc();
SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
Subtarget->is64Bit() ? X86::RBP : X86::EBP,
getPointerTy());
unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
DAG.getIntPtrConstant(TD->getPointerSize()));
StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
false, false, 0);
Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
MF.getRegInfo().addLiveOut(StoreAddrReg);
return DAG.getNode(X86ISD::EH_RETURN, dl,
MVT::Other,
Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
}
SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
return Op.getOperand(0);
}
SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
SDValue Root = Op.getOperand(0);
SDValue Trmp = Op.getOperand(1); // trampoline
SDValue FPtr = Op.getOperand(2); // nested function
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
DebugLoc dl = Op.getDebugLoc();
const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
if (Subtarget->is64Bit()) {
SDValue OutChains[6];
// Large code-model.
const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
// Load the pointer to the nested function into R11.
unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
SDValue Addr = Trmp;
OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
Addr, MachinePointerInfo(TrmpAddr),
false, false, 0);
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(2, MVT::i64));
OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
MachinePointerInfo(TrmpAddr, 2),
false, false, 2);
// Load the 'nest' parameter value into R10.
// R10 is specified in X86CallingConv.td
OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(10, MVT::i64));
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
Addr, MachinePointerInfo(TrmpAddr, 10),
false, false, 0);
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(12, MVT::i64));
OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
MachinePointerInfo(TrmpAddr, 12),
false, false, 2);
// Jump to the nested function.
OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(20, MVT::i64));
OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
Addr, MachinePointerInfo(TrmpAddr, 20),
false, false, 0);
unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(22, MVT::i64));
OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
MachinePointerInfo(TrmpAddr, 22),
false, false, 0);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
} else {
const Function *Func =
cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
CallingConv::ID CC = Func->getCallingConv();
unsigned NestReg;
switch (CC) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::X86_StdCall: {
// Pass 'nest' parameter in ECX.
// Must be kept in sync with X86CallingConv.td
NestReg = X86::ECX;
// Check that ECX wasn't needed by an 'inreg' parameter.
FunctionType *FTy = Func->getFunctionType();
const AttrListPtr &Attrs = Func->getAttributes();
if (!Attrs.isEmpty() && !Func->isVarArg()) {
unsigned InRegCount = 0;
unsigned Idx = 1;
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I, ++Idx)
if (Attrs.paramHasAttr(Idx, Attribute::InReg))
// FIXME: should only count parameters that are lowered to integers.
InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
if (InRegCount > 2) {
report_fatal_error("Nest register in use - reduce number of inreg"
" parameters!");
}
}
break;
}
case CallingConv::X86_FastCall:
case CallingConv::X86_ThisCall:
case CallingConv::Fast:
// Pass 'nest' parameter in EAX.
// Must be kept in sync with X86CallingConv.td
NestReg = X86::EAX;
break;
}
SDValue OutChains[4];
SDValue Addr, Disp;
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(10, MVT::i32));
Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
// This is storing the opcode for MOV32ri.
const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
OutChains[0] = DAG.getStore(Root, dl,
DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Trmp, MachinePointerInfo(TrmpAddr),
false, false, 0);
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(1, MVT::i32));
OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
MachinePointerInfo(TrmpAddr, 1),
false, false, 1);
const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(5, MVT::i32));
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
MachinePointerInfo(TrmpAddr, 5),
false, false, 1);
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(6, MVT::i32));
OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
MachinePointerInfo(TrmpAddr, 6),
false, false, 1);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
}
}
SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SelectionDAG &DAG) const {
/*
The rounding mode is in bits 11:10 of FPSR, and has the following
settings:
00 Round to nearest
01 Round to -inf
10 Round to +inf
11 Round to 0
FLT_ROUNDS, on the other hand, expects the following:
-1 Undefined
0 Round to 0
1 Round to nearest
2 Round to +inf
3 Round to -inf
To perform the conversion, we do:
(((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
*/
MachineFunction &MF = DAG.getMachineFunction();
const TargetMachine &TM = MF.getTarget();
const TargetFrameLowering &TFI = *TM.getFrameLowering();
unsigned StackAlignment = TFI.getStackAlignment();
EVT VT = Op.getValueType();
DebugLoc DL = Op.getDebugLoc();
// Save FP Control Word to stack slot
int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
MachineMemOperand::MOStore, 2, 2);
SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
DAG.getVTList(MVT::Other),
Ops, 2, MVT::i16, MMO);
// Load FP Control Word from stack slot
SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
MachinePointerInfo(), false, false, false, 0);
// Transform as necessary
SDValue CWD1 =
DAG.getNode(ISD::SRL, DL, MVT::i16,
DAG.getNode(ISD::AND, DL, MVT::i16,
CWD, DAG.getConstant(0x800, MVT::i16)),
DAG.getConstant(11, MVT::i8));
SDValue CWD2 =
DAG.getNode(ISD::SRL, DL, MVT::i16,
DAG.getNode(ISD::AND, DL, MVT::i16,
CWD, DAG.getConstant(0x400, MVT::i16)),
DAG.getConstant(9, MVT::i8));
SDValue RetVal =
DAG.getNode(ISD::AND, DL, MVT::i16,
DAG.getNode(ISD::ADD, DL, MVT::i16,
DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
DAG.getConstant(1, MVT::i16)),
DAG.getConstant(3, MVT::i16));
return DAG.getNode((VT.getSizeInBits() < 16 ?
ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
}
SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
EVT OpVT = VT;
unsigned NumBits = VT.getSizeInBits();
DebugLoc dl = Op.getDebugLoc();
Op = Op.getOperand(0);
if (VT == MVT::i8) {
// Zero extend to i32 since there is not an i8 bsr.
OpVT = MVT::i32;
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
}
// Issue a bsr (scan bits in reverse) which also sets EFLAGS.
SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
// If src is zero (i.e. bsr sets ZF), returns NumBits.
SDValue Ops[] = {
Op,
DAG.getConstant(NumBits+NumBits-1, OpVT),
DAG.getConstant(X86::COND_E, MVT::i8),
Op.getValue(1)
};
Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
// Finally xor with NumBits-1.
Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
if (VT == MVT::i8)
Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
return Op;
}
SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
EVT OpVT = VT;
unsigned NumBits = VT.getSizeInBits();
DebugLoc dl = Op.getDebugLoc();
Op = Op.getOperand(0);
if (VT == MVT::i8) {
// Zero extend to i32 since there is not an i8 bsr.
OpVT = MVT::i32;
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
}
// Issue a bsr (scan bits in reverse).
SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
// And xor with NumBits-1.
Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
if (VT == MVT::i8)
Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
return Op;
}
SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
unsigned NumBits = VT.getSizeInBits();
DebugLoc dl = Op.getDebugLoc();
Op = Op.getOperand(0);
// Issue a bsf (scan bits forward) which also sets EFLAGS.
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
// If src is zero (i.e. bsf sets ZF), returns NumBits.
SDValue Ops[] = {
Op,
DAG.getConstant(NumBits, VT),
DAG.getConstant(X86::COND_E, MVT::i8),
Op.getValue(1)
};
return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
}
// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
// ones, and then concatenate the result back.
static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
"Unsupported value type for operation");
int NumElems = VT.getVectorNumElements();
DebugLoc dl = Op.getDebugLoc();
SDValue Idx0 = DAG.getConstant(0, MVT::i32);
SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
// Extract the RHS vectors
SDValue RHS = Op.getOperand(1);
SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
MVT EltVT = VT.getVectorElementType().getSimpleVT();
EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
}
SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType().getSizeInBits() == 256 &&
Op.getValueType().isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return Lower256IntArith(Op, DAG);
}
SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType().getSizeInBits() == 256 &&
Op.getValueType().isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return Lower256IntArith(Op, DAG);
}
SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
return Lower256IntArith(Op, DAG);
assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
"Only know how to lower V2I64/V4I64 multiply");
DebugLoc dl = Op.getDebugLoc();
// Ahi = psrlqi(a, 32);
// Bhi = psrlqi(b, 32);
//
// AloBlo = pmuludq(a, b);
// AloBhi = pmuludq(a, Bhi);
// AhiBlo = pmuludq(Ahi, b);
// AloBhi = psllqi(AloBhi, 32);
// AhiBlo = psllqi(AhiBlo, 32);
// return AloBlo + AloBhi + AhiBlo;
SDValue A = Op.getOperand(0);
SDValue B = Op.getOperand(1);
SDValue ShAmt = DAG.getConstant(32, MVT::i32);
SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
// Bit cast to 32-bit vectors for MULUDQ
EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
}
SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
LLVMContext *Context = DAG.getContext();
if (!Subtarget->hasSSE2())
return SDValue();
// Optimize shl/srl/sra with constant shift amount.
if (isSplatVector(Amt.getNode())) {
SDValue SclrAmt = Amt->getOperand(0);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
uint64_t ShiftAmt = C->getZExtValue();
if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
(Subtarget->hasAVX2() &&
(VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
if (Op.getOpcode() == ISD::SHL)
return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
DAG.getConstant(ShiftAmt, MVT::i32));
if (Op.getOpcode() == ISD::SRL)
return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
DAG.getConstant(ShiftAmt, MVT::i32));
if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
DAG.getConstant(ShiftAmt, MVT::i32));
}
if (VT == MVT::v16i8) {
if (Op.getOpcode() == ISD::SHL) {
// Make a large shift.
SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
DAG.getConstant(ShiftAmt, MVT::i32));
SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
// Zero out the rightmost bits.
SmallVector<SDValue, 16> V(16,
DAG.getConstant(uint8_t(-1U << ShiftAmt),
MVT::i8));
return DAG.getNode(ISD::AND, dl, VT, SHL,
DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
}
if (Op.getOpcode() == ISD::SRL) {
// Make a large shift.
SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
DAG.getConstant(ShiftAmt, MVT::i32));
SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
// Zero out the leftmost bits.
SmallVector<SDValue, 16> V(16,
DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
MVT::i8));
return DAG.getNode(ISD::AND, dl, VT, SRL,
DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
}
if (Op.getOpcode() == ISD::SRA) {
if (ShiftAmt == 7) {
// R s>> 7 === R s< 0
SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
}
// R s>> a === ((R u>> a) ^ m) - m
SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
MVT::i8));
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
return Res;
}
}
if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
if (Op.getOpcode() == ISD::SHL) {
// Make a large shift.
SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
DAG.getConstant(ShiftAmt, MVT::i32));
SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
// Zero out the rightmost bits.
SmallVector<SDValue, 32> V(32,
DAG.getConstant(uint8_t(-1U << ShiftAmt),
MVT::i8));
return DAG.getNode(ISD::AND, dl, VT, SHL,
DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
}
if (Op.getOpcode() == ISD::SRL) {
// Make a large shift.
SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
DAG.getConstant(ShiftAmt, MVT::i32));
SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
// Zero out the leftmost bits.
SmallVector<SDValue, 32> V(32,
DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
MVT::i8));
return DAG.getNode(ISD::AND, dl, VT, SRL,
DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
}
if (Op.getOpcode() == ISD::SRA) {
if (ShiftAmt == 7) {
// R s>> 7 === R s< 0
SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
}
// R s>> a === ((R u>> a) ^ m) - m
SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
MVT::i8));
SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
return Res;
}
}
}
}
// Lower SHL with variable shift amount.
if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
DAG.getConstant(23, MVT::i32));
const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
Constant *C = ConstantDataVector::get(*Context, CV);
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(),
false, false, false, 16);
Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
return DAG.getNode(ISD::MUL, dl, VT, Op, R);
}
if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
// a = a << 5;
Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
DAG.getConstant(5, MVT::i32));
Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
// Turn 'a' into a mask suitable for VSELECT
SDValue VSelM = DAG.getConstant(0x80, VT);
SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
SDValue CM1 = DAG.getConstant(0x0f, VT);
SDValue CM2 = DAG.getConstant(0x3f, VT);
// r = VSELECT(r, psllw(r & (char16)15, 4), a);
SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
DAG.getConstant(4, MVT::i32), DAG);
M = DAG.getNode(ISD::BITCAST, dl, VT, M);
R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
// a += a
Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
// r = VSELECT(r, psllw(r & (char16)63, 2), a);
M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
DAG.getConstant(2, MVT::i32), DAG);
M = DAG.getNode(ISD::BITCAST, dl, VT, M);
R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
// a += a
Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
// return VSELECT(r, r+r, a);
R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
DAG.getNode(ISD::ADD, dl, VT, R, R), R);
return R;
}
// Decompose 256-bit shifts into smaller 128-bit shifts.
if (VT.getSizeInBits() == 256) {
unsigned NumElems = VT.getVectorNumElements();
MVT EltVT = VT.getVectorElementType().getSimpleVT();
EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
// Extract the two vectors
SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
DAG, dl);
// Recreate the shift amount vectors
SDValue Amt1, Amt2;
if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
// Constant shift amount
SmallVector<SDValue, 4> Amt1Csts;
SmallVector<SDValue, 4> Amt2Csts;
for (unsigned i = 0; i != NumElems/2; ++i)
Amt1Csts.push_back(Amt->getOperand(i));
for (unsigned i = NumElems/2; i != NumElems; ++i)
Amt2Csts.push_back(Amt->getOperand(i));
Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
&Amt1Csts[0], NumElems/2);
Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
&Amt2Csts[0], NumElems/2);
} else {
// Variable shift amount
Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
DAG, dl);
}
// Issue new vector shifts for the smaller types
V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
// Concatenate the result back
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
}
return SDValue();
}
SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
// Lower the "add/sub/mul with overflow" instruction into a regular ins plus
// a "setcc" instruction that checks the overflow flag. The "brcond" lowering
// looks for this combo and may remove the "setcc" instruction if the "setcc"
// has only one use.
SDNode *N = Op.getNode();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
unsigned BaseOp = 0;
unsigned Cond = 0;
DebugLoc DL = Op.getDebugLoc();
switch (Op.getOpcode()) {
default: llvm_unreachable("Unknown ovf instruction!");
case ISD::SADDO:
// A subtract of one will be selected as a INC. Note that INC doesn't
// set CF, so we can't do this for UADDO.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
if (C->isOne()) {
BaseOp = X86ISD::INC;
Cond = X86::COND_O;
break;
}
BaseOp = X86ISD::ADD;
Cond = X86::COND_O;
break;
case ISD::UADDO:
BaseOp = X86ISD::ADD;
Cond = X86::COND_B;
break;
case ISD::SSUBO:
// A subtract of one will be selected as a DEC. Note that DEC doesn't
// set CF, so we can't do this for USUBO.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
if (C->isOne()) {
BaseOp = X86ISD::DEC;
Cond = X86::COND_O;
break;
}
BaseOp = X86ISD::SUB;
Cond = X86::COND_O;
break;
case ISD::USUBO:
BaseOp = X86ISD::SUB;
Cond = X86::COND_B;
break;
case ISD::SMULO:
BaseOp = X86ISD::SMUL;
Cond = X86::COND_O;
break;
case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
MVT::i32);
SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
SDValue SetCC =
DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
DAG.getConstant(X86::COND_O, MVT::i32),
SDValue(Sum.getNode(), 2));
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
}
}
// Also sets EFLAGS.
SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
SDValue SetCC =
DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
DAG.getConstant(Cond, MVT::i32),
SDValue(Sum.getNode(), 1));
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
}
SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
EVT VT = Op.getValueType();
if (!Subtarget->hasSSE2() || !VT.isVector())
return SDValue();
unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
ExtraVT.getScalarType().getSizeInBits();
SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
switch (VT.getSimpleVT().SimpleTy) {
default: return SDValue();
case MVT::v8i32:
case MVT::v16i16:
if (!Subtarget->hasAVX())
return SDValue();
if (!Subtarget->hasAVX2()) {
// needs to be split
int NumElems = VT.getVectorNumElements();
SDValue Idx0 = DAG.getConstant(0, MVT::i32);
SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
MVT EltVT = VT.getVectorElementType().getSimpleVT();
EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
EVT ExtraEltVT = ExtraVT.getVectorElementType();
int ExtraNumElems = ExtraVT.getVectorNumElements();
ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
ExtraNumElems/2);
SDValue Extra = DAG.getValueType(ExtraVT);
LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
}
// fall through
case MVT::v4i32:
case MVT::v8i16: {
SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
Op.getOperand(0), ShAmt, DAG);
return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
}
}
}
SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
DebugLoc dl = Op.getDebugLoc();
// Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
// There isn't any reason to disable it if the target processor supports it.
if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
SDValue Chain = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, MVT::i32);
SDValue Ops[] = {
DAG.getRegister(X86::ESP, MVT::i32), // Base
DAG.getTargetConstant(1, MVT::i8), // Scale
DAG.getRegister(0, MVT::i32), // Index
DAG.getTargetConstant(0, MVT::i32), // Disp
DAG.getRegister(0, MVT::i32), // Segment.
Zero,
Chain
};
SDNode *Res =
DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
array_lengthof(Ops));
return SDValue(Res, 0);
}
unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
if (!isDev)
return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
// def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
if (!Op1 && !Op2 && !Op3 && Op4)
return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
// def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
if (Op1 && !Op2 && !Op3 && !Op4)
return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
// def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
// (MFENCE)>;
return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
}
SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
// The only fence that needs an instruction is a sequentially-consistent
// cross-thread fence.
if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
// no-sse2). There isn't any reason to disable it if the target processor
// supports it.
if (Subtarget->hasSSE2() || Subtarget->is64Bit())
return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
SDValue Chain = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, MVT::i32);
SDValue Ops[] = {
DAG.getRegister(X86::ESP, MVT::i32), // Base
DAG.getTargetConstant(1, MVT::i8), // Scale
DAG.getRegister(0, MVT::i32), // Index
DAG.getTargetConstant(0, MVT::i32), // Disp
DAG.getRegister(0, MVT::i32), // Segment.
