blob: 602087756b23b9aa1bdb9af638f49ef5e02ed40c [file] [log] [blame]
/*===-- X86DisassemblerDecoder.c - Disassembler decoder ------------*- C -*-===*
*
* The LLVM Compiler Infrastructure
*
* This file is distributed under the University of Illinois Open Source
* License. See LICENSE.TXT for details.
*
*===----------------------------------------------------------------------===*
*
* This file is part of the X86 Disassembler.
* It contains the implementation of the instruction decoder.
* Documentation for the disassembler can be found in X86Disassembler.h.
*
*===----------------------------------------------------------------------===*/
#include <stdarg.h> /* for va_*() */
#include <stdio.h> /* for vsnprintf() */
#include <stdlib.h> /* for exit() */
#include <string.h> /* for memset() */
#include "X86DisassemblerDecoder.h"
#include "X86GenDisassemblerTables.inc"
#define TRUE 1
#define FALSE 0
typedef int8_t bool;
#ifndef NDEBUG
#define debug(s) do { x86DisassemblerDebug(__FILE__, __LINE__, s); } while (0)
#else
#define debug(s) do { } while (0)
#endif
/*
* contextForAttrs - Client for the instruction context table. Takes a set of
* attributes and returns the appropriate decode context.
*
* @param attrMask - Attributes, from the enumeration attributeBits.
* @return - The InstructionContext to use when looking up an
* an instruction with these attributes.
*/
static InstructionContext contextForAttrs(uint8_t attrMask) {
return CONTEXTS_SYM[attrMask];
}
/*
* modRMRequired - Reads the appropriate instruction table to determine whether
* the ModR/M byte is required to decode a particular instruction.
*
* @param type - The opcode type (i.e., how many bytes it has).
* @param insnContext - The context for the instruction, as returned by
* contextForAttrs.
* @param opcode - The last byte of the instruction's opcode, not counting
* ModR/M extensions and escapes.
* @return - TRUE if the ModR/M byte is required, FALSE otherwise.
*/
static int modRMRequired(OpcodeType type,
InstructionContext insnContext,
uint8_t opcode) {
const struct ContextDecision* decision = 0;
switch (type) {
case ONEBYTE:
decision = &ONEBYTE_SYM;
break;
case TWOBYTE:
decision = &TWOBYTE_SYM;
break;
case THREEBYTE_38:
decision = &THREEBYTE38_SYM;
break;
case THREEBYTE_3A:
decision = &THREEBYTE3A_SYM;
break;
case THREEBYTE_A6:
decision = &THREEBYTEA6_SYM;
break;
case THREEBYTE_A7:
decision = &THREEBYTEA7_SYM;
break;
}
return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
modrm_type != MODRM_ONEENTRY;
}
/*
* decode - Reads the appropriate instruction table to obtain the unique ID of
* an instruction.
*
* @param type - See modRMRequired().
* @param insnContext - See modRMRequired().
* @param opcode - See modRMRequired().
* @param modRM - The ModR/M byte if required, or any value if not.
* @return - The UID of the instruction, or 0 on failure.
*/
static InstrUID decode(OpcodeType type,
InstructionContext insnContext,
uint8_t opcode,
uint8_t modRM) {
const struct ModRMDecision* dec = 0;
switch (type) {
case ONEBYTE:
dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case TWOBYTE:
dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case THREEBYTE_38:
dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case THREEBYTE_3A:
dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case THREEBYTE_A6:
dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case THREEBYTE_A7:
dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
}
switch (dec->modrm_type) {
default:
debug("Corrupt table! Unknown modrm_type");
return 0;
case MODRM_ONEENTRY:
return modRMTable[dec->instructionIDs];
case MODRM_SPLITRM:
if (modFromModRM(modRM) == 0x3)
return modRMTable[dec->instructionIDs+1];
return modRMTable[dec->instructionIDs];
case MODRM_SPLITREG:
if (modFromModRM(modRM) == 0x3)
return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
case MODRM_FULL:
return modRMTable[dec->instructionIDs+modRM];
}
}
/*
* specifierForUID - Given a UID, returns the name and operand specification for
* that instruction.
*
* @param uid - The unique ID for the instruction. This should be returned by
* decode(); specifierForUID will not check bounds.
* @return - A pointer to the specification for that instruction.
*/
static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
return &INSTRUCTIONS_SYM[uid];
}
/*
* consumeByte - Uses the reader function provided by the user to consume one
* byte from the instruction's memory and advance the cursor.
*
* @param insn - The instruction with the reader function to use. The cursor
* for this instruction is advanced.
* @param byte - A pointer to a pre-allocated memory buffer to be populated
* with the data read.
* @return - 0 if the read was successful; nonzero otherwise.
*/
static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
if (!ret)
++(insn->readerCursor);
return ret;
}
/*
* lookAtByte - Like consumeByte, but does not advance the cursor.
*
* @param insn - See consumeByte().
* @param byte - See consumeByte().
* @return - See consumeByte().
*/
static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
return insn->reader(insn->readerArg, byte, insn->readerCursor);
}
static void unconsumeByte(struct InternalInstruction* insn) {
insn->readerCursor--;
}
#define CONSUME_FUNC(name, type) \
static int name(struct InternalInstruction* insn, type* ptr) { \
type combined = 0; \
unsigned offset; \
for (offset = 0; offset < sizeof(type); ++offset) { \
uint8_t byte; \
int ret = insn->reader(insn->readerArg, \
&byte, \
insn->readerCursor + offset); \
if (ret) \
return ret; \
combined = combined | ((type)byte << ((type)offset * 8)); \
} \
*ptr = combined; \
insn->readerCursor += sizeof(type); \
return 0; \
}
/*
* consume* - Use the reader function provided by the user to consume data
* values of various sizes from the instruction's memory and advance the
* cursor appropriately. These readers perform endian conversion.
