blob: 1830213267b847d2a5f80c2cee9c87eee9af01e1 [file] [log] [blame]
//===-- PTXInstPrinter.cpp - Convert PTX MCInst to assembly syntax --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class prints a PTX MCInst to a .ptx file.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "PTXInstPrinter.h"
#include "MCTargetDesc/PTXBaseInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#include "PTXGenAsmWriter.inc"
PTXInstPrinter::PTXInstPrinter(const MCAsmInfo &MAI,
const MCInstrInfo &MII,
const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI) :
MCInstPrinter(MAI, MII, MRI) {
// Initialize the set of available features.
setAvailableFeatures(STI.getFeatureBits());
}
void PTXInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
// Decode the register number into type and offset
unsigned RegSpace = RegNo & 0x7;
unsigned RegType = (RegNo >> 3) & 0x7;
unsigned RegOffset = RegNo >> 6;
// Print the register
OS << "%";
switch (RegSpace) {
default:
llvm_unreachable("Unknown register space!");
case PTXRegisterSpace::Reg:
switch (RegType) {
default:
llvm_unreachable("Unknown register type!");
case PTXRegisterType::Pred:
OS << "p";
break;
case PTXRegisterType::B16:
OS << "rh";
break;
case PTXRegisterType::B32:
OS << "r";
break;
case PTXRegisterType::B64:
OS << "rd";
break;
case PTXRegisterType::F32:
OS << "f";
break;
case PTXRegisterType::F64:
OS << "fd";
break;
}
break;
case PTXRegisterSpace::Return:
OS << "ret";
break;
case PTXRegisterSpace::Argument:
OS << "arg";
break;
}
OS << RegOffset;
}
void PTXInstPrinter::printInst(const MCInst *MI, raw_ostream &O,
StringRef Annot) {
printPredicate(MI, O);
switch (MI->getOpcode()) {
default:
printInstruction(MI, O);
break;
case PTX::CALL:
printCall(MI, O);
}
O << ";";
printAnnotation(O, Annot);
}
void PTXInstPrinter::printPredicate(const MCInst *MI, raw_ostream &O) {
// The last two operands are the predicate operands
int RegIndex;
int OpIndex;
if (MI->getOpcode() == PTX::CALL) {
RegIndex = 0;
OpIndex = 1;
} else {
RegIndex = MI->getNumOperands()-2;
OpIndex = MI->getNumOperands()-1;
}
int PredOp = MI->getOperand(OpIndex).getImm();
if (PredOp == PTXPredicate::None)
return;
if (PredOp == PTXPredicate::Negate)
O << '!';
else
O << '@';
printOperand(MI, RegIndex, O);
}
void PTXInstPrinter::printCall(const MCInst *MI, raw_ostream &O) {
O << "\tcall.uni\t";
// The first two operands are the predicate slot
unsigned Index = 2;
unsigned NumRets = MI->getOperand(Index++).getImm();
if (NumRets > 0) {
O << "(";
printOperand(MI, Index++, O);
for (unsigned i = 1; i < NumRets; ++i) {
O << ", ";
printOperand(MI, Index++, O);
}
O << "), ";
}
const MCExpr* Expr = MI->getOperand(Index++).getExpr();
unsigned NumArgs = MI->getOperand(Index++).getImm();
// if the function call is to printf or puts, change to vprintf
if (const MCSymbolRefExpr *SymRefExpr = dyn_cast<MCSymbolRefExpr>(Expr)) {
const MCSymbol &Sym = SymRefExpr->getSymbol();
if (Sym.getName() == "printf" || Sym.getName() == "puts") {
O << "vprintf";
} else {
O << Sym.getName();
}
} else {
O << *Expr;
}
O << ", (";
if (NumArgs > 0) {
printOperand(MI, Index++, O);
for (unsigned i = 1; i < NumArgs; ++i) {
O << ", ";
printOperand(MI, Index++, O);
}
}
O << ")";
}
void PTXInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isImm()) {
O << Op.getImm();
} else if (Op.isFPImm()) {
double Imm = Op.getFPImm();
APFloat FPImm(Imm);
APInt FPIntImm = FPImm.bitcastToAPInt();
O << "0D";
// PTX requires us to output the full 64 bits, even if the number is zero
if (FPIntImm.getZExtValue() > 0) {
O << FPIntImm.toString(16, false);
} else {
O << "0000000000000000";
}
} else if (Op.isReg()) {
printRegName(O, Op.getReg());
} else {
assert(Op.isExpr() && "unknown operand kind in printOperand");
const MCExpr *Expr = Op.getExpr();
if (const MCSymbolRefExpr *SymRefExpr = dyn_cast<MCSymbolRefExpr>(Expr)) {
const MCSymbol &Sym = SymRefExpr->getSymbol();
O << Sym.getName();
} else {
O << *Op.getExpr();
}
}
}
void PTXInstPrinter::printMemOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
// By definition, operand OpNo+1 is an i32imm
const MCOperand &Op2 = MI->getOperand(OpNo+1);
printOperand(MI, OpNo, O);
if (Op2.getImm() == 0)
return; // don't print "+0"
O << "+" << Op2.getImm();
}
void PTXInstPrinter::printRoundingMode(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNo);
assert (Op.isImm() && "Rounding modes must be immediate values");
switch (Op.getImm()) {
default:
llvm_unreachable("Unknown rounding mode!");
case PTXRoundingMode::RndDefault:
llvm_unreachable("FP rounding-mode pass did not handle instruction!");
case PTXRoundingMode::RndNone:
// Do not print anything.
break;
case PTXRoundingMode::RndNearestEven:
O << ".rn";
break;
case PTXRoundingMode::RndTowardsZero:
O << ".rz";
break;
case PTXRoundingMode::RndNegInf:
O << ".rm";
break;
case PTXRoundingMode::RndPosInf:
O << ".rp";
break;
case PTXRoundingMode::RndApprox:
O << ".approx";
break;
case PTXRoundingMode::RndNearestEvenInt:
O << ".rni";
break;
case PTXRoundingMode::RndTowardsZeroInt:
O << ".rzi";
break;
case PTXRoundingMode::RndNegInfInt:
O << ".rmi";
break;
case PTXRoundingMode::RndPosInfInt:
O << ".rpi";
break;
}
}