Zero,
Chain
};
SDNode *Res =
DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
array_lengthof(Ops));
return SDValue(Res, 0);
}
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
}
SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
EVT T = Op.getValueType();
DebugLoc DL = Op.getDebugLoc();
unsigned Reg = 0;
unsigned size = 0;
switch(T.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Invalid value type!");
case MVT::i8: Reg = X86::AL; size = 1; break;
case MVT::i16: Reg = X86::AX; size = 2; break;
case MVT::i32: Reg = X86::EAX; size = 4; break;
case MVT::i64:
assert(Subtarget->is64Bit() && "Node not type legal!");
Reg = X86::RAX; size = 8;
break;
}
SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
Op.getOperand(2), SDValue());
SDValue Ops[] = { cpIn.getValue(0),
Op.getOperand(1),
Op.getOperand(3),
DAG.getTargetConstant(size, MVT::i8),
cpIn.getValue(1) };
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
Ops, 5, T, MMO);
SDValue cpOut =
DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
return cpOut;
}
SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->is64Bit() && "Result not type legalized?");
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue TheChain = Op.getOperand(0);
DebugLoc dl = Op.getDebugLoc();
SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
rax.getValue(2));
SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
DAG.getConstant(32, MVT::i8));
SDValue Ops[] = {
DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
rdx.getValue(1)
};
return DAG.getMergeValues(Ops, 2, dl);
}
SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
SelectionDAG &DAG) const {
EVT SrcVT = Op.getOperand(0).getValueType();
EVT DstVT = Op.getValueType();
assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
Subtarget->hasMMX() && "Unexpected custom BITCAST");
assert((DstVT == MVT::i64 ||
(DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
"Unexpected custom BITCAST");
// i64 <=> MMX conversions are Legal.
if (SrcVT==MVT::i64 && DstVT.isVector())
return Op;
if (DstVT==MVT::i64 && SrcVT.isVector())
return Op;
// MMX <=> MMX conversions are Legal.
if (SrcVT.isVector() && DstVT.isVector())
return Op;
// All other conversions need to be expanded.
return SDValue();
}
SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
DebugLoc dl = Node->getDebugLoc();
EVT T = Node->getValueType(0);
SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
DAG.getConstant(0, T), Node->getOperand(2));
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
cast<AtomicSDNode>(Node)->getMemoryVT(),
Node->getOperand(0),
Node->getOperand(1), negOp,
cast<AtomicSDNode>(Node)->getSrcValue(),
cast<AtomicSDNode>(Node)->getAlignment(),
cast<AtomicSDNode>(Node)->getOrdering(),
cast<AtomicSDNode>(Node)->getSynchScope());
}
static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
DebugLoc dl = Node->getDebugLoc();
EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
// Convert seq_cst store -> xchg
// Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
// FIXME: On 32-bit, store -> fist or movq would be more efficient
// (The only way to get a 16-byte store is cmpxchg16b)
// FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
!DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
cast<AtomicSDNode>(Node)->getMemoryVT(),
Node->getOperand(0),
Node->getOperand(1), Node->getOperand(2),
cast<AtomicSDNode>(Node)->getMemOperand(),
cast<AtomicSDNode>(Node)->getOrdering(),
cast<AtomicSDNode>(Node)->getSynchScope());
return Swap.getValue(1);
}
// Other atomic stores have a simple pattern.
return Op;
}
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getNode()->getValueType(0);
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
unsigned Opc;
bool ExtraOp = false;
switch (Op.getOpcode()) {
default: llvm_unreachable("Invalid code");
case ISD::ADDC: Opc = X86ISD::ADD; break;
case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
case ISD::SUBC: Opc = X86ISD::SUB; break;
case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
}
if (!ExtraOp)
return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
Op.getOperand(1));
return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
Op.getOperand(1), Op.getOperand(2));
}
/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Should not custom lower this!");
case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG);
case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG);
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op,DAG);
case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::SHL_PARTS:
case ISD::SRA_PARTS:
case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
case ISD::FABS: return LowerFABS(Op, DAG);
case ISD::FNEG: return LowerFNEG(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VACOPY: return LowerVACOPY(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::FRAME_TO_ARGS_OFFSET:
return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
case ISD::CTLZ: return LowerCTLZ(Op, DAG);
case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, DAG);
case ISD::CTTZ: return LowerCTTZ(Op, DAG);
case ISD::MUL: return LowerMUL(Op, DAG);
case ISD::SRA:
case ISD::SRL:
case ISD::SHL: return LowerShift(Op, DAG);
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO:
case ISD::SMULO:
case ISD::UMULO: return LowerXALUO(Op, DAG);
case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
case ISD::BITCAST: return LowerBITCAST(Op, DAG);
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUBC:
case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
case ISD::ADD: return LowerADD(Op, DAG);
case ISD::SUB: return LowerSUB(Op, DAG);
}
}
static void ReplaceATOMIC_LOAD(SDNode *Node,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) {
DebugLoc dl = Node->getDebugLoc();
EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
// Convert wide load -> cmpxchg8b/cmpxchg16b
// FIXME: On 32-bit, load -> fild or movq would be more efficient
// (The only way to get a 16-byte load is cmpxchg16b)
// FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
SDValue Zero = DAG.getConstant(0, VT);
SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
Node->getOperand(0),
Node->getOperand(1), Zero, Zero,
cast<AtomicSDNode>(Node)->getMemOperand(),
cast<AtomicSDNode>(Node)->getOrdering(),
cast<AtomicSDNode>(Node)->getSynchScope());
Results.push_back(Swap.getValue(0));
Results.push_back(Swap.getValue(1));
}
void X86TargetLowering::
ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG, unsigned NewOp) const {
DebugLoc dl = Node->getDebugLoc();
assert (Node->getValueType(0) == MVT::i64 &&
"Only know how to expand i64 atomics");
SDValue Chain = Node->getOperand(0);
SDValue In1 = Node->getOperand(1);
SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Node->getOperand(2), DAG.getIntPtrConstant(0));
SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Node->getOperand(2), DAG.getIntPtrConstant(1));
SDValue Ops[] = { Chain, In1, In2L, In2H };
SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
SDValue Result =
DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
cast<MemSDNode>(Node)->getMemOperand());
SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
Results.push_back(Result.getValue(2));
}
/// ReplaceNodeResults - Replace a node with an illegal result type
/// with a new node built out of custom code.
void X86TargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const {
DebugLoc dl = N->getDebugLoc();
switch (N->getOpcode()) {
default:
llvm_unreachable("Do not know how to custom type legalize this operation!");
case ISD::SIGN_EXTEND_INREG:
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUBC:
case ISD::SUBE:
// We don't want to expand or promote these.
return;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: {
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
return;
std::pair<SDValue,SDValue> Vals =
FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
SDValue FIST = Vals.first, StackSlot = Vals.second;
if (FIST.getNode() != 0) {
EVT VT = N->getValueType(0);
// Return a load from the stack slot.
if (StackSlot.getNode() != 0)
Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
MachinePointerInfo(),
false, false, false, 0));
else
Results.push_back(FIST);
}
return;
}
case ISD::READCYCLECOUNTER: {
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue TheChain = N->getOperand(0);
SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
rd.getValue(1));
SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
eax.getValue(2));
// Use a buildpair to merge the two 32-bit values into a 64-bit one.
SDValue Ops[] = { eax, edx };
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
Results.push_back(edx.getValue(1));
return;
}
case ISD::ATOMIC_CMP_SWAP: {
EVT T = N->getValueType(0);
assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
bool Regs64bit = T == MVT::i128;
EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
SDValue cpInL, cpInH;
cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
DAG.getConstant(0, HalfT));
cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
DAG.getConstant(1, HalfT));
cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
Regs64bit ? X86::RAX : X86::EAX,
cpInL, SDValue());
cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
Regs64bit ? X86::RDX : X86::EDX,
cpInH, cpInL.getValue(1));
SDValue swapInL, swapInH;
swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
DAG.getConstant(0, HalfT));
swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
DAG.getConstant(1, HalfT));
swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
Regs64bit ? X86::RBX : X86::EBX,
swapInL, cpInH.getValue(1));
swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
Regs64bit ? X86::RCX : X86::ECX,
swapInH, swapInL.getValue(1));
SDValue Ops[] = { swapInH.getValue(0),
N->getOperand(1),
swapInH.getValue(1) };
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
X86ISD::LCMPXCHG8_DAG;
SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
Ops, 3, T, MMO);
SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
Regs64bit ? X86::RAX : X86::EAX,
HalfT, Result.getValue(1));
SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
Regs64bit ? X86::RDX : X86::EDX,
HalfT, cpOutL.getValue(2));
SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
Results.push_back(cpOutH.getValue(1));
return;
}
case ISD::ATOMIC_LOAD_ADD:
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
return;
case ISD::ATOMIC_LOAD_AND:
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
return;
case ISD::ATOMIC_LOAD_NAND:
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
return;
case ISD::ATOMIC_LOAD_OR:
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
return;
case ISD::ATOMIC_LOAD_SUB:
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
return;
case ISD::ATOMIC_LOAD_XOR:
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
return;
case ISD::ATOMIC_SWAP:
ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
return;
case ISD::ATOMIC_LOAD:
ReplaceATOMIC_LOAD(N, Results, DAG);
}
}
const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return NULL;
case X86ISD::BSF: return "X86ISD::BSF";
case X86ISD::BSR: return "X86ISD::BSR";
case X86ISD::SHLD: return "X86ISD::SHLD";
case X86ISD::SHRD: return "X86ISD::SHRD";
case X86ISD::FAND: return "X86ISD::FAND";
case X86ISD::FOR: return "X86ISD::FOR";
case X86ISD::FXOR: return "X86ISD::FXOR";
case X86ISD::FSRL: return "X86ISD::FSRL";
case X86ISD::FILD: return "X86ISD::FILD";
case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
case X86ISD::FLD: return "X86ISD::FLD";
case X86ISD::FST: return "X86ISD::FST";
case X86ISD::CALL: return "X86ISD::CALL";
case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
case X86ISD::BT: return "X86ISD::BT";
case X86ISD::CMP: return "X86ISD::CMP";
case X86ISD::COMI: return "X86ISD::COMI";
case X86ISD::UCOMI: return "X86ISD::UCOMI";
case X86ISD::SETCC: return "X86ISD::SETCC";
case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
case X86ISD::FSETCCsd: return "X86ISD::FSETCCsd";
case X86ISD::FSETCCss: return "X86ISD::FSETCCss";
case X86ISD::CMOV: return "X86ISD::CMOV";
case X86ISD::BRCOND: return "X86ISD::BRCOND";
case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
case X86ISD::Wrapper: return "X86ISD::Wrapper";
case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
case X86ISD::PINSRB: return "X86ISD::PINSRB";
case X86ISD::PINSRW: return "X86ISD::PINSRW";
case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
case X86ISD::ANDNP: return "X86ISD::ANDNP";
case X86ISD::PSIGN: return "X86ISD::PSIGN";
case X86ISD::BLENDV: return "X86ISD::BLENDV";
case X86ISD::BLENDPW: return "X86ISD::BLENDPW";
case X86ISD::BLENDPS: return "X86ISD::BLENDPS";
case X86ISD::BLENDPD: return "X86ISD::BLENDPD";
case X86ISD::HADD: return "X86ISD::HADD";
case X86ISD::HSUB: return "X86ISD::HSUB";
case X86ISD::FHADD: return "X86ISD::FHADD";
case X86ISD::FHSUB: return "X86ISD::FHSUB";
case X86ISD::FMAX: return "X86ISD::FMAX";
case X86ISD::FMIN: return "X86ISD::FMIN";
case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
case X86ISD::FRCP: return "X86ISD::FRCP";
case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ";
case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ";
case X86ISD::VSHL: return "X86ISD::VSHL";
case X86ISD::VSRL: return "X86ISD::VSRL";
case X86ISD::VSRA: return "X86ISD::VSRA";
case X86ISD::VSHLI: return "X86ISD::VSHLI";
case X86ISD::VSRLI: return "X86ISD::VSRLI";
case X86ISD::VSRAI: return "X86ISD::VSRAI";
case X86ISD::CMPP: return "X86ISD::CMPP";
case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ";
case X86ISD::PCMPGT: return "X86ISD::PCMPGT";
case X86ISD::ADD: return "X86ISD::ADD";
case X86ISD::SUB: return "X86ISD::SUB";
case X86ISD::ADC: return "X86ISD::ADC";
case X86ISD::SBB: return "X86ISD::SBB";
case X86ISD::SMUL: return "X86ISD::SMUL";
case X86ISD::UMUL: return "X86ISD::UMUL";
case X86ISD::INC: return "X86ISD::INC";
case X86ISD::DEC: return "X86ISD::DEC";
case X86ISD::OR: return "X86ISD::OR";
case X86ISD::XOR: return "X86ISD::XOR";
case X86ISD::AND: return "X86ISD::AND";
case X86ISD::ANDN: return "X86ISD::ANDN";
case X86ISD::BLSI: return "X86ISD::BLSI";
case X86ISD::BLSMSK: return "X86ISD::BLSMSK";
case X86ISD::BLSR: return "X86ISD::BLSR";
case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
case X86ISD::PTEST: return "X86ISD::PTEST";
case X86ISD::TESTP: return "X86ISD::TESTP";
case X86ISD::PALIGN: return "X86ISD::PALIGN";
case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
case X86ISD::SHUFP: return "X86ISD::SHUFP";
case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
case X86ISD::MOVSD: return "X86ISD::MOVSD";
case X86ISD::MOVSS: return "X86ISD::MOVSS";
case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
case X86ISD::VPERMILP: return "X86ISD::VPERMILP";
case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
case X86ISD::VPERMV: return "X86ISD::VPERMV";
case X86ISD::VPERMI: return "X86ISD::VPERMI";
case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ";
case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
case X86ISD::WIN_FTOL: return "X86ISD::WIN_FTOL";
}
}
// isLegalAddressingMode - Return true if the addressing mode represented
// by AM is legal for this target, for a load/store of the specified type.
bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
// X86 supports extremely general addressing modes.
CodeModel::Model M = getTargetMachine().getCodeModel();
Reloc::Model R = getTargetMachine().getRelocationModel();
// X86 allows a sign-extended 32-bit immediate field as a displacement.
if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
return false;
if (AM.BaseGV) {
unsigned GVFlags =
Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
// If a reference to this global requires an extra load, we can't fold it.
if (isGlobalStubReference(GVFlags))
return false;
// If BaseGV requires a register for the PIC base, we cannot also have a
// BaseReg specified.
if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
return false;
// If lower 4G is not available, then we must use rip-relative addressing.
if ((M != CodeModel::Small || R != Reloc::Static) &&
Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
return false;
}
switch (AM.Scale) {
case 0:
case 1:
case 2:
case 4:
case 8:
// These scales always work.
break;
case 3:
case 5:
case 9:
// These scales are formed with basereg+scalereg. Only accept if there is
// no basereg yet.
if (AM.HasBaseReg)
return false;
break;
default: // Other stuff never works.
return false;
}
return true;
}
bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
if (NumBits1 <= NumBits2)
return false;
return true;
}
bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (!VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
unsigned NumBits2 = VT2.getSizeInBits();
if (NumBits1 <= NumBits2)
return false;
return true;
}
bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
}
bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
}
bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
// i16 instructions are longer (0x66 prefix) and potentially slower.
return !(VT1 == MVT::i32 && VT2 == MVT::i16);
}
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool
X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
EVT VT) const {
// Very little shuffling can be done for 64-bit vectors right now.
if (VT.getSizeInBits() == 64)
return false;
// FIXME: pshufb, blends, shifts.
return (VT.getVectorNumElements() == 2 ||
ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
isMOVLMask(M, VT) ||
isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
isPSHUFDMask(M, VT) ||
isPSHUFHWMask(M, VT) ||
isPSHUFLWMask(M, VT) ||
isPALIGNRMask(M, VT, Subtarget) ||
isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
}
bool
X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
EVT VT) const {
unsigned NumElts = VT.getVectorNumElements();
// FIXME: This collection of masks seems suspect.
if (NumElts == 2)
return true;
if (NumElts == 4 && VT.getSizeInBits() == 128) {
return (isMOVLMask(Mask, VT) ||
isCommutedMOVLMask(Mask, VT, true) ||
isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
}
return false;
}
//===----------------------------------------------------------------------===//
// X86 Scheduler Hooks
//===----------------------------------------------------------------------===//
// private utility function
MachineBasicBlock *
X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
MachineBasicBlock *MBB,
unsigned regOpc,
unsigned immOpc,
unsigned LoadOpc,
unsigned CXchgOpc,
unsigned notOpc,
unsigned EAXreg,
const TargetRegisterClass *RC,
bool Invert) const {
// For the atomic bitwise operator, we generate
// thisMBB:
// newMBB:
// ld t1 = [bitinstr.addr]
// op t2 = t1, [bitinstr.val]
// not t3 = t2 (if Invert)
// mov EAX = t1
// lcs dest = [bitinstr.addr], t3 [EAX is implicit]
// bz newMBB
// fallthrough -->nextMBB
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction::iterator MBBIter = MBB;
++MBBIter;
/// First build the CFG
MachineFunction *F = MBB->getParent();
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, newMBB);
F->insert(MBBIter, nextMBB);
// Transfer the remainder of thisMBB and its successor edges to nextMBB.
nextMBB->splice(nextMBB->begin(), thisMBB,
llvm::next(MachineBasicBlock::iterator(bInstr)),
thisMBB->end());
nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
// Update thisMBB to fall through to newMBB
thisMBB->addSuccessor(newMBB);
// newMBB jumps to itself and fall through to nextMBB
newMBB->addSuccessor(nextMBB);
newMBB->addSuccessor(newMBB);
// Insert instructions into newMBB based on incoming instruction
assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
"unexpected number of operands");
DebugLoc dl = bInstr->getDebugLoc();
MachineOperand& destOper = bInstr->getOperand(0);
MachineOperand* argOpers[2 + X86::AddrNumOperands];
int numArgs = bInstr->getNumOperands() - 1;
for (int i=0; i < numArgs; ++i)
argOpers[i] = &bInstr->getOperand(i+1);
// x86 address has 4 operands: base, index, scale, and displacement
int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
int valArgIndx = lastAddrIndx + 1;
unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
for (int i=0; i <= lastAddrIndx; ++i)
(*MIB).addOperand(*argOpers[i]);
unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
assert((argOpers[valArgIndx]->isReg() ||
argOpers[valArgIndx]->isImm()) &&
"invalid operand");
if (argOpers[valArgIndx]->isReg())
MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
else
MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
MIB.addReg(t1);
(*MIB).addOperand(*argOpers[valArgIndx]);
unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
if (Invert) {
MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
}
else
t3 = t2;
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
MIB.addReg(t1);
MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
for (int i=0; i <= lastAddrIndx; ++i)
(*MIB).addOperand(*argOpers[i]);
MIB.addReg(t3);
assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
(*MIB).setMemRefs(bInstr->memoperands_begin(),
bInstr->memoperands_end());
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
MIB.addReg(EAXreg);
// insert branch
BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
bInstr->eraseFromParent(); // The pseudo instruction is gone now.
return nextMBB;
}
// private utility function: 64 bit atomics on 32 bit host.