*
* @param insn - See consumeByte().
* @param ptr - A pointer to a pre-allocated memory of appropriate size to
* be populated with the data read.
* @return - See consumeByte().
*/
CONSUME_FUNC(consumeInt8, int8_t)
CONSUME_FUNC(consumeInt16, int16_t)
CONSUME_FUNC(consumeInt32, int32_t)
CONSUME_FUNC(consumeUInt16, uint16_t)
CONSUME_FUNC(consumeUInt32, uint32_t)
CONSUME_FUNC(consumeUInt64, uint64_t)
/*
* dbgprintf - Uses the logging function provided by the user to log a single
* message, typically without a carriage-return.
*
* @param insn - The instruction containing the logging function.
* @param format - See printf().
* @param ... - See printf().
*/
static void dbgprintf(struct InternalInstruction* insn,
const char* format,
...) {
char buffer[256];
va_list ap;
if (!insn->dlog)
return;
va_start(ap, format);
(void)vsnprintf(buffer, sizeof(buffer), format, ap);
va_end(ap);
insn->dlog(insn->dlogArg, buffer);
return;
}
/*
* setPrefixPresent - Marks that a particular prefix is present at a particular
* location.
*
* @param insn - The instruction to be marked as having the prefix.
* @param prefix - The prefix that is present.
* @param location - The location where the prefix is located (in the address
* space of the instruction's reader).
*/
static void setPrefixPresent(struct InternalInstruction* insn,
uint8_t prefix,
uint64_t location)
{
insn->prefixPresent[prefix] = 1;
insn->prefixLocations[prefix] = location;
}
/*
* isPrefixAtLocation - Queries an instruction to determine whether a prefix is
* present at a given location.
*
* @param insn - The instruction to be queried.
* @param prefix - The prefix.
* @param location - The location to query.
* @return - Whether the prefix is at that location.
*/
static BOOL isPrefixAtLocation(struct InternalInstruction* insn,
uint8_t prefix,
uint64_t location)
{
if (insn->prefixPresent[prefix] == 1 &&
insn->prefixLocations[prefix] == location)
return TRUE;
else
return FALSE;
}
/*
* readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
* instruction as having them. Also sets the instruction's default operand,
* address, and other relevant data sizes to report operands correctly.
*
* @param insn - The instruction whose prefixes are to be read.
* @return - 0 if the instruction could be read until the end of the prefix
* bytes, and no prefixes conflicted; nonzero otherwise.
*/
static int readPrefixes(struct InternalInstruction* insn) {
BOOL isPrefix = TRUE;
BOOL prefixGroups[4] = { FALSE };
uint64_t prefixLocation;
uint8_t byte = 0;
BOOL hasAdSize = FALSE;
BOOL hasOpSize = FALSE;
dbgprintf(insn, "readPrefixes()");
while (isPrefix) {
prefixLocation = insn->readerCursor;
if (consumeByte(insn, &byte))
return -1;
/*
* If the first byte is a LOCK prefix break and let it be disassembled
* as a lock "instruction", by creating an <MCInst #xxxx LOCK_PREFIX>.
* FIXME there is currently no way to get the disassembler to print the
* lock prefix if it is not the first byte.
*/
if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
break;
switch (byte) {
case 0xf0: /* LOCK */
case 0xf2: /* REPNE/REPNZ */
case 0xf3: /* REP or REPE/REPZ */
if (prefixGroups[0])
dbgprintf(insn, "Redundant Group 1 prefix");
prefixGroups[0] = TRUE;
setPrefixPresent(insn, byte, prefixLocation);
break;
case 0x2e: /* CS segment override -OR- Branch not taken */
case 0x36: /* SS segment override -OR- Branch taken */
case 0x3e: /* DS segment override */
case 0x26: /* ES segment override */
case 0x64: /* FS segment override */
case 0x65: /* GS segment override */
switch (byte) {
case 0x2e:
insn->segmentOverride = SEG_OVERRIDE_CS;
break;
case 0x36:
insn->segmentOverride = SEG_OVERRIDE_SS;
break;
case 0x3e:
insn->segmentOverride = SEG_OVERRIDE_DS;
break;
case 0x26:
insn->segmentOverride = SEG_OVERRIDE_ES;
break;
case 0x64:
insn->segmentOverride = SEG_OVERRIDE_FS;
break;
case 0x65:
insn->segmentOverride = SEG_OVERRIDE_GS;
break;
default:
debug("Unhandled override");
return -1;
}
if (prefixGroups[1])
dbgprintf(insn, "Redundant Group 2 prefix");
prefixGroups[1] = TRUE;
setPrefixPresent(insn, byte, prefixLocation);
break;
case 0x66: /* Operand-size override */
if (prefixGroups[2])
dbgprintf(insn, "Redundant Group 3 prefix");
prefixGroups[2] = TRUE;
hasOpSize = TRUE;
setPrefixPresent(insn, byte, prefixLocation);
break;
case 0x67: /* Address-size override */
if (prefixGroups[3])
dbgprintf(insn, "Redundant Group 4 prefix");
prefixGroups[3] = TRUE;
hasAdSize = TRUE;
setPrefixPresent(insn, byte, prefixLocation);
break;
default: /* Not a prefix byte */
isPrefix = FALSE;
break;
}
if (isPrefix)
dbgprintf(insn, "Found prefix 0x%hhx", byte);
}
insn->vexSize = 0;
if (byte == 0xc4) {
uint8_t byte1;
if (lookAtByte(insn, &byte1)) {
dbgprintf(insn, "Couldn't read second byte of VEX");
return -1;
}
if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
insn->vexSize = 3;
insn->necessaryPrefixLocation = insn->readerCursor - 1;
}
else {
unconsumeByte(insn);
insn->necessaryPrefixLocation = insn->readerCursor - 1;
}
if (insn->vexSize == 3) {