MachineBasicBlock *
X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
MachineBasicBlock *MBB,
unsigned regOpcL,
unsigned regOpcH,
unsigned immOpcL,
unsigned immOpcH,
bool Invert) const {
// For the atomic bitwise operator, we generate
// thisMBB (instructions are in pairs, except cmpxchg8b)
// ld t1,t2 = [bitinstr.addr]
// newMBB:
// out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
// op t5, t6 <- out1, out2, [bitinstr.val]
// (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
// neg t7, t8 < t5, t6 (if Invert)
// mov ECX, EBX <- t5, t6
// mov EAX, EDX <- t1, t2
// cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
// mov t3, t4 <- EAX, EDX
// bz newMBB
// result in out1, out2
// fallthrough -->nextMBB
const TargetRegisterClass *RC = X86::GR32RegisterClass;
const unsigned LoadOpc = X86::MOV32rm;
const unsigned NotOpc = X86::NOT32r;
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction::iterator MBBIter = MBB;
++MBBIter;
/// First build the CFG
MachineFunction *F = MBB->getParent();
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, newMBB);
F->insert(MBBIter, nextMBB);
// Transfer the remainder of thisMBB and its successor edges to nextMBB.
nextMBB->splice(nextMBB->begin(), thisMBB,
llvm::next(MachineBasicBlock::iterator(bInstr)),
thisMBB->end());
nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
// Update thisMBB to fall through to newMBB
thisMBB->addSuccessor(newMBB);
// newMBB jumps to itself and fall through to nextMBB
newMBB->addSuccessor(nextMBB);
newMBB->addSuccessor(newMBB);
DebugLoc dl = bInstr->getDebugLoc();
// Insert instructions into newMBB based on incoming instruction
// There are 8 "real" operands plus 9 implicit def/uses, ignored here.
assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
"unexpected number of operands");
MachineOperand& dest1Oper = bInstr->getOperand(0);
MachineOperand& dest2Oper = bInstr->getOperand(1);
MachineOperand* argOpers[2 + X86::AddrNumOperands];
for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
argOpers[i] = &bInstr->getOperand(i+2);
// We use some of the operands multiple times, so conservatively just
// clear any kill flags that might be present.
if (argOpers[i]->isReg() && argOpers[i]->isUse())
argOpers[i]->setIsKill(false);
}
// x86 address has 5 operands: base, index, scale, displacement, and segment.
int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
for (int i=0; i <= lastAddrIndx; ++i)
(*MIB).addOperand(*argOpers[i]);
unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
// add 4 to displacement.
for (int i=0; i <= lastAddrIndx-2; ++i)
(*MIB).addOperand(*argOpers[i]);
MachineOperand newOp3 = *(argOpers[3]);
if (newOp3.isImm())
newOp3.setImm(newOp3.getImm()+4);
else
newOp3.setOffset(newOp3.getOffset()+4);
(*MIB).addOperand(newOp3);
(*MIB).addOperand(*argOpers[lastAddrIndx]);
// t3/4 are defined later, at the bottom of the loop
unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
.addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
.addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
// The subsequent operations should be using the destination registers of
// the PHI instructions.
t1 = dest1Oper.getReg();
t2 = dest2Oper.getReg();
int valArgIndx = lastAddrIndx + 1;
assert((argOpers[valArgIndx]->isReg() ||
argOpers[valArgIndx]->isImm()) &&
"invalid operand");
unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
if (argOpers[valArgIndx]->isReg())
MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
else
MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
if (regOpcL != X86::MOV32rr)
MIB.addReg(t1);
(*MIB).addOperand(*argOpers[valArgIndx]);
assert(argOpers[valArgIndx + 1]->isReg() ==
argOpers[valArgIndx]->isReg());
assert(argOpers[valArgIndx + 1]->isImm() ==
argOpers[valArgIndx]->isImm());
if (argOpers[valArgIndx + 1]->isReg())
MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
else
MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
if (regOpcH != X86::MOV32rr)
MIB.addReg(t2);
(*MIB).addOperand(*argOpers[valArgIndx + 1]);
unsigned t7, t8;
if (Invert) {
t7 = F->getRegInfo().createVirtualRegister(RC);
t8 = F->getRegInfo().createVirtualRegister(RC);
MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
} else {
t7 = t5;
t8 = t6;
}
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
MIB.addReg(t1);
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
MIB.addReg(t2);
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
MIB.addReg(t7);
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
MIB.addReg(t8);
MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
for (int i=0; i <= lastAddrIndx; ++i)
(*MIB).addOperand(*argOpers[i]);
assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
(*MIB).setMemRefs(bInstr->memoperands_begin(),
bInstr->memoperands_end());
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
MIB.addReg(X86::EAX);
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
MIB.addReg(X86::EDX);
// insert branch
BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
bInstr->eraseFromParent(); // The pseudo instruction is gone now.
return nextMBB;
}
// private utility function
MachineBasicBlock *
X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
MachineBasicBlock *MBB,
unsigned cmovOpc) const {
// For the atomic min/max operator, we generate
// thisMBB:
// newMBB:
// ld t1 = [min/max.addr]
// mov t2 = [min/max.val]
// cmp t1, t2
// cmov[cond] t2 = t1
// mov EAX = t1
// lcs dest = [bitinstr.addr], t2 [EAX is implicit]
// bz newMBB
// fallthrough -->nextMBB
//
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction::iterator MBBIter = MBB;
++MBBIter;
/// First build the CFG
MachineFunction *F = MBB->getParent();
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, newMBB);
F->insert(MBBIter, nextMBB);
// Transfer the remainder of thisMBB and its successor edges to nextMBB.
nextMBB->splice(nextMBB->begin(), thisMBB,
llvm::next(MachineBasicBlock::iterator(mInstr)),
thisMBB->end());
nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
// Update thisMBB to fall through to newMBB
thisMBB->addSuccessor(newMBB);
// newMBB jumps to newMBB and fall through to nextMBB
newMBB->addSuccessor(nextMBB);
newMBB->addSuccessor(newMBB);
DebugLoc dl = mInstr->getDebugLoc();
// Insert instructions into newMBB based on incoming instruction
assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
"unexpected number of operands");
MachineOperand& destOper = mInstr->getOperand(0);
MachineOperand* argOpers[2 + X86::AddrNumOperands];
int numArgs = mInstr->getNumOperands() - 1;
for (int i=0; i < numArgs; ++i)
argOpers[i] = &mInstr->getOperand(i+1);
// x86 address has 4 operands: base, index, scale, and displacement
int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
int valArgIndx = lastAddrIndx + 1;
unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
for (int i=0; i <= lastAddrIndx; ++i)
(*MIB).addOperand(*argOpers[i]);
// We only support register and immediate values
assert((argOpers[valArgIndx]->isReg() ||
argOpers[valArgIndx]->isImm()) &&
"invalid operand");
unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
if (argOpers[valArgIndx]->isReg())
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
else
MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
(*MIB).addOperand(*argOpers[valArgIndx]);
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
MIB.addReg(t1);
MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
MIB.addReg(t1);
MIB.addReg(t2);
// Generate movc
unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
MIB.addReg(t2);
MIB.addReg(t1);
// Cmp and exchange if none has modified the memory location
MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
for (int i=0; i <= lastAddrIndx; ++i)
(*MIB).addOperand(*argOpers[i]);
MIB.addReg(t3);
assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
(*MIB).setMemRefs(mInstr->memoperands_begin(),
mInstr->memoperands_end());
MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
MIB.addReg(X86::EAX);
// insert branch
BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
mInstr->eraseFromParent(); // The pseudo instruction is gone now.
return nextMBB;
}
// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
// or XMM0_V32I8 in AVX all of this code can be replaced with that
// in the .td file.
MachineBasicBlock *
X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
unsigned numArgs, bool memArg) const {
assert(Subtarget->hasSSE42() &&
"Target must have SSE4.2 or AVX features enabled");
DebugLoc dl = MI->getDebugLoc();
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
unsigned Opc;
if (!Subtarget->hasAVX()) {
if (memArg)
Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
else
Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
} else {
if (memArg)
Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
else
Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
}
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
for (unsigned i = 0; i < numArgs; ++i) {
MachineOperand &Op = MI->getOperand(i+1);
if (!(Op.isReg() && Op.isImplicit()))
MIB.addOperand(Op);
}
BuildMI(*BB, MI, dl,
TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
MI->getOperand(0).getReg())
.addReg(X86::XMM0);
MI->eraseFromParent();
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
DebugLoc dl = MI->getDebugLoc();
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
// Address into RAX/EAX, other two args into ECX, EDX.
unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
for (int i = 0; i < X86::AddrNumOperands; ++i)
MIB.addOperand(MI->getOperand(i));
unsigned ValOps = X86::AddrNumOperands;
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
.addReg(MI->getOperand(ValOps).getReg());
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
.addReg(MI->getOperand(ValOps+1).getReg());
// The instruction doesn't actually take any operands though.
BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
MI->eraseFromParent(); // The pseudo is gone now.
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
DebugLoc dl = MI->getDebugLoc();
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
// First arg in ECX, the second in EAX.
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
.addReg(MI->getOperand(0).getReg());
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
.addReg(MI->getOperand(1).getReg());
// The instruction doesn't actually take any operands though.
BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
MI->eraseFromParent(); // The pseudo is gone now.
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitVAARG64WithCustomInserter(
MachineInstr *MI,
MachineBasicBlock *MBB) const {
// Emit va_arg instruction on X86-64.
// Operands to this pseudo-instruction:
// 0 ) Output : destination address (reg)
// 1-5) Input : va_list address (addr, i64mem)
// 6 ) ArgSize : Size (in bytes) of vararg type
// 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
// 8 ) Align : Alignment of type
// 9 ) EFLAGS (implicit-def)
assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
unsigned DestReg = MI->getOperand(0).getReg();
MachineOperand &Base = MI->getOperand(1);
MachineOperand &Scale = MI->getOperand(2);
MachineOperand &Index = MI->getOperand(3);
MachineOperand &Disp = MI->getOperand(4);
MachineOperand &Segment = MI->getOperand(5);
unsigned ArgSize = MI->getOperand(6).getImm();
unsigned ArgMode = MI->getOperand(7).getImm();
unsigned Align = MI->getOperand(8).getImm();
// Memory Reference
assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
// Machine Information
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
DebugLoc DL = MI->getDebugLoc();
// struct va_list {
// i32 gp_offset
// i32 fp_offset
// i64 overflow_area (address)
// i64 reg_save_area (address)
// }
// sizeof(va_list) = 24
// alignment(va_list) = 8
unsigned TotalNumIntRegs = 6;
unsigned TotalNumXMMRegs = 8;
bool UseGPOffset = (ArgMode == 1);
bool UseFPOffset = (ArgMode == 2);
unsigned MaxOffset = TotalNumIntRegs * 8 +
(UseFPOffset ? TotalNumXMMRegs * 16 : 0);
/* Align ArgSize to a multiple of 8 */
unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
bool NeedsAlign = (Align > 8);
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *overflowMBB;
MachineBasicBlock *offsetMBB;
MachineBasicBlock *endMBB;
unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
unsigned OffsetReg = 0;
if (!UseGPOffset && !UseFPOffset) {
// If we only pull from the overflow region, we don't create a branch.
// We don't need to alter control flow.
OffsetDestReg = 0; // unused
OverflowDestReg = DestReg;
offsetMBB = NULL;
overflowMBB = thisMBB;
endMBB = thisMBB;
} else {
// First emit code to check if gp_offset (or fp_offset) is below the bound.
// If so, pull the argument from reg_save_area. (branch to offsetMBB)
// If not, pull from overflow_area. (branch to overflowMBB)
//
// thisMBB
// | .
// | .
// offsetMBB overflowMBB
// | .
// | .
// endMBB
// Registers for the PHI in endMBB
OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction *MF = MBB->getParent();
overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator MBBIter = MBB;
++MBBIter;
// Insert the new basic blocks
MF->insert(MBBIter, offsetMBB);
MF->insert(MBBIter, overflowMBB);
MF->insert(MBBIter, endMBB);
// Transfer the remainder of MBB and its successor edges to endMBB.
endMBB->splice(endMBB->begin(), thisMBB,
llvm::next(MachineBasicBlock::iterator(MI)),
thisMBB->end());
endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
// Make offsetMBB and overflowMBB successors of thisMBB
thisMBB->addSuccessor(offsetMBB);
thisMBB->addSuccessor(overflowMBB);
// endMBB is a successor of both offsetMBB and overflowMBB
offsetMBB->addSuccessor(endMBB);
overflowMBB->addSuccessor(endMBB);
// Load the offset value into a register
OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
.addOperand(Base)
.addOperand(Scale)
.addOperand(Index)
.addDisp(Disp, UseFPOffset ? 4 : 0)
.addOperand(Segment)
.setMemRefs(MMOBegin, MMOEnd);
// Check if there is enough room left to pull this argument.
BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
.addReg(OffsetReg)
.addImm(MaxOffset + 8 - ArgSizeA8);
// Branch to "overflowMBB" if offset >= max
// Fall through to "offsetMBB" otherwise
BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
.addMBB(overflowMBB);
}
// In offsetMBB, emit code to use the reg_save_area.
if (offsetMBB) {
assert(OffsetReg != 0);
// Read the reg_save_area address.
unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
.addOperand(Base)
.addOperand(Scale)
.addOperand(Index)
.addDisp(Disp, 16)
.addOperand(Segment)
.setMemRefs(MMOBegin, MMOEnd);
// Zero-extend the offset
unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
.addImm(0)
.addReg(OffsetReg)
.addImm(X86::sub_32bit);
// Add the offset to the reg_save_area to get the final address.
BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
.addReg(OffsetReg64)
.addReg(RegSaveReg);
// Compute the offset for the next argument
unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
.addReg(OffsetReg)
.addImm(UseFPOffset ? 16 : 8);
// Store it back into the va_list.
BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
.addOperand(Base)
.addOperand(Scale)
.addOperand(Index)
.addDisp(Disp, UseFPOffset ? 4 : 0)
.addOperand(Segment)
.addReg(NextOffsetReg)
.setMemRefs(MMOBegin, MMOEnd);
// Jump to endMBB
BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
.addMBB(endMBB);
}
//
// Emit code to use overflow area
//
// Load the overflow_area address into a register.
unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
.addOperand(Base)
.addOperand(Scale)
.addOperand(Index)
.addDisp(Disp, 8)
.addOperand(Segment)
.setMemRefs(MMOBegin, MMOEnd);
// If we need to align it, do so. Otherwise, just copy the address
// to OverflowDestReg.
if (NeedsAlign) {
// Align the overflow address
assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
// aligned_addr = (addr + (align-1)) & ~(align-1)
BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
.addReg(OverflowAddrReg)
.addImm(Align-1);
BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
.addReg(TmpReg)
.addImm(~(uint64_t)(Align-1));
} else {
BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
.addReg(OverflowAddrReg);
}
// Compute the next overflow address after this argument.
// (the overflow address should be kept 8-byte aligned)
unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
.addReg(OverflowDestReg)
.addImm(ArgSizeA8);
// Store the new overflow address.
BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
.addOperand(Base)
.addOperand(Scale)
.addOperand(Index)
.addDisp(Disp, 8)
.addOperand(Segment)
.addReg(NextAddrReg)
.setMemRefs(MMOBegin, MMOEnd);
// If we branched, emit the PHI to the front of endMBB.
if (offsetMBB) {
BuildMI(*endMBB, endMBB->begin(), DL,
TII->get(X86::PHI), DestReg)
.addReg(OffsetDestReg).addMBB(offsetMBB)
.addReg(OverflowDestReg).addMBB(overflowMBB);
}
// Erase the pseudo instruction
MI->eraseFromParent();
return endMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
MachineInstr *MI,
MachineBasicBlock *MBB) const {
// Emit code to save XMM registers to the stack. The ABI says that the
// number of registers to save is given in %al, so it's theoretically
// possible to do an indirect jump trick to avoid saving all of them,
// however this code takes a simpler approach and just executes all
// of the stores if %al is non-zero. It's less code, and it's probably
// easier on the hardware branch predictor, and stores aren't all that
// expensive anyway.
// Create the new basic blocks. One block contains all the XMM stores,
// and one block is the final destination regardless of whether any
// stores were performed.
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction *F = MBB->getParent();
MachineFunction::iterator MBBIter = MBB;
++MBBIter;
MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, XMMSaveMBB);
F->insert(MBBIter, EndMBB);
// Transfer the remainder of MBB and its successor edges to EndMBB.
EndMBB->splice(EndMBB->begin(), MBB,
llvm::next(MachineBasicBlock::iterator(MI)),
MBB->end());
EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
// The original block will now fall through to the XMM save block.
MBB->addSuccessor(XMMSaveMBB);
// The XMMSaveMBB will fall through to the end block.
XMMSaveMBB->addSuccessor(EndMBB);
// Now add the instructions.
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned CountReg = MI->getOperand(0).getReg();
int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
if (!Subtarget->isTargetWin64()) {
// If %al is 0, branch around the XMM save block.
BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
MBB->addSuccessor(EndMBB);
}
unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
// In the XMM save block, save all the XMM argument registers.
for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
MachineMemOperand *MMO =
F->getMachineMemOperand(
MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
MachineMemOperand::MOStore,
/*Size=*/16, /*Align=*/16);
BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
.addFrameIndex(RegSaveFrameIndex)
.addImm(/*Scale=*/1)
.addReg(/*IndexReg=*/0)
.addImm(/*Disp=*/Offset)
.addReg(/*Segment=*/0)
.addReg(MI->getOperand(i).getReg())
.addMemOperand(MMO);
}
MI->eraseFromParent(); // The pseudo instruction is gone now.
return EndMBB;
}
// The EFLAGS operand of SelectItr might be missing a kill marker
// because there were multiple uses of EFLAGS, and ISel didn't know
// which to mark. Figure out whether SelectItr should have had a
// kill marker, and set it if it should. Returns the correct kill
// marker value.
static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
MachineBasicBlock* BB,
const TargetRegisterInfo* TRI) {
// Scan forward through BB for a use/def of EFLAGS.
MachineBasicBlock::iterator miI(llvm::next(SelectItr));
for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
const MachineInstr& mi = *miI;
if (mi.readsRegister(X86::EFLAGS))
return false;
if (mi.definesRegister(X86::EFLAGS))
break; // Should have kill-flag - update below.
}
// If we hit the end of the block, check whether EFLAGS is live into a
// successor.
if (miI == BB->end()) {
for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
sEnd = BB->succ_end();
sItr != sEnd; ++sItr) {
MachineBasicBlock* succ = *sItr;
if (succ->isLiveIn(X86::EFLAGS))
return false;
}
}
// We found a def, or hit the end of the basic block and EFLAGS wasn't live
// out. SelectMI should have a kill flag on EFLAGS.
SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
return true;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// If the EFLAGS register isn't dead in the terminator, then claim that it's
// live into the sink and copy blocks.
const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
if (!MI->killsRegister(X86::EFLAGS) &&
!checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
copy0MBB->addLiveIn(X86::EFLAGS);
sinkMBB->addLiveIn(X86::EFLAGS);
}
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// Create the conditional branch instruction.
unsigned Opc =
X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
copy0MBB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
TII->get(X86::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return sinkMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
bool Is64Bit) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
MachineFunction *MF = BB->getParent();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
assert(getTargetMachine().Options.EnableSegmentedStacks);
unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
// BB:
// ... [Till the alloca]
// If stacklet is not large enough, jump to mallocMBB
//
// bumpMBB:
// Allocate by subtracting from RSP
// Jump to continueMBB
//
// mallocMBB:
// Allocate by call to runtime
//
// continueMBB:
// ...
// [rest of original BB]
//
MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetRegisterClass *AddrRegClass =
getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
sizeVReg = MI->getOperand(1).getReg(),
physSPReg = Is64Bit ? X86::RSP : X86::ESP;
MachineFunction::iterator MBBIter = BB;
++MBBIter;
MF->insert(MBBIter, bumpMBB);
MF->insert(MBBIter, mallocMBB);
MF->insert(MBBIter, continueMBB);
continueMBB->splice(continueMBB->begin(), BB, llvm::next
(MachineBasicBlock::iterator(MI)), BB->end());
continueMBB->transferSuccessorsAndUpdatePHIs(BB);
// Add code to the main basic block to check if the stack limit has been hit,
// and if so, jump to mallocMBB otherwise to bumpMBB.
BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
.addReg(tmpSPVReg).addReg(sizeVReg);
BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
.addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
.addReg(SPLimitVReg);
BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
// bumpMBB simply decreases the stack pointer, since we know the current
// stacklet has enough space.
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
.addReg(SPLimitVReg);
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
.addReg(SPLimitVReg);
BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
// Calls into a routine in libgcc to allocate more space from the heap.
const uint32_t *RegMask =
getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
if (Is64Bit) {
BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
.addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
.addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
.addRegMask(RegMask)
.addReg(X86::RAX, RegState::ImplicitDefine);
} else {
BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
.addImm(12);
BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
.addExternalSymbol("__morestack_allocate_stack_space")
.addRegMask(RegMask)
.addReg(X86::EAX, RegState::ImplicitDefine);
}
if (!Is64Bit)
BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
.addImm(16);
BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
.addReg(Is64Bit ? X86::RAX : X86::EAX);
BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
// Set up the CFG correctly.
BB->addSuccessor(bumpMBB);
BB->addSuccessor(mallocMBB);
mallocMBB->addSuccessor(continueMBB);
bumpMBB->addSuccessor(continueMBB);
// Take care of the PHI nodes.
BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
MI->getOperand(0).getReg())
.addReg(mallocPtrVReg).addMBB(mallocMBB)
.addReg(bumpSPPtrVReg).addMBB(bumpMBB);
// Delete the original pseudo instruction.
MI->eraseFromParent();
// And we're done.
return continueMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
assert(!Subtarget->isTargetEnvMacho());
// The lowering is pretty easy: we're just emitting the call to _alloca. The
// non-trivial part is impdef of ESP.
if (Subtarget->isTargetWin64()) {
if (Subtarget->isTargetCygMing()) {
// ___chkstk(Mingw64):
// Clobbers R10, R11, RAX and EFLAGS.
// Updates RSP.
BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
.addExternalSymbol("___chkstk")
.addReg(X86::RAX, RegState::Implicit)
.addReg(X86::RSP, RegState::Implicit)
.addReg(X86::RAX, RegState::Define | RegState::Implicit)
.addReg(X86::RSP, RegState::Define | RegState::Implicit)
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
} else {
// __chkstk(MSVCRT): does not update stack pointer.
// Clobbers R10, R11 and EFLAGS.
// FIXME: RAX(allocated size) might be reused and not killed.
BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
.addExternalSymbol("__chkstk")
.addReg(X86::RAX, RegState::Implicit)
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
// RAX has the offset to subtracted from RSP.
BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
.addReg(X86::RSP)
.addReg(X86::RAX);
}
} else {
const char *StackProbeSymbol =
Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
.addExternalSymbol(StackProbeSymbol)
.addReg(X86::EAX, RegState::Implicit)
.addReg(X86::ESP, RegState::Implicit)
.addReg(X86::EAX, RegState::Define | RegState::Implicit)
.addReg(X86::ESP, RegState::Define | RegState::Implicit)
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
}
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
MachineBasicBlock *BB) const {
// This is pretty easy. We're taking the value that we received from
// our load from the relocation, sticking it in either RDI (x86-64)
// or EAX and doing an indirect call. The return value will then
// be in the normal return register.
const X86InstrInfo *TII
= static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
DebugLoc DL = MI->getDebugLoc();
MachineFunction *F = BB->getParent();
assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
assert(MI->getOperand(3).isGlobal() && "This should be a global");
// Get a register mask for the lowered call.
// FIXME: The 32-bit calls have non-standard calling conventions. Use a
// proper register mask.
const uint32_t *RegMask =
getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
if (Subtarget->is64Bit()) {
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
TII->get(X86::MOV64rm), X86::RDI)
.addReg(X86::RIP)
.addImm(0).addReg(0)
.addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
MI->getOperand(3).getTargetFlags())
.addReg(0);
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
addDirectMem(MIB, X86::RDI);
MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
} else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
TII->get(X86::MOV32rm), X86::EAX)
.addReg(0)
.addImm(0).addReg(0)
.addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
MI->getOperand(3).getTargetFlags())
.addReg(0);
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
addDirectMem(MIB, X86::EAX);
MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
} else {
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
TII->get(X86::MOV32rm), X86::EAX)
.addReg(TII->getGlobalBaseReg(F))
.addImm(0).addReg(0)
.addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
MI->getOperand(3).getTargetFlags())
.addReg(0);
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
addDirectMem(MIB, X86::EAX);
MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
}
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
switch (MI->getOpcode()) {
default: llvm_unreachable("Unexpected instr type to insert");
case X86::TAILJMPd64:
case X86::TAILJMPr64:
case X86::TAILJMPm64:
llvm_unreachable("TAILJMP64 would not be touched here.");
case X86::TCRETURNdi64:
case X86::TCRETURNri64:
case X86::TCRETURNmi64:
return BB;
case X86::WIN_ALLOCA:
return EmitLoweredWinAlloca(MI, BB);
case X86::SEG_ALLOCA_32:
return EmitLoweredSegAlloca(MI, BB, false);
case X86::SEG_ALLOCA_64:
return EmitLoweredSegAlloca(MI, BB, true);
case X86::TLSCall_32:
case X86::TLSCall_64:
return EmitLoweredTLSCall(MI, BB);
case X86::CMOV_GR8:
case X86::CMOV_FR32:
case X86::CMOV_FR64:
case X86::CMOV_V4F32:
case X86::CMOV_V2F64:
case X86::CMOV_V2I64:
case X86::CMOV_V8F32:
case X86::CMOV_V4F64:
case X86::CMOV_V4I64:
case X86::CMOV_GR16:
case X86::CMOV_GR32:
case X86::CMOV_RFP32:
case X86::CMOV_RFP64:
case X86::CMOV_RFP80:
return EmitLoweredSelect(MI, BB);
case X86::FP32_TO_INT16_IN_MEM:
case X86::FP32_TO_INT32_IN_MEM:
case X86::FP32_TO_INT64_IN_MEM:
case X86::FP64_TO_INT16_IN_MEM:
case X86::FP64_TO_INT32_IN_MEM:
case X86::FP64_TO_INT64_IN_MEM:
case X86::FP80_TO_INT16_IN_MEM:
case X86::FP80_TO_INT32_IN_MEM:
case X86::FP80_TO_INT64_IN_MEM: {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// Change the floating point control register to use "round towards zero"
// mode when truncating to an integer value.
MachineFunction *F = BB->getParent();
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
addFrameReference(BuildMI(*BB, MI, DL,
TII->get(X86::FNSTCW16m)), CWFrameIdx);
// Load the old value of the high byte of the control word...
unsigned OldCW =
F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
CWFrameIdx);
// Set the high part to be round to zero...
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
.addImm(0xC7F);
// Reload the modified control word now...
addFrameReference(BuildMI(*BB, MI, DL,
TII->get(X86::FLDCW16m)), CWFrameIdx);
// Restore the memory image of control word to original value
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
.addReg(OldCW);
// Get the X86 opcode to use.
unsigned Opc;
switch (MI->getOpcode()) {
default: llvm_unreachable("illegal opcode!");
case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
}
X86AddressMode AM;
MachineOperand &Op = MI->getOperand(0);
if (Op.isReg()) {
AM.BaseType = X86AddressMode::RegBase;
AM.Base.Reg = Op.getReg();
} else {
AM.BaseType = X86AddressMode::FrameIndexBase;
AM.Base.FrameIndex = Op.getIndex();
}
Op = MI->getOperand(1);
if (Op.isImm())
AM.Scale = Op.getImm();
Op = MI->getOperand(2);
if (Op.isImm())
AM.IndexReg = Op.getImm();
Op = MI->getOperand(3);
if (Op.isGlobal()) {
AM.GV = Op.getGlobal();
} else {
AM.Disp = Op.getImm();
}
addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
.addReg(MI->getOperand(X86::AddrNumOperands).getReg());
// Reload the original control word now.
addFrameReference(BuildMI(*BB, MI, DL,
TII->get(X86::FLDCW16m)), CWFrameIdx);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// String/text processing lowering.
case X86::PCMPISTRM128REG:
case X86::VPCMPISTRM128REG:
return EmitPCMP(MI, BB, 3, false /* in-mem */);
case X86::PCMPISTRM128MEM:
case X86::VPCMPISTRM128MEM:
return EmitPCMP(MI, BB, 3, true /* in-mem */);
case X86::PCMPESTRM128REG:
case X86::VPCMPESTRM128REG:
return EmitPCMP(MI, BB, 5, false /* in mem */);
case X86::PCMPESTRM128MEM:
case X86::VPCMPESTRM128MEM:
return EmitPCMP(MI, BB, 5, true /* in mem */);
// Thread synchronization.
case X86::MONITOR:
return EmitMonitor(MI, BB);
case X86::MWAIT:
return EmitMwait(MI, BB);
// Atomic Lowering.
case X86::ATOMAND32:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
X86::AND32ri, X86::MOV32rm,
X86::LCMPXCHG32,
X86::NOT32r, X86::EAX,
X86::GR32RegisterClass);
case X86::ATOMOR32:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
X86::OR32ri, X86::MOV32rm,
X86::LCMPXCHG32,
X86::NOT32r, X86::EAX,
X86::GR32RegisterClass);
case X86::ATOMXOR32:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
X86::XOR32ri, X86::MOV32rm,
X86::LCMPXCHG32,
X86::NOT32r, X86::EAX,
X86::GR32RegisterClass);
case X86::ATOMNAND32:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
X86::AND32ri, X86::MOV32rm,
X86::LCMPXCHG32,
X86::NOT32r, X86::EAX,
X86::GR32RegisterClass, true);
case X86::ATOMMIN32:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
case X86::ATOMMAX32:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
case X86::ATOMUMIN32:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
case X86::ATOMUMAX32:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
case X86::ATOMAND16:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
X86::AND16ri, X86::MOV16rm,
X86::LCMPXCHG16,
X86::NOT16r, X86::AX,
X86::GR16RegisterClass);
case X86::ATOMOR16:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
X86::OR16ri, X86::MOV16rm,
X86::LCMPXCHG16,
X86::NOT16r, X86::AX,
X86::GR16RegisterClass);
case X86::ATOMXOR16:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
X86::XOR16ri, X86::MOV16rm,
X86::LCMPXCHG16,
X86::NOT16r, X86::AX,
X86::GR16RegisterClass);
case X86::ATOMNAND16:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
X86::AND16ri, X86::MOV16rm,
X86::LCMPXCHG16,
X86::NOT16r, X86::AX,
X86::GR16RegisterClass, true);
case X86::ATOMMIN16:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
case X86::ATOMMAX16:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
case X86::ATOMUMIN16:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
case X86::ATOMUMAX16:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
case X86::ATOMAND8:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
X86::AND8ri, X86::MOV8rm,
X86::LCMPXCHG8,
X86::NOT8r, X86::AL,
X86::GR8RegisterClass);
case X86::ATOMOR8:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
X86::OR8ri, X86::MOV8rm,
X86::LCMPXCHG8,
X86::NOT8r, X86::AL,
X86::GR8RegisterClass);
case X86::ATOMXOR8:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
X86::XOR8ri, X86::MOV8rm,
X86::LCMPXCHG8,
X86::NOT8r, X86::AL,
X86::GR8RegisterClass);
case X86::ATOMNAND8:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
X86::AND8ri, X86::MOV8rm,
X86::LCMPXCHG8,
X86::NOT8r, X86::AL,
X86::GR8RegisterClass, true);
// FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
// This group is for 64-bit host.
case X86::ATOMAND64:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
X86::AND64ri32, X86::MOV64rm,
X86::LCMPXCHG64,
X86::NOT64r, X86::RAX,
X86::GR64RegisterClass);
case X86::ATOMOR64:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
X86::OR64ri32, X86::MOV64rm,
X86::LCMPXCHG64,
X86::NOT64r, X86::RAX,
X86::GR64RegisterClass);
case X86::ATOMXOR64:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
X86::XOR64ri32, X86::MOV64rm,
X86::LCMPXCHG64,
X86::NOT64r, X86::RAX,
X86::GR64RegisterClass);
case X86::ATOMNAND64:
return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
X86::AND64ri32, X86::MOV64rm,
X86::LCMPXCHG64,
X86::NOT64r, X86::RAX,
X86::GR64RegisterClass, true);
case X86::ATOMMIN64:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
case X86::ATOMMAX64:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
case X86::ATOMUMIN64:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
case X86::ATOMUMAX64:
return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
// This group does 64-bit operations on a 32-bit host.