insn->vexPrefix[0] = byte;
consumeByte(insn, &insn->vexPrefix[1]);
consumeByte(insn, &insn->vexPrefix[2]);
/* We simulate the REX prefix for simplicity's sake */
if (insn->mode == MODE_64BIT) {
insn->rexPrefix = 0x40
| (wFromVEX3of3(insn->vexPrefix[2]) << 3)
| (rFromVEX2of3(insn->vexPrefix[1]) << 2)
| (xFromVEX2of3(insn->vexPrefix[1]) << 1)
| (bFromVEX2of3(insn->vexPrefix[1]) << 0);
}
switch (ppFromVEX3of3(insn->vexPrefix[2]))
{
default:
break;
case VEX_PREFIX_66:
hasOpSize = TRUE;
break;
}
dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1], insn->vexPrefix[2]);
}
}
else if (byte == 0xc5) {
uint8_t byte1;
if (lookAtByte(insn, &byte1)) {
dbgprintf(insn, "Couldn't read second byte of VEX");
return -1;
}
if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
insn->vexSize = 2;
}
else {
unconsumeByte(insn);
}
if (insn->vexSize == 2) {
insn->vexPrefix[0] = byte;
consumeByte(insn, &insn->vexPrefix[1]);
if (insn->mode == MODE_64BIT) {
insn->rexPrefix = 0x40
| (rFromVEX2of2(insn->vexPrefix[1]) << 2);
}
switch (ppFromVEX2of2(insn->vexPrefix[1]))
{
default:
break;
case VEX_PREFIX_66:
hasOpSize = TRUE;
break;
}
dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1]);
}
}
else {
if (insn->mode == MODE_64BIT) {
if ((byte & 0xf0) == 0x40) {
uint8_t opcodeByte;
if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
dbgprintf(insn, "Redundant REX prefix");
return -1;
}
insn->rexPrefix = byte;
insn->necessaryPrefixLocation = insn->readerCursor - 2;
dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
} else {
unconsumeByte(insn);
insn->necessaryPrefixLocation = insn->readerCursor - 1;
}
} else {
unconsumeByte(insn);
insn->necessaryPrefixLocation = insn->readerCursor - 1;
}
}
if (insn->mode == MODE_16BIT) {
insn->registerSize = (hasOpSize ? 4 : 2);
insn->addressSize = (hasAdSize ? 4 : 2);
insn->displacementSize = (hasAdSize ? 4 : 2);
insn->immediateSize = (hasOpSize ? 4 : 2);
} else if (insn->mode == MODE_32BIT) {
insn->registerSize = (hasOpSize ? 2 : 4);
insn->addressSize = (hasAdSize ? 2 : 4);
insn->displacementSize = (hasAdSize ? 2 : 4);
insn->immediateSize = (hasOpSize ? 2 : 4);
} else if (insn->mode == MODE_64BIT) {
if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
insn->registerSize = 8;
insn->addressSize = (hasAdSize ? 4 : 8);
insn->displacementSize = 4;
insn->immediateSize = 4;
} else if (insn->rexPrefix) {
insn->registerSize = (hasOpSize ? 2 : 4);
insn->addressSize = (hasAdSize ? 4 : 8);
insn->displacementSize = (hasOpSize ? 2 : 4);
insn->immediateSize = (hasOpSize ? 2 : 4);
} else {
insn->registerSize = (hasOpSize ? 2 : 4);
insn->addressSize = (hasAdSize ? 4 : 8);
insn->displacementSize = (hasOpSize ? 2 : 4);
insn->immediateSize = (hasOpSize ? 2 : 4);
}
}
return 0;
}
/*
* readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
* extended or escape opcodes).
*
* @param insn - The instruction whose opcode is to be read.
* @return - 0 if the opcode could be read successfully; nonzero otherwise.
*/
static int readOpcode(struct InternalInstruction* insn) {
/* Determine the length of the primary opcode */
uint8_t current;
dbgprintf(insn, "readOpcode()");
insn->opcodeType = ONEBYTE;
if (insn->vexSize == 3)
{
switch (mmmmmFromVEX2of3(insn->vexPrefix[1]))
{
default:
dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", mmmmmFromVEX2of3(insn->vexPrefix[1]));
return -1;
case 0:
break;
case VEX_LOB_0F:
insn->twoByteEscape = 0x0f;
insn->opcodeType = TWOBYTE;
return consumeByte(insn, &insn->opcode);
case VEX_LOB_0F38:
insn->twoByteEscape = 0x0f;
insn->threeByteEscape = 0x38;
insn->opcodeType = THREEBYTE_38;
return consumeByte(insn, &insn->opcode);
case VEX_LOB_0F3A:
insn->twoByteEscape = 0x0f;
insn->threeByteEscape = 0x3a;
insn->opcodeType = THREEBYTE_3A;
return consumeByte(insn, &insn->opcode);
}
}
else if (insn->vexSize == 2)
{
insn->twoByteEscape = 0x0f;
insn->opcodeType = TWOBYTE;
return consumeByte(insn, &insn->opcode);
}
if (consumeByte(insn, &current))
return -1;
if (current == 0x0f) {
dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
insn->twoByteEscape = current;
if (consumeByte(insn, &current))
return -1;
if (current == 0x38) {
dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
insn->threeByteEscape = current;
if (consumeByte(insn, &current))
return -1;
insn->opcodeType = THREEBYTE_38;
} else if (current == 0x3a) {
dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
insn->threeByteEscape = current;
if (consumeByte(insn, &current))
return -1;
insn->opcodeType = THREEBYTE_3A;
} else if (current == 0xa6) {
dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
insn->threeByteEscape = current;
if (consumeByte(insn, &current))
return -1;
insn->opcodeType = THREEBYTE_A6;
} else if (current == 0xa7) {
dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
insn->threeByteEscape = current;
if (consumeByte(insn, &current))
return -1;
insn->opcodeType = THREEBYTE_A7;
} else {
dbgprintf(insn, "Didn't find a three-byte escape prefix");
insn->opcodeType = TWOBYTE;
}
}
/*
* At this point we have consumed the full opcode.
* Anything we consume from here on must be unconsumed.
*/
insn->opcode = current;
return 0;
}
static int readModRM(struct InternalInstruction* insn);
/*
* getIDWithAttrMask - Determines the ID of an instruction, consuming
* the ModR/M byte as appropriate for extended and escape opcodes,
* and using a supplied attribute mask.
*
* @param instructionID - A pointer whose target is filled in with the ID of the
* instruction.
* @param insn - The instruction whose ID is to be determined.
* @param attrMask - The attribute mask to search.
* @return - 0 if the ModR/M could be read when needed or was not
* needed; nonzero otherwise.
*/
static int getIDWithAttrMask(uint16_t* instructionID,
struct InternalInstruction* insn,
uint8_t attrMask) {
BOOL hasModRMExtension;
uint8_t instructionClass;
instructionClass = contextForAttrs(attrMask);
hasModRMExtension = modRMRequired(insn->opcodeType,
instructionClass,
insn->opcode);
if (hasModRMExtension) {
if (readModRM(insn))
return -1;
*instructionID = decode(insn->opcodeType,
instructionClass,
insn->opcode,
insn->modRM);
} else {
*instructionID = decode(insn->opcodeType,
instructionClass,
insn->opcode,
0);
}
return 0;
}
/*
* is16BitEquivalent - Determines whether two instruction names refer to
* equivalent instructions but one is 16-bit whereas the other is not.
*
* @param orig - The instruction that is not 16-bit
* @param equiv - The instruction that is 16-bit
*/
static BOOL is16BitEquvalent(const char* orig, const char* equiv) {
off_t i;
for (i = 0;; i++) {
if (orig[i] == '\0' && equiv[i] == '\0')
return TRUE;
if (orig[i] == '\0' || equiv[i] == '\0')
return FALSE;
if (orig[i] != equiv[i]) {
if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
continue;
if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
continue;
if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
continue;
return FALSE;
}
}
}
/*
* getID - Determines the ID of an instruction, consuming the ModR/M byte as
* appropriate for extended and escape opcodes. Determines the attributes and
* context for the instruction before doing so.
*
* @param insn - The instruction whose ID is to be determined.
* @return - 0 if the ModR/M could be read when needed or was not needed;
* nonzero otherwise.
*/
static int getID(struct InternalInstruction* insn, void *miiArg) {
uint8_t attrMask;
uint16_t instructionID;
dbgprintf(insn, "getID()");
attrMask = ATTR_NONE;
if (insn->mode == MODE_64BIT)
attrMask |= ATTR_64BIT;
if (insn->vexSize) {
attrMask |= ATTR_VEX;
if (insn->vexSize == 3) {
switch (ppFromVEX3of3(insn->vexPrefix[2])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
break;
case VEX_PREFIX_F3:
attrMask |= ATTR_XS;
break;
case VEX_PREFIX_F2:
attrMask |= ATTR_XD;
break;
}
if (lFromVEX3of3(insn->vexPrefix[2]))
attrMask |= ATTR_VEXL;
}
else if (insn->vexSize == 2) {
switch (ppFromVEX2of2(insn->vexPrefix[1])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
break;
case VEX_PREFIX_F3:
attrMask |= ATTR_XS;
break;
case VEX_PREFIX_F2:
attrMask |= ATTR_XD;
break;
}
if (lFromVEX2of2(insn->vexPrefix[1]))
attrMask |= ATTR_VEXL;
}
else {
return -1;
}
}
else {
if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
attrMask |= ATTR_OPSIZE;
else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
attrMask |= ATTR_ADSIZE;
else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
attrMask |= ATTR_XS;
else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
attrMask |= ATTR_XD;
}
if (insn->rexPrefix & 0x08)
attrMask |= ATTR_REXW;
if (getIDWithAttrMask(&instructionID, insn, attrMask))
return -1;
/* The following clauses compensate for limitations of the tables. */
if ((attrMask & ATTR_VEXL) && (attrMask & ATTR_REXW) &&
!(attrMask & ATTR_OPSIZE)) {
/*
* Some VEX instructions ignore the L-bit, but use the W-bit. Normally L-bit
* has precedence since there are no L-bit with W-bit entries in the tables.
* So if the L-bit isn't significant we should use the W-bit instead.
* We only need to do this if the instruction doesn't specify OpSize since
* there is a VEX_L_W_OPSIZE table.