case X86::ATOMAND6432:
return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::AND32rr, X86::AND32rr,
X86::AND32ri, X86::AND32ri,
false);
case X86::ATOMOR6432:
return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::OR32rr, X86::OR32rr,
X86::OR32ri, X86::OR32ri,
false);
case X86::ATOMXOR6432:
return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::XOR32rr, X86::XOR32rr,
X86::XOR32ri, X86::XOR32ri,
false);
case X86::ATOMNAND6432:
return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::AND32rr, X86::AND32rr,
X86::AND32ri, X86::AND32ri,
true);
case X86::ATOMADD6432:
return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::ADD32rr, X86::ADC32rr,
X86::ADD32ri, X86::ADC32ri,
false);
case X86::ATOMSUB6432:
return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::SUB32rr, X86::SBB32rr,
X86::SUB32ri, X86::SBB32ri,
false);
case X86::ATOMSWAP6432:
return EmitAtomicBit6432WithCustomInserter(MI, BB,
X86::MOV32rr, X86::MOV32rr,
X86::MOV32ri, X86::MOV32ri,
false);
case X86::VASTART_SAVE_XMM_REGS:
return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
case X86::VAARG_64:
return EmitVAARG64WithCustomInserter(MI, BB);
}
}
//===----------------------------------------------------------------------===//
// X86 Optimization Hooks
//===----------------------------------------------------------------------===//
void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
unsigned BitWidth = KnownZero.getBitWidth();
unsigned Opc = Op.getOpcode();
assert((Opc >= ISD::BUILTIN_OP_END ||
Opc == ISD::INTRINSIC_WO_CHAIN ||
Opc == ISD::INTRINSIC_W_CHAIN ||
Opc == ISD::INTRINSIC_VOID) &&
"Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!");
KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
switch (Opc) {
default: break;
case X86ISD::ADD:
case X86ISD::SUB:
case X86ISD::ADC:
case X86ISD::SBB:
case X86ISD::SMUL:
case X86ISD::UMUL:
case X86ISD::INC:
case X86ISD::DEC:
case X86ISD::OR:
case X86ISD::XOR:
case X86ISD::AND:
// These nodes' second result is a boolean.
if (Op.getResNo() == 0)
break;
// Fallthrough
case X86ISD::SETCC:
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
break;
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
unsigned NumLoBits = 0;
switch (IntId) {
default: break;
case Intrinsic::x86_sse_movmsk_ps:
case Intrinsic::x86_avx_movmsk_ps_256:
case Intrinsic::x86_sse2_movmsk_pd:
case Intrinsic::x86_avx_movmsk_pd_256:
case Intrinsic::x86_mmx_pmovmskb:
case Intrinsic::x86_sse2_pmovmskb_128:
case Intrinsic::x86_avx2_pmovmskb: {
// High bits of movmskp{s|d}, pmovmskb are known zero.
switch (IntId) {
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break;
case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break;
case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break;
case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break;
case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break;
case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break;
case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break;
}
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
break;
}
}
break;
}
}
}
unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
unsigned Depth) const {
// SETCC_CARRY sets the dest to ~0 for true or 0 for false.
if (Op.getOpcode() == X86ISD::SETCC_CARRY)
return Op.getValueType().getScalarType().getSizeInBits();
// Fallback case.
return 1;
}
/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
/// node is a GlobalAddress + offset.
bool X86TargetLowering::isGAPlusOffset(SDNode *N,
const GlobalValue* &GA,
int64_t &Offset) const {
if (N->getOpcode() == X86ISD::Wrapper) {
if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
return true;
}
}
return TargetLowering::isGAPlusOffset(N, GA, Offset);
}
/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
/// same as extracting the high 128-bit part of 256-bit vector and then
/// inserting the result into the low part of a new 256-bit vector
static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
EVT VT = SVOp->getValueType(0);
int NumElems = VT.getVectorNumElements();
// vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
SVOp->getMaskElt(j) >= 0)
return false;
return true;
}
/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
/// same as extracting the low 128-bit part of 256-bit vector and then
/// inserting the result into the high part of a new 256-bit vector
static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
EVT VT = SVOp->getValueType(0);
int NumElems = VT.getVectorNumElements();
// vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
SVOp->getMaskElt(j) >= 0)
return false;
return true;
}
/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget* Subtarget) {
DebugLoc dl = N->getDebugLoc();
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
EVT VT = SVOp->getValueType(0);
int NumElems = VT.getVectorNumElements();
if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
V2.getOpcode() == ISD::CONCAT_VECTORS) {
//
// 0,0,0,...
// |
// V UNDEF BUILD_VECTOR UNDEF
// \ / \ /
// CONCAT_VECTOR CONCAT_VECTOR
// \ /
// \ /
// RESULT: V + zero extended
//
if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
V2.getOperand(1).getOpcode() != ISD::UNDEF ||
V1.getOperand(1).getOpcode() != ISD::UNDEF)
return SDValue();
if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
return SDValue();
// To match the shuffle mask, the first half of the mask should
// be exactly the first vector, and all the rest a splat with the
// first element of the second one.
for (int i = 0; i < NumElems/2; ++i)
if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
!isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
return SDValue();
// If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
SDValue ResNode =
DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
Ld->getMemoryVT(),
Ld->getPointerInfo(),
Ld->getAlignment(),
false/*isVolatile*/, true/*ReadMem*/,
false/*WriteMem*/);
return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
}
// Emit a zeroed vector and insert the desired subvector on its
// first half.
SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
DAG.getConstant(0, MVT::i32), DAG, dl);
return DCI.CombineTo(N, InsV);
}
//===--------------------------------------------------------------------===//
// Combine some shuffles into subvector extracts and inserts:
//
// vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
if (isShuffleHigh128VectorInsertLow(SVOp)) {
SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
DAG, dl);
SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
V, DAG.getConstant(0, MVT::i32), DAG, dl);
return DCI.CombineTo(N, InsV);
}
// vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
if (isShuffleLow128VectorInsertHigh(SVOp)) {
SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
return DCI.CombineTo(N, InsV);
}
return SDValue();
}
/// PerformShuffleCombine - Performs several different shuffle combines.
static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
DebugLoc dl = N->getDebugLoc();
EVT VT = N->getValueType(0);
// Don't create instructions with illegal types after legalize types has run.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
return SDValue();
// Combine 256-bit vector shuffles. This is only profitable when in AVX mode
if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
N->getOpcode() == ISD::VECTOR_SHUFFLE)
return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
// Only handle 128 wide vector from here on.
if (VT.getSizeInBits() != 128)
return SDValue();
// Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
// load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
// consecutive, non-overlapping, and in the right order.
SmallVector<SDValue, 16> Elts;
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
}
/// PerformTruncateCombine - Converts truncate operation to
/// a sequence of vector shuffle operations.
/// It is possible when we truncate 256-bit vector to 128-bit vector
SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
DAGCombinerInfo &DCI) const {
if (!DCI.isBeforeLegalizeOps())
return SDValue();
if (!Subtarget->hasAVX()) return SDValue();
EVT VT = N->getValueType(0);
SDValue Op = N->getOperand(0);
EVT OpVT = Op.getValueType();
DebugLoc dl = N->getDebugLoc();
if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
DAG.getIntPtrConstant(0));
SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
DAG.getIntPtrConstant(2));
OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
// PSHUFD
int ShufMask1[] = {0, 2, 0, 0};
OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
ShufMask1);
OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
ShufMask1);
// MOVLHPS
int ShufMask2[] = {0, 1, 4, 5};
return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
}
if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
DAG.getIntPtrConstant(0));
SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
DAG.getIntPtrConstant(4));
OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
// PSHUFB
int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13,
-1, -1, -1, -1, -1, -1, -1, -1};
OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
DAG.getUNDEF(MVT::v16i8),
ShufMask1);
OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
DAG.getUNDEF(MVT::v16i8),
ShufMask1);
OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
// MOVLHPS
int ShufMask2[] = {0, 1, 4, 5};
SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
}
return SDValue();
}
/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
/// specific shuffle of a load can be folded into a single element load.
/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
/// shuffles have been customed lowered so we need to handle those here.
static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue InVec = N->getOperand(0);
SDValue EltNo = N->getOperand(1);
if (!isa<ConstantSDNode>(EltNo))
return SDValue();
EVT VT = InVec.getValueType();
bool HasShuffleIntoBitcast = false;
if (InVec.getOpcode() == ISD::BITCAST) {
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
EVT BCVT = InVec.getOperand(0).getValueType();
if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
return SDValue();
InVec = InVec.getOperand(0);
HasShuffleIntoBitcast = true;
}
if (!isTargetShuffle(InVec.getOpcode()))
return SDValue();
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
SmallVector<int, 16> ShuffleMask;
bool UnaryShuffle;
if (!getTargetShuffleMask(InVec.getNode(), VT, ShuffleMask, UnaryShuffle))
return SDValue();
// Select the input vector, guarding against out of range extract vector.
unsigned NumElems = VT.getVectorNumElements();
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
: InVec.getOperand(1);
// If inputs to shuffle are the same for both ops, then allow 2 uses
unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
if (LdNode.getOpcode() == ISD::BITCAST) {
// Don't duplicate a load with other uses.
if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
return SDValue();
AllowedUses = 1; // only allow 1 load use if we have a bitcast
LdNode = LdNode.getOperand(0);
}
if (!ISD::isNormalLoad(LdNode.getNode()))
return SDValue();
LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
return SDValue();
if (HasShuffleIntoBitcast) {
// If there's a bitcast before the shuffle, check if the load type and
// alignment is valid.
unsigned Align = LN0->getAlignment();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned NewAlign = TLI.getTargetData()->
getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
return SDValue();
}
// All checks match so transform back to vector_shuffle so that DAG combiner
// can finish the job
DebugLoc dl = N->getDebugLoc();
// Create shuffle node taking into account the case that its a unary shuffle
SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
InVec.getOperand(0), Shuffle,
&ShuffleMask[0]);
Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
EltNo);
}
/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
/// generation and convert it from being a bunch of shuffles and extracts
/// to a simple store and scalar loads to extract the elements.
static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
if (NewOp.getNode())
return NewOp;
SDValue InputVector = N->getOperand(0);
// Only operate on vectors of 4 elements, where the alternative shuffling
// gets to be more expensive.
if (InputVector.getValueType() != MVT::v4i32)
return SDValue();
// Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
// single use which is a sign-extend or zero-extend, and all elements are
// used.
SmallVector<SDNode *, 4> Uses;
unsigned ExtractedElements = 0;
for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
if (UI.getUse().getResNo() != InputVector.getResNo())
return SDValue();
SDNode *Extract = *UI;
if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
if (Extract->getValueType(0) != MVT::i32)
return SDValue();
if (!Extract->hasOneUse())
return SDValue();
if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
return SDValue();
if (!isa<ConstantSDNode>(Extract->getOperand(1)))
return SDValue();
// Record which element was extracted.
ExtractedElements |=
1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
Uses.push_back(Extract);
}
// If not all the elements were used, this may not be worthwhile.
if (ExtractedElements != 15)
return SDValue();
// Ok, we've now decided to do the transformation.
DebugLoc dl = InputVector.getDebugLoc();
// Store the value to a temporary stack slot.
SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
MachinePointerInfo(), false, false, 0);
// Replace each use (extract) with a load of the appropriate element.
for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
UE = Uses.end(); UI != UE; ++UI) {
SDNode *Extract = *UI;
// cOMpute the element's address.
SDValue Idx = Extract->getOperand(1);
unsigned EltSize =
InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
StackPtr, OffsetVal);
// Load the scalar.
SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
ScalarAddr, MachinePointerInfo(),
false, false, false, 0);
// Replace the exact with the load.
DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
}
// The replacement was made in place; don't return anything.
return SDValue();
}
/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
/// nodes.
static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
DebugLoc DL = N->getDebugLoc();
SDValue Cond = N->getOperand(0);
// Get the LHS/RHS of the select.
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
EVT VT = LHS.getValueType();
// If we have SSE[12] support, try to form min/max nodes. SSE min/max
// instructions match the semantics of the common C idiom x<y?x:y but not
// x<=y?x:y, because of how they handle negative zero (which can be
// ignored in unsafe-math mode).
if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
(Subtarget->hasSSE2() ||
(Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
unsigned Opcode = 0;
// Check for x CC y ? x : y.
if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
switch (CC) {
default: break;
case ISD::SETULT:
// Converting this to a min would handle NaNs incorrectly, and swapping
// the operands would cause it to handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
if (!DAG.getTarget().Options.UnsafeFPMath &&
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMIN;
break;
case ISD::SETOLE:
// Converting this to a min would handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
break;
Opcode = X86ISD::FMIN;
break;
case ISD::SETULE:
// Converting this to a min would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
case ISD::SETOLT:
case ISD::SETLT:
case ISD::SETLE:
Opcode = X86ISD::FMIN;
break;
case ISD::SETOGE:
// Converting this to a max would handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
break;
Opcode = X86ISD::FMAX;
break;
case ISD::SETUGT:
// Converting this to a max would handle NaNs incorrectly, and swapping
// the operands would cause it to handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
if (!DAG.getTarget().Options.UnsafeFPMath &&
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMAX;
break;
case ISD::SETUGE:
// Converting this to a max would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
case ISD::SETOGT:
case ISD::SETGT:
case ISD::SETGE:
Opcode = X86ISD::FMAX;
break;
}
// Check for x CC y ? y : x -- a min/max with reversed arms.
} else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
DAG.isEqualTo(RHS, Cond.getOperand(0))) {
switch (CC) {
default: break;
case ISD::SETOGE:
// Converting this to a min would handle comparisons between positive
// and negative zero incorrectly, and swapping the operands would
// cause it to handle NaNs incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMIN;
break;
case ISD::SETUGT:
// Converting this to a min would handle NaNs incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
(!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
break;
Opcode = X86ISD::FMIN;
break;
case ISD::SETUGE:
// Converting this to a min would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
case ISD::SETOGT:
case ISD::SETGT:
case ISD::SETGE:
Opcode = X86ISD::FMIN;
break;
case ISD::SETULT:
// Converting this to a max would handle NaNs incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
Opcode = X86ISD::FMAX;
break;
case ISD::SETOLE:
// Converting this to a max would handle comparisons between positive
// and negative zero incorrectly, and swapping the operands would
// cause it to handle NaNs incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMAX;
break;
case ISD::SETULE:
// Converting this to a max would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
case ISD::SETOLT:
case ISD::SETLT:
case ISD::SETLE:
Opcode = X86ISD::FMAX;
break;
}
}
if (Opcode)
return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
}
// If this is a select between two integer constants, try to do some
// optimizations.
if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
// Don't do this for crazy integer types.
if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
// If this is efficiently invertible, canonicalize the LHSC/RHSC values
// so that TrueC (the true value) is larger than FalseC.
bool NeedsCondInvert = false;
if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
// Efficiently invertible.
(Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
(Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
isa<ConstantSDNode>(Cond.getOperand(1))))) {
NeedsCondInvert = true;
std::swap(TrueC, FalseC);
}
// Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
if (FalseC->getAPIntValue() == 0 &&
TrueC->getAPIntValue().isPowerOf2()) {
if (NeedsCondInvert) // Invert the condition if needed.
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
DAG.getConstant(1, Cond.getValueType()));
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
unsigned ShAmt = TrueC->getAPIntValue().logBase2();
return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
DAG.getConstant(ShAmt, MVT::i8));
}
// Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
if (NeedsCondInvert) // Invert the condition if needed.
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
DAG.getConstant(1, Cond.getValueType()));
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
FalseC->getValueType(0), Cond);
return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
}
// Optimize cases that will turn into an LEA instruction. This requires
// an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
bool isFastMultiplier = false;
if (Diff < 10) {
switch ((unsigned char)Diff) {
default: break;
case 1: // result = add base, cond
case 2: // result = lea base( , cond*2)
case 3: // result = lea base(cond, cond*2)
case 4: // result = lea base( , cond*4)
case 5: // result = lea base(cond, cond*4)
case 8: // result = lea base( , cond*8)
case 9: // result = lea base(cond, cond*8)
isFastMultiplier = true;
break;
}
}
if (isFastMultiplier) {
APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
if (NeedsCondInvert) // Invert the condition if needed.
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
DAG.getConstant(1, Cond.getValueType()));
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
Cond);
// Scale the condition by the difference.
if (Diff != 1)
Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
DAG.getConstant(Diff, Cond.getValueType()));
// Add the base if non-zero.
if (FalseC->getAPIntValue() != 0)
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
return Cond;
}
}
}
}
// Canonicalize max and min:
// (x > y) ? x : y -> (x >= y) ? x : y
// (x < y) ? x : y -> (x <= y) ? x : y
// This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
// the need for an extra compare
// against zero. e.g.