*/
const struct InstructionSpecifier *spec;
uint16_t instructionIDWithWBit;
const struct InstructionSpecifier *specWithWBit;
spec = specifierForUID(instructionID);
if (getIDWithAttrMask(&instructionIDWithWBit,
insn,
(attrMask & (~ATTR_VEXL)) | ATTR_REXW)) {
insn->instructionID = instructionID;
insn->spec = spec;
return 0;
}
specWithWBit = specifierForUID(instructionIDWithWBit);
if (instructionID != instructionIDWithWBit) {
insn->instructionID = instructionIDWithWBit;
insn->spec = specWithWBit;
} else {
insn->instructionID = instructionID;
insn->spec = spec;
}
return 0;
}
if (insn->prefixPresent[0x66] && !(attrMask & ATTR_OPSIZE)) {
/*
* The instruction tables make no distinction between instructions that
* allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
* particular spot (i.e., many MMX operations). In general we're
* conservative, but in the specific case where OpSize is present but not
* in the right place we check if there's a 16-bit operation.
*/
const struct InstructionSpecifier *spec;
uint16_t instructionIDWithOpsize;
const char *specName, *specWithOpSizeName;
spec = specifierForUID(instructionID);
if (getIDWithAttrMask(&instructionIDWithOpsize,
insn,
attrMask | ATTR_OPSIZE)) {
/*
* ModRM required with OpSize but not present; give up and return version
* without OpSize set
*/
insn->instructionID = instructionID;
insn->spec = spec;
return 0;
}
specName = x86DisassemblerGetInstrName(instructionID, miiArg);
specWithOpSizeName =
x86DisassemblerGetInstrName(instructionIDWithOpsize, miiArg);
if (is16BitEquvalent(specName, specWithOpSizeName)) {
insn->instructionID = instructionIDWithOpsize;
insn->spec = specifierForUID(instructionIDWithOpsize);
} else {
insn->instructionID = instructionID;
insn->spec = spec;
}
return 0;
}
if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
insn->rexPrefix & 0x01) {
/*
* NOOP shouldn't decode as NOOP if REX.b is set. Instead
* it should decode as XCHG %r8, %eax.
*/
const struct InstructionSpecifier *spec;
uint16_t instructionIDWithNewOpcode;
const struct InstructionSpecifier *specWithNewOpcode;
spec = specifierForUID(instructionID);
/* Borrow opcode from one of the other XCHGar opcodes */
insn->opcode = 0x91;
if (getIDWithAttrMask(&instructionIDWithNewOpcode,
insn,
attrMask)) {
insn->opcode = 0x90;
insn->instructionID = instructionID;
insn->spec = spec;
return 0;
}
specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
/* Change back */
insn->opcode = 0x90;
insn->instructionID = instructionIDWithNewOpcode;
insn->spec = specWithNewOpcode;
return 0;
}
insn->instructionID = instructionID;
insn->spec = specifierForUID(insn->instructionID);
return 0;
}
/*
* readSIB - Consumes the SIB byte to determine addressing information for an
* instruction.
*
* @param insn - The instruction whose SIB byte is to be read.
* @return - 0 if the SIB byte was successfully read; nonzero otherwise.
*/
static int readSIB(struct InternalInstruction* insn) {
SIBIndex sibIndexBase = 0;
SIBBase sibBaseBase = 0;
uint8_t index, base;
dbgprintf(insn, "readSIB()");
if (insn->consumedSIB)
return 0;
insn->consumedSIB = TRUE;
switch (insn->addressSize) {
case 2:
dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
return -1;
break;
case 4:
sibIndexBase = SIB_INDEX_EAX;
sibBaseBase = SIB_BASE_EAX;
break;
case 8:
sibIndexBase = SIB_INDEX_RAX;
sibBaseBase = SIB_BASE_RAX;
break;
}
if (consumeByte(insn, &insn->sib))
return -1;
index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
switch (index) {
case 0x4:
insn->sibIndex = SIB_INDEX_NONE;
break;
default:
insn->sibIndex = (SIBIndex)(sibIndexBase + index);
if (insn->sibIndex == SIB_INDEX_sib ||
insn->sibIndex == SIB_INDEX_sib64)
insn->sibIndex = SIB_INDEX_NONE;
break;
}
switch (scaleFromSIB(insn->sib)) {
case 0:
insn->sibScale = 1;
break;
case 1:
insn->sibScale = 2;
break;
case 2:
insn->sibScale = 4;
break;
case 3:
insn->sibScale = 8;
break;
}
base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
switch (base) {
case 0x5:
switch (modFromModRM(insn->modRM)) {
case 0x0:
insn->eaDisplacement = EA_DISP_32;
insn->sibBase = SIB_BASE_NONE;
break;
case 0x1:
insn->eaDisplacement = EA_DISP_8;
insn->sibBase = (insn->addressSize == 4 ?
SIB_BASE_EBP : SIB_BASE_RBP);
break;
case 0x2:
insn->eaDisplacement = EA_DISP_32;
insn->sibBase = (insn->addressSize == 4 ?
SIB_BASE_EBP : SIB_BASE_RBP);
break;
case 0x3:
debug("Cannot have Mod = 0b11 and a SIB byte");
return -1;
}
break;
default:
insn->sibBase = (SIBBase)(sibBaseBase + base);
break;
}
return 0;
}
/*
* readDisplacement - Consumes the displacement of an instruction.
*
* @param insn - The instruction whose displacement is to be read.
* @return - 0 if the displacement byte was successfully read; nonzero
* otherwise.
*/
static int readDisplacement(struct InternalInstruction* insn) {
int8_t d8;
int16_t d16;
int32_t d32;
dbgprintf(insn, "readDisplacement()");
if (insn->consumedDisplacement)
return 0;
insn->consumedDisplacement = TRUE;
insn->displacementOffset = insn->readerCursor - insn->startLocation;
switch (insn->eaDisplacement) {
case EA_DISP_NONE:
insn->consumedDisplacement = FALSE;
break;
case EA_DISP_8:
if (consumeInt8(insn, &d8))
return -1;
insn->displacement = d8;
break;
case EA_DISP_16:
if (consumeInt16(insn, &d16))
return -1;
insn->displacement = d16;
break;
case EA_DISP_32:
if (consumeInt32(insn, &d32))
return -1;
insn->displacement = d32;
break;
}
insn->consumedDisplacement = TRUE;
return 0;
}
/*
* readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
* displacement) for an instruction and interprets it.
*
* @param insn - The instruction whose addressing information is to be read.
* @return - 0 if the information was successfully read; nonzero otherwise.
*/
static int readModRM(struct InternalInstruction* insn) {
uint8_t mod, rm, reg;
dbgprintf(insn, "readModRM()");
if (insn->consumedModRM)
return 0;
if (consumeByte(insn, &insn->modRM))
return -1;
insn->consumedModRM = TRUE;
mod = modFromModRM(insn->modRM);
rm = rmFromModRM(insn->modRM);
reg = regFromModRM(insn->modRM);
/*
* This goes by insn->registerSize to pick the correct register, which messes
* up if we're using (say) XMM or 8-bit register operands. That gets fixed in
* fixupReg().
*/
switch (insn->registerSize) {
case 2:
insn->regBase = MODRM_REG_AX;
insn->eaRegBase = EA_REG_AX;
break;
case 4:
insn->regBase = MODRM_REG_EAX;
insn->eaRegBase = EA_REG_EAX;
break;
case 8:
insn->regBase = MODRM_REG_RAX;
insn->eaRegBase = EA_REG_RAX;
break;
}
reg |= rFromREX(insn->rexPrefix) << 3;
rm |= bFromREX(insn->rexPrefix) << 3;
insn->reg = (Reg)(insn->regBase + reg);
switch (insn->addressSize) {
case 2:
insn->eaBaseBase = EA_BASE_BX_SI;
switch (mod) {
case 0x0:
if (rm == 0x6) {
insn->eaBase = EA_BASE_NONE;
insn->eaDisplacement = EA_DISP_16;
if (readDisplacement(insn))
return -1;
} else {
insn->eaBase = (EABase)(insn->eaBaseBase + rm);
insn->eaDisplacement = EA_DISP_NONE;
}
break;
case 0x1:
insn->eaBase = (EABase)(insn->eaBaseBase + rm);
insn->eaDisplacement = EA_DISP_8;
if (readDisplacement(insn))
return -1;
break;
case 0x2:
insn->eaBase = (EABase)(insn->eaBaseBase + rm);
insn->eaDisplacement = EA_DISP_16;
if (readDisplacement(insn))
return -1;
break;
case 0x3:
insn->eaBase = (EABase)(insn->eaRegBase + rm);
if (readDisplacement(insn))
return -1;
break;
}
break;
case 4:
case 8:
insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
switch (mod) {
case 0x0:
insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
switch (rm) {
case 0x4:
case 0xc: /* in case REXW.b is set */
insn->eaBase = (insn->addressSize == 4 ?
EA_BASE_sib : EA_BASE_sib64);
readSIB(insn);
if (readDisplacement(insn))
return -1;
break;
case 0x5:
insn->eaBase = EA_BASE_NONE;
insn->eaDisplacement = EA_DISP_32;
if (readDisplacement(insn))
return -1;
break;
default:
insn->eaBase = (EABase)(insn->eaBaseBase + rm);
break;
}
break;
case 0x1:
case 0x2:
insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
switch (rm) {
case 0x4:
case 0xc: /* in case REXW.b is set */
insn->eaBase = EA_BASE_sib;
readSIB(insn);
if (readDisplacement(insn))
return -1;
break;
default:
insn->eaBase = (EABase)(insn->eaBaseBase + rm);
if (readDisplacement(insn))
return -1;
break;
}
break;
case 0x3:
insn->eaDisplacement = EA_DISP_NONE;
insn->eaBase = (EABase)(insn->eaRegBase + rm);
break;
}
break;
} /* switch (insn->addressSize) */
return 0;
}
#define GENERIC_FIXUP_FUNC(name, base, prefix) \
static uint8_t name(struct InternalInstruction *insn, \
OperandType type, \
uint8_t index, \
uint8_t *valid) { \
*valid = 1; \
switch (type) { \
default: \
debug("Unhandled register type"); \
*valid = 0; \
return 0; \
case TYPE_Rv: \
return base + index; \
case TYPE_R8: \
if (insn->rexPrefix && \
index >= 4 && index <= 7) { \
return prefix##_SPL + (index - 4); \
} else { \
return prefix##_AL + index; \
} \
case TYPE_R16: \
return prefix##_AX + index; \
case TYPE_R32: \
return prefix##_EAX + index; \
case TYPE_R64: \
return prefix##_RAX + index; \
case TYPE_XMM256: \
return prefix##_YMM0 + index; \
case TYPE_XMM128: \
case TYPE_XMM64: \
case TYPE_XMM32: \
case TYPE_XMM: \
return prefix##_XMM0 + index; \
case TYPE_MM64: \
case TYPE_MM32: \
case TYPE_MM: \
if (index > 7) \
*valid = 0; \
return prefix##_MM0 + index; \
case TYPE_SEGMENTREG: \
if (index > 5) \
*valid = 0; \
return prefix##_ES + index; \
case TYPE_DEBUGREG: \
if (index > 7) \
*valid = 0; \
return prefix##_DR0 + index; \
case TYPE_CONTROLREG: \
if (index > 8) \
*valid = 0; \
return prefix##_CR0 + index; \
} \
}
/*
* fixup*Value - Consults an operand type to determine the meaning of the
* reg or R/M field. If the operand is an XMM operand, for example, an
* operand would be XMM0 instead of AX, which readModRM() would otherwise
* misinterpret it as.