// (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
// subl %esi, %edi
// testl %edi, %edi
// movl $0, %eax
// cmovgl %edi, %eax
// =>
// xorl %eax, %eax
// subl %esi, $edi
// cmovsl %eax, %edi
if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETGT: {
ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
Cond.getOperand(0), Cond.getOperand(1), NewCC);
return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
}
}
}
// If we know that this node is legal then we know that it is going to be
// matched by one of the SSE/AVX BLEND instructions. These instructions only
// depend on the highest bit in each word. Try to use SimplifyDemandedBits
// to simplify previous instructions.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
!DCI.isBeforeLegalize() &&
TLI.isOperationLegal(ISD::VSELECT, VT)) {
unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
DCI.isBeforeLegalizeOps());
if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
DCI.CommitTargetLoweringOpt(TLO);
}
return SDValue();
}
/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
DebugLoc DL = N->getDebugLoc();
// If the flag operand isn't dead, don't touch this CMOV.
if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
return SDValue();
SDValue FalseOp = N->getOperand(0);
SDValue TrueOp = N->getOperand(1);
X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
SDValue Cond = N->getOperand(3);
if (CC == X86::COND_E || CC == X86::COND_NE) {
switch (Cond.getOpcode()) {
default: break;
case X86ISD::BSR:
case X86ISD::BSF:
// If operand of BSR / BSF are proven never zero, then ZF cannot be set.
if (DAG.isKnownNeverZero(Cond.getOperand(0)))
return (CC == X86::COND_E) ? FalseOp : TrueOp;
}
}
// If this is a select between two integer constants, try to do some
// optimizations. Note that the operands are ordered the opposite of SELECT
// operands.
if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
// Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
// larger than FalseC (the false value).
if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
CC = X86::GetOppositeBranchCondition(CC);
std::swap(TrueC, FalseC);
}
// Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
// This is efficient for any integer data type (including i8/i16) and
// shift amount.
if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
DAG.getConstant(CC, MVT::i8), Cond);
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
unsigned ShAmt = TrueC->getAPIntValue().logBase2();
Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
DAG.getConstant(ShAmt, MVT::i8));
if (N->getNumValues() == 2) // Dead flag value?
return DCI.CombineTo(N, Cond, SDValue());
return Cond;
}
// Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
// for any integer data type, including i8/i16.
if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
DAG.getConstant(CC, MVT::i8), Cond);
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
FalseC->getValueType(0), Cond);
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
if (N->getNumValues() == 2) // Dead flag value?
return DCI.CombineTo(N, Cond, SDValue());
return Cond;
}
// Optimize cases that will turn into an LEA instruction. This requires
// an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
bool isFastMultiplier = false;
if (Diff < 10) {
switch ((unsigned char)Diff) {
default: break;
case 1: // result = add base, cond
case 2: // result = lea base( , cond*2)
case 3: // result = lea base(cond, cond*2)
case 4: // result = lea base( , cond*4)
case 5: // result = lea base(cond, cond*4)
case 8: // result = lea base( , cond*8)
case 9: // result = lea base(cond, cond*8)
isFastMultiplier = true;
break;
}
}
if (isFastMultiplier) {
APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
DAG.getConstant(CC, MVT::i8), Cond);
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
Cond);
// Scale the condition by the difference.
if (Diff != 1)
Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
DAG.getConstant(Diff, Cond.getValueType()));
// Add the base if non-zero.
if (FalseC->getAPIntValue() != 0)
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
if (N->getNumValues() == 2) // Dead flag value?
return DCI.CombineTo(N, Cond, SDValue());
return Cond;
}
}
}
}
return SDValue();
}
/// PerformMulCombine - Optimize a single multiply with constant into two
/// in order to implement it with two cheaper instructions, e.g.
/// LEA + SHL, LEA + LEA.
static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i64)
return SDValue();
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!C)
return SDValue();
uint64_t MulAmt = C->getZExtValue();
if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
return SDValue();
uint64_t MulAmt1 = 0;
uint64_t MulAmt2 = 0;
if ((MulAmt % 9) == 0) {
MulAmt1 = 9;
MulAmt2 = MulAmt / 9;
} else if ((MulAmt % 5) == 0) {
MulAmt1 = 5;
MulAmt2 = MulAmt / 5;
} else if ((MulAmt % 3) == 0) {
MulAmt1 = 3;
MulAmt2 = MulAmt / 3;
}
if (MulAmt2 &&
(isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
DebugLoc DL = N->getDebugLoc();
if (isPowerOf2_64(MulAmt2) &&
!(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
// If second multiplifer is pow2, issue it first. We want the multiply by
// 3, 5, or 9 to be folded into the addressing mode unless the lone use
// is an add.
std::swap(MulAmt1, MulAmt2);
SDValue NewMul;
if (isPowerOf2_64(MulAmt1))
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
else
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
DAG.getConstant(MulAmt1, VT));
if (isPowerOf2_64(MulAmt2))
NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
else
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
DAG.getConstant(MulAmt2, VT));
// Do not add new nodes to DAG combiner worklist.
DCI.CombineTo(N, NewMul, false);
}
return SDValue();
}
static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
// since the result of setcc_c is all zero's or all ones.
if (VT.isInteger() && !VT.isVector() &&
N1C && N0.getOpcode() == ISD::AND &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
((N00.getOpcode() == ISD::ANY_EXTEND ||
N00.getOpcode() == ISD::ZERO_EXTEND) &&
N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
APInt ShAmt = N1C->getAPIntValue();
Mask = Mask.shl(ShAmt);
if (Mask != 0)
return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
N00, DAG.getConstant(Mask, VT));
}
}
// Hardware support for vector shifts is sparse which makes us scalarize the
// vector operations in many cases. Also, on sandybridge ADD is faster than
// shl.
// (shl V, 1) -> add V,V
if (isSplatVector(N1.getNode())) {
assert(N0.getValueType().isVector() && "Invalid vector shift type");
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
// We shift all of the values by one. In many cases we do not have
// hardware support for this operation. This is better expressed as an ADD
// of two values.
if (N1C && (1 == N1C->getZExtValue())) {
return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
}
}
return SDValue();
}
/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
/// when possible.
static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
EVT VT = N->getValueType(0);
if (N->getOpcode() == ISD::SHL) {
SDValue V = PerformSHLCombine(N, DAG);
if (V.getNode()) return V;
}
// On X86 with SSE2 support, we can transform this to a vector shift if
// all elements are shifted by the same amount. We can't do this in legalize
// because the a constant vector is typically transformed to a constant pool
// so we have no knowledge of the shift amount.
if (!Subtarget->hasSSE2())
return SDValue();
if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
(!Subtarget->hasAVX2() ||
(VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
return SDValue();
SDValue ShAmtOp = N->getOperand(1);
EVT EltVT = VT.getVectorElementType();
DebugLoc DL = N->getDebugLoc();
SDValue BaseShAmt = SDValue();
if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
unsigned NumElts = VT.getVectorNumElements();
unsigned i = 0;
for (; i != NumElts; ++i) {
SDValue Arg = ShAmtOp.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
BaseShAmt = Arg;
break;
}
// Handle the case where the build_vector is all undef
// FIXME: Should DAG allow this?
if (i == NumElts)
return SDValue();
for (; i != NumElts; ++i) {
SDValue Arg = ShAmtOp.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
if (Arg != BaseShAmt) {
return SDValue();
}
}
} else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
SDValue InVec = ShAmtOp.getOperand(0);
if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
unsigned NumElts = InVec.getValueType().getVectorNumElements();
unsigned i = 0;
for (; i != NumElts; ++i) {
SDValue Arg = InVec.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) continue;
BaseShAmt = Arg;
break;
}
} else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
if (C->getZExtValue() == SplatIdx)
BaseShAmt = InVec.getOperand(1);
}
}
if (BaseShAmt.getNode() == 0) {
// Don't create instructions with illegal types after legalize
// types has run.
if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
!DCI.isBeforeLegalize())
return SDValue();
BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
DAG.getIntPtrConstant(0));
}
} else
return SDValue();
// The shift amount is an i32.
if (EltVT.bitsGT(MVT::i32))
BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
else if (EltVT.bitsLT(MVT::i32))
BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
// The shift amount is identical so we can do a vector shift.
SDValue ValOp = N->getOperand(0);
switch (N->getOpcode()) {
default:
llvm_unreachable("Unknown shift opcode!");
case ISD::SHL:
switch (VT.getSimpleVT().SimpleTy) {
default: return SDValue();
case MVT::v2i64:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v4i64:
case MVT::v8i32:
case MVT::v16i16:
return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
}
case ISD::SRA:
switch (VT.getSimpleVT().SimpleTy) {
default: return SDValue();
case MVT::v4i32:
case MVT::v8i16:
case MVT::v8i32:
case MVT::v16i16:
return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
}
case ISD::SRL:
switch (VT.getSimpleVT().SimpleTy) {
default: return SDValue();
case MVT::v2i64:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v4i64:
case MVT::v8i32:
case MVT::v16i16:
return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
}
}
}
// CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
// and friends. Likewise for OR -> CMPNEQSS.
static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
unsigned opcode;
// SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
// we're requiring SSE2 for both.
if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CMP0 = N0->getOperand(1);
SDValue CMP1 = N1->getOperand(1);
DebugLoc DL = N->getDebugLoc();
// The SETCCs should both refer to the same CMP.
if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
return SDValue();
SDValue CMP00 = CMP0->getOperand(0);
SDValue CMP01 = CMP0->getOperand(1);
EVT VT = CMP00.getValueType();
if (VT == MVT::f32 || VT == MVT::f64) {
bool ExpectingFlags = false;
// Check for any users that want flags:
for (SDNode::use_iterator UI = N->use_begin(),
UE = N->use_end();
!ExpectingFlags && UI != UE; ++UI)
switch (UI->getOpcode()) {
default:
case ISD::BR_CC:
case ISD::BRCOND:
case ISD::SELECT:
ExpectingFlags = true;
break;
case ISD::CopyToReg:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
break;
}
if (!ExpectingFlags) {
enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
X86::CondCode tmp = cc0;
cc0 = cc1;
cc1 = tmp;
}
if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
(cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
bool is64BitFP = (CMP00.getValueType() == MVT::f64);
X86ISD::NodeType NTOperator = is64BitFP ?
X86ISD::FSETCCsd : X86ISD::FSETCCss;
// FIXME: need symbolic constants for these magic numbers.
// See X86ATTInstPrinter.cpp:printSSECC().
unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
DAG.getConstant(x86cc, MVT::i8));
SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
OnesOrZeroesF);
SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
DAG.getConstant(1, MVT::i32));
SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
return OneBitOfTruth;
}
}
}
}
return SDValue();
}
/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
/// so it can be folded inside ANDNP.
static bool CanFoldXORWithAllOnes(const SDNode *N) {
EVT VT = N->getValueType(0);
// Match direct AllOnes for 128 and 256-bit vectors
if (ISD::isBuildVectorAllOnes(N))
return true;
// Look through a bit convert.
if (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0).getNode();
// Sometimes the operand may come from a insert_subvector building a 256-bit
// allones vector
if (VT.getSizeInBits() == 256 &&
N->getOpcode() == ISD::INSERT_SUBVECTOR) {
SDValue V1 = N->getOperand(0);
SDValue V2 = N->getOperand(1);
if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
V1.getOperand(0).getOpcode() == ISD::UNDEF &&
ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
ISD::isBuildVectorAllOnes(V2.getNode()))
return true;
}
return false;
}
static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
if (R.getNode())
return R;
EVT VT = N->getValueType(0);
// Create ANDN, BLSI, and BLSR instructions
// BLSI is X & (-X)
// BLSR is X & (X-1)
if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
DebugLoc DL = N->getDebugLoc();
// Check LHS for not
if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
// Check RHS for not
if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
// Check LHS for neg
if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
isZero(N0.getOperand(0)))
return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
// Check RHS for neg
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
isZero(N1.getOperand(0)))
return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
// Check LHS for X-1
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
isAllOnes(N0.getOperand(1)))
return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
// Check RHS for X-1
if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
isAllOnes(N1.getOperand(1)))
return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
return SDValue();
}
// Want to form ANDNP nodes:
// 1) In the hopes of then easily combining them with OR and AND nodes
// to form PBLEND/PSIGN.
// 2) To match ANDN packed intrinsics
if (VT != MVT::v2i64 && VT != MVT::v4i64)
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
DebugLoc DL = N->getDebugLoc();
// Check LHS for vnot
if (N0.getOpcode() == ISD::XOR &&
//ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
// Check RHS for vnot
if (N1.getOpcode() == ISD::XOR &&
//ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
return SDValue();
}
static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
if (R.getNode())
return R;
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// look for psign/blend
if (VT == MVT::v2i64 || VT == MVT::v4i64) {
if (!Subtarget->hasSSSE3() ||
(VT == MVT::v4i64 && !Subtarget->hasAVX2()))
return SDValue();
// Canonicalize pandn to RHS
if (N0.getOpcode() == X86ISD::ANDNP)
std::swap(N0, N1);
// or (and (m, y), (pandn m, x))
if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
SDValue Mask = N1.getOperand(0);
SDValue X = N1.getOperand(1);
SDValue Y;
if (N0.getOperand(0) == Mask)
Y = N0.getOperand(1);
if (N0.getOperand(1) == Mask)
Y = N0.getOperand(0);
// Check to see if the mask appeared in both the AND and ANDNP and
if (!Y.getNode())
return SDValue();
// Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
// Look through mask bitcast.
if (Mask.getOpcode() == ISD::BITCAST)
Mask = Mask.getOperand(0);
if (X.getOpcode() == ISD::BITCAST)
X = X.getOperand(0);
if (Y.getOpcode() == ISD::BITCAST)
Y = Y.getOperand(0);
EVT MaskVT = Mask.getValueType();
// Validate that the Mask operand is a vector sra node.
// FIXME: what to do for bytes, since there is a psignb/pblendvb, but
// there is no psrai.b
if (Mask.getOpcode() != X86ISD::VSRAI)
return SDValue();
// Check that the SRA is all signbits.
SDValue SraC = Mask.getOperand(1);
unsigned SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
if ((SraAmt + 1) != EltBits)
return SDValue();
DebugLoc DL = N->getDebugLoc();
// Now we know we at least have a plendvb with the mask val. See if
// we can form a psignb/w/d.
// psign = x.type == y.type == mask.type && y = sub(0, x);
if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
"Unsupported VT for PSIGN");
Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
}
// PBLENDVB only available on SSE 4.1
if (!Subtarget->hasSSE41())
return SDValue();
EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
}
}
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
return SDValue();
// fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
return SDValue();
if (!N0.hasOneUse() || !N1.hasOneUse())
return SDValue();
SDValue ShAmt0 = N0.getOperand(1);
if (ShAmt0.getValueType() != MVT::i8)
return SDValue();
SDValue ShAmt1 = N1.getOperand(1);
if (ShAmt1.getValueType() != MVT::i8)
return SDValue();
if (ShAmt0.getOpcode() == ISD::TRUNCATE)
ShAmt0 = ShAmt0.getOperand(0);
if (ShAmt1.getOpcode() == ISD::TRUNCATE)
ShAmt1 = ShAmt1.getOperand(0);
DebugLoc DL = N->getDebugLoc();
unsigned Opc = X86ISD::SHLD;
SDValue Op0 = N0.getOperand(0);
SDValue Op1 = N1.getOperand(0);
if (ShAmt0.getOpcode() == ISD::SUB) {
Opc = X86ISD::SHRD;
std::swap(Op0, Op1);
std::swap(ShAmt0, ShAmt1);
}
unsigned Bits = VT.getSizeInBits();
if (ShAmt1.getOpcode() == ISD::SUB) {
SDValue Sum = ShAmt1.getOperand(0);
if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
ShAmt1Op1 = ShAmt1Op1.getOperand(0);
if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
return DAG.getNode(Opc, DL, VT,
Op0, Op1,
DAG.getNode(ISD::TRUNCATE, DL,
MVT::i8, ShAmt0));
}
} else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
if (ShAmt0C &&
ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
return DAG.getNode(Opc, DL, VT,
N0.getOperand(0), N1.getOperand(0),
DAG.getNode(ISD::TRUNCATE, DL,
MVT::i8, ShAmt0));
}
return SDValue();
}
// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
// Create BLSMSK instructions by finding X ^ (X-1)
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
DebugLoc DL = N->getDebugLoc();
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
isAllOnes(N0.getOperand(1)))
return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
isAllOnes(N1.getOperand(1)))
return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
return SDValue();
}
/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
LoadSDNode *Ld = cast<LoadSDNode>(N);
EVT RegVT = Ld->getValueType(0);
EVT MemVT = Ld->getMemoryVT();
DebugLoc dl = Ld->getDebugLoc();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
ISD::LoadExtType Ext = Ld->getExtensionType();
// If this is a vector EXT Load then attempt to optimize it using a
// shuffle. We need SSE4 for the shuffles.
// TODO: It is possible to support ZExt by zeroing the undef values
// during the shuffle phase or after the shuffle.
if (RegVT.isVector() && RegVT.isInteger() &&
Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
assert(MemVT != RegVT && "Cannot extend to the same type");
assert(MemVT.isVector() && "Must load a vector from memory");
unsigned NumElems = RegVT.getVectorNumElements();
unsigned RegSz = RegVT.getSizeInBits();
unsigned MemSz = MemVT.getSizeInBits();
assert(RegSz > MemSz && "Register size must be greater than the mem size");
// All sizes must be a power of two
if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
// Attempt to load the original value using a single load op.
// Find a scalar type which is equal to the loaded word size.
MVT SclrLoadTy = MVT::i8;
for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
MVT Tp = (MVT::SimpleValueType)tp;
if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() == MemSz) {
SclrLoadTy = Tp;
break;
}
}
// Proceed if a load word is found.
if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
RegSz/SclrLoadTy.getSizeInBits());
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
RegSz/MemVT.getScalarType().getSizeInBits());
// Can't shuffle using an illegal type.
if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
// Perform a single load.
SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
Ld->getBasePtr(),
Ld->getPointerInfo(), Ld->isVolatile(),
Ld->isNonTemporal(), Ld->isInvariant(),
Ld->getAlignment());
// Insert the word loaded into a vector.
SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
LoadUnitVecVT, ScalarLoad);
// Bitcast the loaded value to a vector of the original element type, in
// the size of the target vector type.
SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
ScalarInVector);
unsigned SizeRatio = RegSz/MemSz;
// Redistribute the loaded elements into the different locations.
SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
DAG.getUNDEF(SlicedVec.getValueType()),
ShuffleVec.data());
// Bitcast to the requested type.
Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
// Replace the original load with the new sequence
// and return the new chain.
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
return SDValue(ScalarLoad.getNode(), 1);
}
return SDValue();
}
/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
StoreSDNode *St = cast<StoreSDNode>(N);
EVT VT = St->getValue().getValueType();
EVT StVT = St->getMemoryVT();
DebugLoc dl = St->getDebugLoc();
SDValue StoredVal = St->getOperand(1);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// If we are saving a concatenation of two XMM registers, perform two stores.
// This is better in Sandy Bridge cause one 256-bit mem op is done via two
// 128-bit ones. If in the future the cost becomes only one memory access the
// first version would be better.
if (VT.getSizeInBits() == 256 &&
StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
StoredVal.getNumOperands() == 2) {
SDValue Value0 = StoredVal.getOperand(0);
SDValue Value1 = StoredVal.getOperand(1);
SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
SDValue Ptr0 = St->getBasePtr();
SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
St->getPointerInfo(), St->isVolatile(),
St->isNonTemporal(), St->getAlignment());
SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
St->getPointerInfo(), St->isVolatile(),
St->isNonTemporal(), St->getAlignment());
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
}
// Optimize trunc store (of multiple scalars) to shuffle and store.
// First, pack all of the elements in one place. Next, store to memory
// in fewer chunks.
if (St->isTruncatingStore() && VT.isVector()) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned NumElems = VT.getVectorNumElements();
assert(StVT != VT && "Cannot truncate to the same type");
unsigned FromSz = VT.getVectorElementType().getSizeInBits();
unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
// From, To sizes and ElemCount must be pow of two
if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
// We are going to use the original vector elt for storing.
// Accumulated smaller vector elements must be a multiple of the store size.
if (0 != (NumElems * FromSz) % ToSz) return SDValue();
unsigned SizeRatio = FromSz / ToSz;
assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
// Create a type on which we perform the shuffle
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
StVT.getScalarType(), NumElems*SizeRatio);
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
// Can't shuffle using an illegal type
if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
DAG.getUNDEF(WideVec.getValueType()),
ShuffleVec.data());
// At this point all of the data is stored at the bottom of the
// register. We now need to save it to mem.
// Find the largest store unit
MVT StoreType = MVT::i8;
for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
MVT Tp = (MVT::SimpleValueType)tp;
if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
StoreType = Tp;
}
// Bitcast the original vector into a vector of store-size units
EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
SmallVector<SDValue, 8> Chains;
SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
TLI.getPointerTy());
SDValue Ptr = St->getBasePtr();
// Perform one or more big stores into memory.
for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
StoreType, ShuffWide,
DAG.getIntPtrConstant(i));
SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
St->getPointerInfo(), St->isVolatile(),
St->isNonTemporal(), St->getAlignment());
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
Chains.push_back(Ch);
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
Chains.size());
}
// Turn load->store of MMX types into GPR load/stores. This avoids clobbering
// the FP state in cases where an emms may be missing.
// A preferable solution to the general problem is to figure out the right
// places to insert EMMS. This qualifies as a quick hack.
// Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
if (VT.getSizeInBits() != 64)
return SDValue();
const Function *F = DAG.getMachineFunction().getFunction();
bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
&& Subtarget->hasSSE2();
if ((VT.isVector() ||
(VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
isa<LoadSDNode>(St->getValue()) &&
!cast<LoadSDNode>(St->getValue())->isVolatile() &&
St->getChain().hasOneUse() && !St->isVolatile()) {
SDNode* LdVal = St->getValue().getNode();
LoadSDNode *Ld = 0;
int TokenFactorIndex = -1;
SmallVector<SDValue, 8> Ops;
SDNode* ChainVal = St->getChain().getNode();
// Must be a store of a load. We currently handle two cases: the load
// is a direct child, and it's under an intervening TokenFactor. It is
// possible to dig deeper under nested TokenFactors.
if (ChainVal == LdVal)
Ld = cast<LoadSDNode>(St->getChain());
else if (St->getValue().hasOneUse() &&
ChainVal->getOpcode() == ISD::TokenFactor) {
for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
if (ChainVal->getOperand(i).getNode() == LdVal) {
TokenFactorIndex = i;
Ld = cast<LoadSDNode>(St->getValue());
} else
Ops.push_back(ChainVal->getOperand(i));
}
}
if (!Ld || !ISD::isNormalLoad(Ld))
return SDValue();
// If this is not the MMX case, i.e. we are just turning i64 load/store
// into f64 load/store, avoid the transformation if there are multiple
// uses of the loaded value.
if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
return SDValue();
DebugLoc LdDL = Ld->getDebugLoc();
DebugLoc StDL = N->getDebugLoc();
// If we are a 64-bit capable x86, lower to a single movq load/store pair.
// Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
// pair instead.
if (Subtarget->is64Bit() || F64IsLegal) {
EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), Ld->isVolatile(),
Ld->isNonTemporal(), Ld->isInvariant(),
Ld->getAlignment());
SDValue NewChain = NewLd.getValue(1);
if (TokenFactorIndex != -1) {
Ops.push_back(NewChain);
NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
Ops.size());
}
return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
St->getPointerInfo(),
St->isVolatile(), St->isNonTemporal(),
St->getAlignment());
}
// Otherwise, lower to two pairs of 32-bit loads / stores.
SDValue LoAddr = Ld->getBasePtr();
SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
DAG.getConstant(4, MVT::i32));
SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
Ld->getPointerInfo(),
Ld->isVolatile(), Ld->isNonTemporal(),
Ld->isInvariant(), Ld->getAlignment());
SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
Ld->getPointerInfo().getWithOffset(4),
Ld->isVolatile(), Ld->isNonTemporal(),
Ld->isInvariant(),
MinAlign(Ld->getAlignment(), 4));
SDValue NewChain = LoLd.getValue(1);
if (TokenFactorIndex != -1) {
Ops.push_back(LoLd);
Ops.push_back(HiLd);
NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
Ops.size());
}
LoAddr = St->getBasePtr();
HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
DAG.getConstant(4, MVT::i32));
SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
St->getPointerInfo(),
St->isVolatile(), St->isNonTemporal(),
St->getAlignment());
SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
St->getPointerInfo().getWithOffset(4),
St->isVolatile(),
St->isNonTemporal(),
MinAlign(St->getAlignment(), 4));
return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
}
return SDValue();
}
/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
/// and return the operands for the horizontal operation in LHS and RHS. A
/// horizontal operation performs the binary operation on successive elements
/// of its first operand, then on successive elements of its second operand,
/// returning the resulting values in a vector. For example, if
/// A = < float a0, float a1, float a2, float a3 >
/// and
/// B = < float b0, float b1, float b2, float b3 >
/// then the result of doing a horizontal operation on A and B is
/// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
/// A horizontal-op B, for some already available A and B, and if so then LHS is
/// set to A, RHS to B, and the routine returns 'true'.
/// Note that the binary operation should have the property that if one of the
/// operands is UNDEF then the result is UNDEF.
static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
// Look for the following pattern: if
// A = < float a0, float a1, float a2, float a3 >
// B = < float b0, float b1, float b2, float b3 >
// and
// LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
// RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
// then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
// which is A horizontal-op B.
// At least one of the operands should be a vector shuffle.
if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
return false;
EVT VT = LHS.getValueType();
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Unsupported vector type for horizontal add/sub");
// Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
// operate independently on 128-bit lanes.
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts / NumLanes;
assert((NumLaneElts % 2 == 0) &&
"Vector type should have an even number of elements in each lane");
unsigned HalfLaneElts = NumLaneElts/2;
// View LHS in the form
// LHS = VECTOR_SHUFFLE A, B, LMask
// If LHS is not a shuffle then pretend it is the shuffle
// LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
// NOTE: in what follows a default initialized SDValue represents an UNDEF of
// type VT.
SDValue A, B;
SmallVector<int, 16> LMask(NumElts);
if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
A = LHS.getOperand(0);
if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
B = LHS.getOperand(1);
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
std::copy(Mask.begin(), Mask.end(), LMask.begin());
} else {
if (LHS.getOpcode() != ISD::UNDEF)
A = LHS;
for (unsigned i = 0; i != NumElts; ++i)
LMask[i] = i;
}
// Likewise, view RHS in the form
// RHS = VECTOR_SHUFFLE C, D, RMask
SDValue C, D;
SmallVector<int, 16> RMask(NumElts);
if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
C = RHS.getOperand(0);
if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
D = RHS.getOperand(1);
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
std::copy(Mask.begin(), Mask.end(), RMask.begin());
} else {
if (RHS.getOpcode() != ISD::UNDEF)
C = RHS;
for (unsigned i = 0; i != NumElts; ++i)
RMask[i] = i;
}
// Check that the shuffles are both shuffling the same vectors.
if (!(A == C && B == D) && !(A == D && B == C))
return false;
// If everything is UNDEF then bail out: it would be better to fold to UNDEF.
if (!A.getNode() && !B.getNode())
return false;
// If A and B occur in reverse order in RHS, then "swap" them (which means
// rewriting the mask).
if (A != C)
CommuteVectorShuffleMask(RMask, NumElts);
// At this point LHS and RHS are equivalent to
// LHS = VECTOR_SHUFFLE A, B, LMask
// RHS = VECTOR_SHUFFLE A, B, RMask
// Check that the masks correspond to performing a horizontal operation.
for (unsigned i = 0; i != NumElts; ++i) {
int LIdx = LMask[i], RIdx = RMask[i];
// Ignore any UNDEF components.
if (LIdx < 0 || RIdx < 0 ||
(!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
(!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
continue;
// Check that successive elements are being operated on. If not, this is
// not a horizontal operation.
unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
if (!(LIdx == Index && RIdx == Index + 1) &&
!(IsCommutative && LIdx == Index + 1 && RIdx == Index))
return false;
}
LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
return true;
}
/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
EVT VT = N->getValueType(0);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// Try to synthesize horizontal adds from adds of shuffles.
if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
(Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
isHorizontalBinOp(LHS, RHS, true))
return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
return SDValue();
}
/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
EVT VT = N->getValueType(0);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// Try to synthesize horizontal subs from subs of shuffles.
if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
(Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
isHorizontalBinOp(LHS, RHS, false))
return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
return SDValue();
}
/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
/// X86ISD::FXOR nodes.
static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
// F[X]OR(0.0, x) -> x
// F[X]OR(x, 0.0) -> x
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
if (C->getValueAPF().isPosZero())
return N->getOperand(1);
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
if (C->getValueAPF().isPosZero())
return N->getOperand(0);
return SDValue();
}
/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
// FAND(0.0, x) -> 0.0
// FAND(x, 0.0) -> 0.0
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
if (C->getValueAPF().isPosZero())
return N->getOperand(0);
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
if (C->getValueAPF().isPosZero())
return N->getOperand(1);
return SDValue();
}
static SDValue PerformBTCombine(SDNode *N,
SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
// BT ignores high bits in the bit index operand.
SDValue Op1 = N->getOperand(1);
if (Op1.hasOneUse()) {
unsigned BitWidth = Op1.getValueSizeInBits();
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
DCI.CommitTargetLoweringOpt(TLO);
}
return SDValue();
}
static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
SDValue Op = N->getOperand(0);
if (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
EVT VT = N->getValueType(0), OpVT = Op.getValueType();
if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
VT.getVectorElementType().getSizeInBits() ==
OpVT.getVectorElementType().getSizeInBits()) {
return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
}
return SDValue();
}
static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
if (!DCI.isBeforeLegalizeOps())
return SDValue();
if (!Subtarget->hasAVX())
return SDValue();
// Optimize vectors in AVX mode
// Sign extend v8i16 to v8i32 and
// v4i32 to v4i64
//
// Divide input vector into two parts
// for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
// use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
// concat the vectors to original VT
EVT VT = N->getValueType(0);
SDValue Op = N->getOperand(0);
EVT OpVT = Op.getValueType();
DebugLoc dl = N->getDebugLoc();
if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
(VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
unsigned NumElems = OpVT.getVectorNumElements();
SmallVector<int,8> ShufMask1(NumElems, -1);
for (unsigned i = 0; i < NumElems/2; i++) ShufMask1[i] = i;
SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
ShufMask1.data());
SmallVector<int,8> ShufMask2(NumElems, -1);
for (unsigned i = 0; i < NumElems/2; i++) ShufMask2[i] = i + NumElems/2;
SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
ShufMask2.data());
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
VT.getVectorNumElements()/2);
OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
}
return SDValue();
}
static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
// (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
// (and (i32 x86isd::setcc_carry), 1)
// This eliminates the zext. This transformation is necessary because
// ISD::SETCC is always legalized to i8.
DebugLoc dl = N->getDebugLoc();
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT OpVT = N0.getValueType();
if (N0.getOpcode() == ISD::AND &&
N0.hasOneUse() &&
N0.getOperand(0).hasOneUse()) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() != X86ISD::SETCC_CARRY)
return SDValue();
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!C || C->getZExtValue() != 1)
return SDValue();
return DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
N00.getOperand(0), N00.getOperand(1)),
DAG.getConstant(1, VT));
}
// Optimize vectors in AVX mode:
//
// v8i16 -> v8i32
// Use vpunpcklwd for 4 lower elements v8i16 -> v4i32.
// Use vpunpckhwd for 4 upper elements v8i16 -> v4i32.
// Concat upper and lower parts.
//
// v4i32 -> v4i64
// Use vpunpckldq for 4 lower elements v4i32 -> v2i64.
// Use vpunpckhdq for 4 upper elements v4i32 -> v2i64.
// Concat upper and lower parts.
//
if (Subtarget->hasAVX()) {
if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
((VT == MVT::v4i64) && (OpVT == MVT::v4i32))) {
SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
VT.getVectorNumElements()/2);
OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
}
}
return SDValue();
}
// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
unsigned X86CC = N->getConstantOperandVal(0);
SDValue EFLAG = N->getOperand(1);
DebugLoc DL = N->getDebugLoc();
// Materialize "setb reg" as "sbb reg,reg", since it can be extended without
// a zext and produces an all-ones bit which is more useful than 0/1 in some
// cases.
if (X86CC == X86::COND_B)
return DAG.getNode(ISD::AND, DL, MVT::i8,
DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
DAG.getConstant(X86CC, MVT::i8), EFLAG),
DAG.getConstant(1, MVT::i8));
return SDValue();
}
static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
const X86TargetLowering *XTLI) {
SDValue Op0 = N->getOperand(0);
// Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
// a 32-bit target where SSE doesn't support i64->FP operations.
if (Op0.getOpcode() == ISD::LOAD) {
LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
EVT VT = Ld->getValueType(0);
if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
!XTLI->getSubtarget()->is64Bit() &&
!DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
Ld->getChain(), Op0, DAG);
DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
return FILDChain;
}
}
return SDValue();
}
// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
X86TargetLowering::DAGCombinerInfo &DCI) {
// If the LHS and RHS of the ADC node are zero, then it can't overflow and
// the result is either zero or one (depending on the input carry bit).
// Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
if (X86::isZeroNode(N->getOperand(0)) &&
X86::isZeroNode(N->getOperand(1)) &&
// We don't have a good way to replace an EFLAGS use, so only do this when
// dead right now.
SDValue(N, 1).use_empty()) {
DebugLoc DL = N->getDebugLoc();
EVT VT = N->getValueType(0);
SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
DAG.getConstant(X86::COND_B,MVT::i8),
N->getOperand(2)),
DAG.getConstant(1, VT));
return DCI.CombineTo(N, Res1, CarryOut);
}
return SDValue();
}
// fold (add Y, (sete X, 0)) -> adc 0, Y
// (add Y, (setne X, 0)) -> sbb -1, Y
// (sub (sete X, 0), Y) -> sbb 0, Y
// (sub (setne X, 0), Y) -> adc -1, Y
static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
DebugLoc DL = N->getDebugLoc();
// Look through ZExts.
SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
return SDValue();
SDValue SetCC = Ext.getOperand(0);
if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
return SDValue();
X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
if (CC != X86::COND_E && CC != X86::COND_NE)
return SDValue();
SDValue Cmp = SetCC.getOperand(1);
if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
!X86::isZeroNode(Cmp.getOperand(1)) ||
!Cmp.getOperand(0).getValueType().isInteger())
return SDValue();
SDValue CmpOp0 = Cmp.getOperand(0);
SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
DAG.getConstant(1, CmpOp0.getValueType()));
SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
if (CC == X86::COND_NE)
return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
DL, OtherVal.getValueType(), OtherVal,
DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
DL, OtherVal.getValueType(), OtherVal,
DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
}
/// PerformADDCombine - Do target-specific dag combines on integer adds.
static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
EVT VT = N->getValueType(0);
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// Try to synthesize horizontal adds from adds of shuffles.
if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
(Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
isHorizontalBinOp(Op0, Op1, true))
return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
return OptimizeConditionalInDecrement(N, DAG);
}
static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// X86 can't encode an immediate LHS of a sub. See if we can push the
// negation into a preceding instruction.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
// If the RHS of the sub is a XOR with one use and a constant, invert the
// immediate. Then add one to the LHS of the sub so we can turn
// X-Y -> X+~Y+1, saving one register.
if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
isa<ConstantSDNode>(Op1.getOperand(1))) {
APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
EVT VT = Op0.getValueType();
SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
Op1.getOperand(0),
DAG.getConstant(~XorC, VT));
return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
DAG.getConstant(C->getAPIntValue()+1, VT));
}
}
// Try to synthesize horizontal adds from adds of shuffles.