*
* @param insn - The instruction containing the operand.
* @param type - The operand type.
* @param index - The existing value of the field as reported by readModRM().
* @param valid - The address of a uint8_t. The target is set to 1 if the
* field is valid for the register class; 0 if not.
* @return - The proper value.
*/
GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
/*
* fixupReg - Consults an operand specifier to determine which of the
* fixup*Value functions to use in correcting readModRM()'ss interpretation.
*
* @param insn - See fixup*Value().
* @param op - The operand specifier.
* @return - 0 if fixup was successful; -1 if the register returned was
* invalid for its class.
*/
static int fixupReg(struct InternalInstruction *insn,
const struct OperandSpecifier *op) {
uint8_t valid;
dbgprintf(insn, "fixupReg()");
switch ((OperandEncoding)op->encoding) {
default:
debug("Expected a REG or R/M encoding in fixupReg");
return -1;
case ENCODING_VVVV:
insn->vvvv = (Reg)fixupRegValue(insn,
(OperandType)op->type,
insn->vvvv,
&valid);
if (!valid)
return -1;
break;
case ENCODING_REG:
insn->reg = (Reg)fixupRegValue(insn,
(OperandType)op->type,
insn->reg - insn->regBase,
&valid);
if (!valid)
return -1;
break;
case ENCODING_RM:
if (insn->eaBase >= insn->eaRegBase) {
insn->eaBase = (EABase)fixupRMValue(insn,
(OperandType)op->type,
insn->eaBase - insn->eaRegBase,
&valid);
if (!valid)
return -1;
}
break;
}
return 0;
}
/*
* readOpcodeModifier - Reads an operand from the opcode field of an
* instruction. Handles AddRegFrm instructions.
*
* @param insn - The instruction whose opcode field is to be read.
* @param inModRM - Indicates that the opcode field is to be read from the
* ModR/M extension; useful for escape opcodes
* @return - 0 on success; nonzero otherwise.
*/
static int readOpcodeModifier(struct InternalInstruction* insn) {
dbgprintf(insn, "readOpcodeModifier()");
if (insn->consumedOpcodeModifier)
return 0;
insn->consumedOpcodeModifier = TRUE;
switch (insn->spec->modifierType) {
default:
debug("Unknown modifier type.");
return -1;
case MODIFIER_NONE:
debug("No modifier but an operand expects one.");
return -1;
case MODIFIER_OPCODE:
insn->opcodeModifier = insn->opcode - insn->spec->modifierBase;
return 0;
case MODIFIER_MODRM:
insn->opcodeModifier = insn->modRM - insn->spec->modifierBase;
return 0;
}
}
/*
* readOpcodeRegister - Reads an operand from the opcode field of an
* instruction and interprets it appropriately given the operand width.
* Handles AddRegFrm instructions.
*
* @param insn - See readOpcodeModifier().
* @param size - The width (in bytes) of the register being specified.
* 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
* RAX.
* @return - 0 on success; nonzero otherwise.
*/
static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
dbgprintf(insn, "readOpcodeRegister()");
if (readOpcodeModifier(insn))
return -1;
if (size == 0)
size = insn->registerSize;
switch (size) {
case 1:
insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
| insn->opcodeModifier));
if (insn->rexPrefix &&
insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
insn->opcodeRegister < MODRM_REG_AL + 0x8) {
insn->opcodeRegister = (Reg)(MODRM_REG_SPL
+ (insn->opcodeRegister - MODRM_REG_AL - 4));
}
break;
case 2:
insn->opcodeRegister = (Reg)(MODRM_REG_AX
+ ((bFromREX(insn->rexPrefix) << 3)
| insn->opcodeModifier));
break;
case 4:
insn->opcodeRegister = (Reg)(MODRM_REG_EAX
+ ((bFromREX(insn->rexPrefix) << 3)
| insn->opcodeModifier));
break;
case 8:
insn->opcodeRegister = (Reg)(MODRM_REG_RAX
+ ((bFromREX(insn->rexPrefix) << 3)
| insn->opcodeModifier));
break;
}
return 0;
}
/*
* readImmediate - Consumes an immediate operand from an instruction, given the
* desired operand size.
*
* @param insn - The instruction whose operand is to be read.
* @param size - The width (in bytes) of the operand.
* @return - 0 if the immediate was successfully consumed; nonzero
* otherwise.
*/
static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
uint8_t imm8;
uint16_t imm16;
uint32_t imm32;
uint64_t imm64;
dbgprintf(insn, "readImmediate()");
if (insn->numImmediatesConsumed == 2) {
debug("Already consumed two immediates");
return -1;
}
if (size == 0)
size = insn->immediateSize;
else
insn->immediateSize = size;
insn->immediateOffset = insn->readerCursor - insn->startLocation;
switch (size) {
case 1:
if (consumeByte(insn, &imm8))
return -1;
insn->immediates[insn->numImmediatesConsumed] = imm8;
break;
case 2:
if (consumeUInt16(insn, &imm16))
return -1;
insn->immediates[insn->numImmediatesConsumed] = imm16;
break;
case 4:
if (consumeUInt32(insn, &imm32))
return -1;
insn->immediates[insn->numImmediatesConsumed] = imm32;
break;
case 8:
if (consumeUInt64(insn, &imm64))
return -1;
insn->immediates[insn->numImmediatesConsumed] = imm64;
break;
}
insn->numImmediatesConsumed++;
return 0;
}
/*
* readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
*
* @param insn - The instruction whose operand is to be read.
* @return - 0 if the vvvv was successfully consumed; nonzero
* otherwise.
*/
static int readVVVV(struct InternalInstruction* insn) {
dbgprintf(insn, "readVVVV()");
if (insn->vexSize == 3)
insn->vvvv = vvvvFromVEX3of3(insn->vexPrefix[2]);
else if (insn->vexSize == 2)
insn->vvvv = vvvvFromVEX2of2(insn->vexPrefix[1]);
else
return -1;
if (insn->mode != MODE_64BIT)
insn->vvvv &= 0x7;
return 0;
}
/*
* readOperands - Consults the specifier for an instruction and consumes all
* operands for that instruction, interpreting them as it goes.
*
* @param insn - The instruction whose operands are to be read and interpreted.
* @return - 0 if all operands could be read; nonzero otherwise.
*/
static int readOperands(struct InternalInstruction* insn) {
int index;
int hasVVVV, needVVVV;
int sawRegImm = 0;
dbgprintf(insn, "readOperands()");
/* If non-zero vvvv specified, need to make sure one of the operands
uses it. */
hasVVVV = !readVVVV(insn);
needVVVV = hasVVVV && (insn->vvvv != 0);
for (index = 0; index < X86_MAX_OPERANDS; ++index) {
switch (insn->spec->operands[index].encoding) {
case ENCODING_NONE:
break;
case ENCODING_REG:
case ENCODING_RM:
if (readModRM(insn))
return -1;
if (fixupReg(insn, &insn->spec->operands[index]))
return -1;
break;
case ENCODING_CB:
case ENCODING_CW:
case ENCODING_CD:
case ENCODING_CP:
case ENCODING_CO:
case ENCODING_CT:
dbgprintf(insn, "We currently don't hande code-offset encodings");
return -1;
case ENCODING_IB:
if (sawRegImm) {
/* Saw a register immediate so don't read again and instead split the
previous immediate. FIXME: This is a hack. */
insn->immediates[insn->numImmediatesConsumed] =
insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
++insn->numImmediatesConsumed;
break;
}
if (readImmediate(insn, 1))
return -1;
if (insn->spec->operands[index].type == TYPE_IMM3 &&
insn->immediates[insn->numImmediatesConsumed - 1] > 7)
return -1;
if (insn->spec->operands[index].type == TYPE_IMM5 &&
insn->immediates[insn->numImmediatesConsumed - 1] > 31)
return -1;
if (insn->spec->operands[index].type == TYPE_XMM128 ||
insn->spec->operands[index].type == TYPE_XMM256)
sawRegImm = 1;
break;
case ENCODING_IW:
if (readImmediate(insn, 2))
return -1;
break;
case ENCODING_ID:
if (readImmediate(insn, 4))
return -1;
break;
case ENCODING_IO:
if (readImmediate(insn, 8))
return -1;
break;
case ENCODING_Iv:
if (readImmediate(insn, insn->immediateSize))
return -1;
break;
case ENCODING_Ia:
if (readImmediate(insn, insn->addressSize))
return -1;
break;
case ENCODING_RB:
if (readOpcodeRegister(insn, 1))
return -1;
break;
case ENCODING_RW:
if (readOpcodeRegister(insn, 2))
return -1;
break;
case ENCODING_RD:
if (readOpcodeRegister(insn, 4))
return -1;
break;
case ENCODING_RO:
if (readOpcodeRegister(insn, 8))
return -1;
break;
case ENCODING_Rv:
if (readOpcodeRegister(insn, 0))
return -1;
break;
case ENCODING_I:
if (readOpcodeModifier(insn))
return -1;
break;
case ENCODING_VVVV:
needVVVV = 0; /* Mark that we have found a VVVV operand. */
if (!hasVVVV)
return -1;
if (fixupReg(insn, &insn->spec->operands[index]))
return -1;
break;
case ENCODING_DUP:
break;
default:
dbgprintf(insn, "Encountered an operand with an unknown encoding.");
return -1;
}
}
/* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
if (needVVVV) return -1;
return 0;
}
/*
* decodeInstruction - Reads and interprets a full instruction provided by the
* user.
*
* @param insn - A pointer to the instruction to be populated. Must be
* pre-allocated.
* @param reader - The function to be used to read the instruction's bytes.
* @param readerArg - A generic argument to be passed to the reader to store
* any internal state.
* @param logger - If non-NULL, the function to be used to write log messages
* and warnings.
* @param loggerArg - A generic argument to be passed to the logger to store
* any internal state.
* @param startLoc - The address (in the reader's address space) of the first
* byte in the instruction.
* @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
* decode the instruction in.
* @return - 0 if the instruction's memory could be read; nonzero if
* not.
*/
int decodeInstruction(struct InternalInstruction* insn,
byteReader_t reader,
void* readerArg,
dlog_t logger,
void* loggerArg,
void* miiArg,
uint64_t startLoc,
DisassemblerMode mode) {
memset(insn, 0, sizeof(struct InternalInstruction));
insn->reader = reader;
insn->readerArg = readerArg;
insn->dlog = logger;
insn->dlogArg = loggerArg;
insn->startLocation = startLoc;
insn->readerCursor = startLoc;
insn->mode = mode;
insn->numImmediatesConsumed = 0;
if (readPrefixes(insn) ||
readOpcode(insn) ||
getID(insn, miiArg) ||
insn->instructionID == 0 ||
readOperands(insn))
return -1;
insn->length = insn->readerCursor - insn->startLocation;
dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
startLoc, insn->readerCursor, insn->length);
if (insn->length > 15)
dbgprintf(insn, "Instruction exceeds 15-byte limit");
return 0;
}