EVT VT = N->getValueType(0);
if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
(Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
isHorizontalBinOp(Op0, Op1, true))
return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
return OptimizeConditionalInDecrement(N, DAG);
}
SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default: break;
case ISD::EXTRACT_VECTOR_ELT:
return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
case ISD::VSELECT:
case ISD::SELECT: return PerformSELECTCombine(N, DAG, DCI, Subtarget);
case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget);
case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget);
case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI);
case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: return PerformShiftCombine(N, DAG, DCI, Subtarget);
case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget);
case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget);
case ISD::LOAD: return PerformLOADCombine(N, DAG, Subtarget);
case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this);
case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget);
case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget);
case X86ISD::FXOR:
case X86ISD::FOR: return PerformFORCombine(N, DAG);
case X86ISD::FAND: return PerformFANDCombine(N, DAG);
case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, Subtarget);
case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget);
case ISD::TRUNCATE: return PerformTruncateCombine(N, DAG, DCI);
case X86ISD::SETCC: return PerformSETCCCombine(N, DAG);
case X86ISD::SHUFP: // Handle all target specific shuffles
case X86ISD::PALIGN:
case X86ISD::UNPCKH:
case X86ISD::UNPCKL:
case X86ISD::MOVHLPS:
case X86ISD::MOVLHPS:
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
case X86ISD::VPERMILP:
case X86ISD::VPERM2X128:
case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
}
return SDValue();
}
/// isTypeDesirableForOp - Return true if the target has native support for
/// the specified value type and it is 'desirable' to use the type for the
/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
/// instruction encodings are longer and some i16 instructions are slow.
bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
if (!isTypeLegal(VT))
return false;
if (VT != MVT::i16)
return true;
switch (Opc) {
default:
return true;
case ISD::LOAD:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::SHL:
case ISD::SRL:
case ISD::SUB:
case ISD::ADD:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
return false;
}
}
/// IsDesirableToPromoteOp - This method query the target whether it is
/// beneficial for dag combiner to promote the specified node. If true, it
/// should return the desired promotion type by reference.
bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
EVT VT = Op.getValueType();
if (VT != MVT::i16)
return false;
bool Promote = false;
bool Commute = false;
switch (Op.getOpcode()) {
default: break;
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Op);
// If the non-extending load has a single use and it's not live out, then it
// might be folded.
if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
Op.hasOneUse()*/) {
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
UE = Op.getNode()->use_end(); UI != UE; ++UI) {
// The only case where we'd want to promote LOAD (rather then it being
// promoted as an operand is when it's only use is liveout.
if (UI->getOpcode() != ISD::CopyToReg)
return false;
}
}
Promote = true;
break;
}
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
Promote = true;
break;
case ISD::SHL:
case ISD::SRL: {
SDValue N0 = Op.getOperand(0);
// Look out for (store (shl (load), x)).
if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
return false;
Promote = true;
break;
}
case ISD::ADD:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
Commute = true;
// fallthrough
case ISD::SUB: {
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
if (!Commute && MayFoldLoad(N1))
return false;
// Avoid disabling potential load folding opportunities.
if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
return false;
if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
return false;
Promote = true;
}
}
PVT = MVT::i32;
return Promote;
}
//===----------------------------------------------------------------------===//
// X86 Inline Assembly Support
//===----------------------------------------------------------------------===//
namespace {
// Helper to match a string separated by whitespace.
bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
for (unsigned i = 0, e = args.size(); i != e; ++i) {
StringRef piece(*args[i]);
if (!s.startswith(piece)) // Check if the piece matches.
return false;
s = s.substr(piece.size());
StringRef::size_type pos = s.find_first_not_of(" \t");
if (pos == 0) // We matched a prefix.
return false;
s = s.substr(pos);
}
return s.empty();
}
const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
}
bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
std::string AsmStr = IA->getAsmString();
IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
if (!Ty || Ty->getBitWidth() % 16 != 0)
return false;
// TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
SmallVector<StringRef, 4> AsmPieces;
SplitString(AsmStr, AsmPieces, ";\n");
switch (AsmPieces.size()) {
default: return false;
case 1:
// FIXME: this should verify that we are targeting a 486 or better. If not,
// we will turn this bswap into something that will be lowered to logical
// ops instead of emitting the bswap asm. For now, we don't support 486 or
// lower so don't worry about this.
// bswap $0
if (matchAsm(AsmPieces[0], "bswap", "$0") ||
matchAsm(AsmPieces[0], "bswapl", "$0") ||
matchAsm(AsmPieces[0], "bswapq", "$0") ||
matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
// No need to check constraints, nothing other than the equivalent of
// "=r,0" would be valid here.
return IntrinsicLowering::LowerToByteSwap(CI);
}
// rorw $$8, ${0:w} --> llvm.bswap.i16
if (CI->getType()->isIntegerTy(16) &&
IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
(matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
AsmPieces.clear();
const std::string &ConstraintsStr = IA->getConstraintString();
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
std::sort(AsmPieces.begin(), AsmPieces.end());
if (AsmPieces.size() == 4 &&
AsmPieces[0] == "~{cc}" &&
AsmPieces[1] == "~{dirflag}" &&
AsmPieces[2] == "~{flags}" &&
AsmPieces[3] == "~{fpsr}")
return IntrinsicLowering::LowerToByteSwap(CI);
}
break;
case 3:
if (CI->getType()->isIntegerTy(32) &&
IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
AsmPieces.clear();
const std::string &ConstraintsStr = IA->getConstraintString();
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
std::sort(AsmPieces.begin(), AsmPieces.end());
if (AsmPieces.size() == 4 &&
AsmPieces[0] == "~{cc}" &&
AsmPieces[1] == "~{dirflag}" &&
AsmPieces[2] == "~{flags}" &&
AsmPieces[3] == "~{fpsr}")
return IntrinsicLowering::LowerToByteSwap(CI);
}
if (CI->getType()->isIntegerTy(64)) {
InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
if (Constraints.size() >= 2 &&
Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
// bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
matchAsm(AsmPieces[1], "bswap", "%edx") &&
matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
return IntrinsicLowering::LowerToByteSwap(CI);
}
}
break;
}
return false;
}
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
X86TargetLowering::ConstraintType
X86TargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'R':
case 'q':
case 'Q':
case 'f':
case 't':
case 'u':
case 'y':
case 'x':
case 'Y':
case 'l':
return C_RegisterClass;
case 'a':
case 'b':
case 'c':
case 'd':
case 'S':
case 'D':
case 'A':
return C_Register;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'G':
case 'C':
case 'e':
case 'Z':
return C_Other;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
X86TargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (CallOperandVal == NULL)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
case 'R':
case 'q':
case 'Q':
case 'a':
case 'b':
case 'c':
case 'd':
case 'S':
case 'D':
case 'A':
if (CallOperandVal->getType()->isIntegerTy())
weight = CW_SpecificReg;
break;
case 'f':
case 't':
case 'u':
if (type->isFloatingPointTy())
weight = CW_SpecificReg;
break;
case 'y':
if (type->isX86_MMXTy() && Subtarget->hasMMX())
weight = CW_SpecificReg;
break;
case 'x':
case 'Y':
if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
weight = CW_Register;
break;
case 'I':
if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
if (C->getZExtValue() <= 31)
weight = CW_Constant;
}
break;
case 'J':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 63)
weight = CW_Constant;
}
break;
case 'K':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
weight = CW_Constant;
}
break;
case 'L':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
weight = CW_Constant;
}
break;
case 'M':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 3)
weight = CW_Constant;
}
break;
case 'N':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 0xff)
weight = CW_Constant;
}
break;
case 'G':
case 'C':
if (dyn_cast<ConstantFP>(CallOperandVal)) {
weight = CW_Constant;
}
break;
case 'e':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if ((C->getSExtValue() >= -0x80000000LL) &&
(C->getSExtValue() <= 0x7fffffffLL))
weight = CW_Constant;
}
break;
case 'Z':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 0xffffffff)
weight = CW_Constant;
}
break;
}
return weight;
}
/// LowerXConstraint - try to replace an X constraint, which matches anything,
/// with another that has more specific requirements based on the type of the
/// corresponding operand.
const char *X86TargetLowering::
LowerXConstraint(EVT ConstraintVT) const {
// FP X constraints get lowered to SSE1/2 registers if available, otherwise
// 'f' like normal targets.
if (ConstraintVT.isFloatingPoint()) {
if (Subtarget->hasSSE2())
return "Y";
if (Subtarget->hasSSE1())
return "x";
}
return TargetLowering::LowerXConstraint(ConstraintVT);
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result(0, 0);
// Only support length 1 constraints for now.
if (Constraint.length() > 1) return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break;
case 'I':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 31) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
}
return;
case 'J':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 63) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
}
return;
case 'K':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
}
return;
case 'N':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 255) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
}
return;
case 'e': {
// 32-bit signed value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
C->getSExtValue())) {
// Widen to 64 bits here to get it sign extended.
Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
break;
}
// FIXME gcc accepts some relocatable values here too, but only in certain
// memory models; it's complicated.
}
return;
}
case 'Z': {
// 32-bit unsigned value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
C->getZExtValue())) {
Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
break;
}
}
// FIXME gcc accepts some relocatable values here too, but only in certain
// memory models; it's complicated.
return;
}
case 'i': {
// Literal immediates are always ok.
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
// Widen to 64 bits here to get it sign extended.
Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
break;
}
// In any sort of PIC mode addresses need to be computed at runtime by
// adding in a register or some sort of table lookup. These can't
// be used as immediates.
if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
return;
// If we are in non-pic codegen mode, we allow the address of a global (with
// an optional displacement) to be used with 'i'.
GlobalAddressSDNode *GA = 0;
int64_t Offset = 0;
// Match either (GA), (GA+C), (GA+C1+C2), etc.
while (1) {
if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
Offset += GA->getOffset();
break;
} else if (Op.getOpcode() == ISD::ADD) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Offset += C->getZExtValue();
Op = Op.getOperand(0);
continue;
}
} else if (Op.getOpcode() == ISD::SUB) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Offset += -C->getZExtValue();
Op = Op.getOperand(0);
continue;
}
}
// Otherwise, this isn't something we can handle, reject it.
return;
}
const GlobalValue *GV = GA->getGlobal();
// If we require an extra load to get this address, as in PIC mode, we
// can't accept it.
if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
getTargetMachine())))
return;
Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
GA->getValueType(0), Offset);
break;
}
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
std::pair<unsigned, const TargetRegisterClass*>
X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const {
// First, see if this is a constraint that directly corresponds to an LLVM
// register class.
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
// TODO: Slight differences here in allocation order and leaving
// RIP in the class. Do they matter any more here than they do
// in the normal allocation?
case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
if (Subtarget->is64Bit()) {
if (VT == MVT::i32 || VT == MVT::f32)
return std::make_pair(0U, X86::GR32RegisterClass);
else if (VT == MVT::i16)
return std::make_pair(0U, X86::GR16RegisterClass);
else if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, X86::GR8RegisterClass);
else if (VT == MVT::i64 || VT == MVT::f64)
return std::make_pair(0U, X86::GR64RegisterClass);
break;
}
// 32-bit fallthrough
case 'Q': // Q_REGS
if (VT == MVT::i32 || VT == MVT::f32)
return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
else if (VT == MVT::i16)
return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
else if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
else if (VT == MVT::i64)
return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
break;
case 'r': // GENERAL_REGS
case 'l': // INDEX_REGS
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, X86::GR8RegisterClass);
if (VT == MVT::i16)
return std::make_pair(0U, X86::GR16RegisterClass);
if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
return std::make_pair(0U, X86::GR32RegisterClass);
return std::make_pair(0U, X86::GR64RegisterClass);
case 'R': // LEGACY_REGS
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
if (VT == MVT::i16)
return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
if (VT == MVT::i32 || !Subtarget->is64Bit())
return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
case 'f': // FP Stack registers.
// If SSE is enabled for this VT, use f80 to ensure the isel moves the
// value to the correct fpstack register class.
if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
return std::make_pair(0U, X86::RFP32RegisterClass);
if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
return std::make_pair(0U, X86::RFP64RegisterClass);
return std::make_pair(0U, X86::RFP80RegisterClass);
case 'y': // MMX_REGS if MMX allowed.
if (!Subtarget->hasMMX()) break;
return std::make_pair(0U, X86::VR64RegisterClass);
case 'Y': // SSE_REGS if SSE2 allowed
if (!Subtarget->hasSSE2()) break;
// FALL THROUGH.
case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
if (!Subtarget->hasSSE1()) break;
switch (VT.getSimpleVT().SimpleTy) {
default: break;
// Scalar SSE types.
case MVT::f32:
case MVT::i32:
return std::make_pair(0U, X86::FR32RegisterClass);
case MVT::f64:
case MVT::i64:
return std::make_pair(0U, X86::FR64RegisterClass);
// Vector types.
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
return std::make_pair(0U, X86::VR128RegisterClass);
// AVX types.
case MVT::v32i8:
case MVT::v16i16:
case MVT::v8i32:
case MVT::v4i64:
case MVT::v8f32:
case MVT::v4f64:
return std::make_pair(0U, X86::VR256RegisterClass);
}
break;
}
}
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
std::pair<unsigned, const TargetRegisterClass*> Res;
Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
// Not found as a standard register?
if (Res.second == 0) {
// Map st(0) -> st(7) -> ST0
if (Constraint.size() == 7 && Constraint[0] == '{' &&
tolower(Constraint[1]) == 's' &&
tolower(Constraint[2]) == 't' &&
Constraint[3] == '(' &&
(Constraint[4] >= '0' && Constraint[4] <= '7') &&
Constraint[5] == ')' &&
Constraint[6] == '}') {
Res.first = X86::ST0+Constraint[4]-'0';
Res.second = X86::RFP80RegisterClass;
return Res;
}
// GCC allows "st(0)" to be called just plain "st".
if (StringRef("{st}").equals_lower(Constraint)) {
Res.first = X86::ST0;
Res.second = X86::RFP80RegisterClass;
return Res;
}
// flags -> EFLAGS
if (StringRef("{flags}").equals_lower(Constraint)) {
Res.first = X86::EFLAGS;
Res.second = X86::CCRRegisterClass;
return Res;
}
// 'A' means EAX + EDX.
if (Constraint == "A") {
Res.first = X86::EAX;
Res.second = X86::GR32_ADRegisterClass;
return Res;
}
return Res;
}
// Otherwise, check to see if this is a register class of the wrong value
// type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
// turn into {ax},{dx}.
if (Res.second->hasType(VT))
return Res; // Correct type already, nothing to do.
// All of the single-register GCC register classes map their values onto
// 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
// really want an 8-bit or 32-bit register, map to the appropriate register
// class and return the appropriate register.
if (Res.second == X86::GR16RegisterClass) {
if (VT == MVT::i8) {
unsigned DestReg = 0;
switch (Res.first) {
default: break;
case X86::AX: DestReg = X86::AL; break;
case X86::DX: DestReg = X86::DL; break;
case X86::CX: DestReg = X86::CL; break;
case X86::BX: DestReg = X86::BL; break;
}
if (DestReg) {
Res.first = DestReg;
Res.second = X86::GR8RegisterClass;
}
} else if (VT == MVT::i32) {
unsigned DestReg = 0;
switch (Res.first) {
default: break;
case X86::AX: DestReg = X86::EAX; break;
case X86::DX: DestReg = X86::EDX; break;
case X86::CX: DestReg = X86::ECX; break;
case X86::BX: DestReg = X86::EBX; break;
case X86::SI: DestReg = X86::ESI; break;
case X86::DI: DestReg = X86::EDI; break;
case X86::BP: DestReg = X86::EBP; break;
case X86::SP: DestReg = X86::ESP; break;
}
if (DestReg) {
Res.first = DestReg;
Res.second = X86::GR32RegisterClass;
}
} else if (VT == MVT::i64) {
unsigned DestReg = 0;
switch (Res.first) {
default: break;
case X86::AX: DestReg = X86::RAX; break;
case X86::DX: DestReg = X86::RDX; break;
case X86::CX: DestReg = X86::RCX; break;
case X86::BX: DestReg = X86::RBX; break;
case X86::SI: DestReg = X86::RSI; break;
case X86::DI: DestReg = X86::RDI; break;
case X86::BP: DestReg = X86::RBP; break;
case X86::SP: DestReg = X86::RSP; break;
}
if (DestReg) {
Res.first = DestReg;
Res.second = X86::GR64RegisterClass;
}
}
} else if (Res.second == X86::FR32RegisterClass ||
Res.second == X86::FR64RegisterClass ||
Res.second == X86::VR128RegisterClass) {
// Handle references to XMM physical registers that got mapped into the
// wrong class. This can happen with constraints like {xmm0} where the
// target independent register mapper will just pick the first match it can
// find, ignoring the required type.
if (VT == MVT::f32)
Res.second = X86::FR32RegisterClass;
else if (VT == MVT::f64)
Res.second = X86::FR64RegisterClass;
else if (X86::VR128RegisterClass->hasType(VT))
Res.second = X86::VR128RegisterClass;
}
return Res;
}