blob: 3907f7535260a08221111a33b39e53a5efaad2d1 [file] [log] [blame]
//===-- ARMBaseRegisterInfo.cpp - ARM Register Information ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the base ARM implementation of TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "ARMBaseRegisterInfo.h"
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMFrameLowering.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/LLVMContext.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CommandLine.h"
#define GET_REGINFO_TARGET_DESC
#include "ARMGenRegisterInfo.inc"
using namespace llvm;
static cl::opt<bool>
ForceAllBaseRegAlloc("arm-force-base-reg-alloc", cl::Hidden, cl::init(false),
cl::desc("Force use of virtual base registers for stack load/store"));
static cl::opt<bool>
EnableLocalStackAlloc("enable-local-stack-alloc", cl::init(true), cl::Hidden,
cl::desc("Enable pre-regalloc stack frame index allocation"));
static cl::opt<bool>
EnableBasePointer("arm-use-base-pointer", cl::Hidden, cl::init(true),
cl::desc("Enable use of a base pointer for complex stack frames"));
ARMBaseRegisterInfo::ARMBaseRegisterInfo(const ARMBaseInstrInfo &tii,
const ARMSubtarget &sti)
: ARMGenRegisterInfo(ARM::LR), TII(tii), STI(sti),
FramePtr((STI.isTargetDarwin() || STI.isThumb()) ? ARM::R7 : ARM::R11),
BasePtr(ARM::R6) {
}
const uint16_t*
ARMBaseRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
return (STI.isTargetIOS()) ? CSR_iOS_SaveList : CSR_AAPCS_SaveList;
}
const uint32_t*
ARMBaseRegisterInfo::getCallPreservedMask(CallingConv::ID) const {
return (STI.isTargetIOS()) ? CSR_iOS_RegMask : CSR_AAPCS_RegMask;
}
BitVector ARMBaseRegisterInfo::
getReservedRegs(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
// FIXME: avoid re-calculating this every time.
BitVector Reserved(getNumRegs());
Reserved.set(ARM::SP);
Reserved.set(ARM::PC);
Reserved.set(ARM::FPSCR);
if (TFI->hasFP(MF))
Reserved.set(FramePtr);
if (hasBasePointer(MF))
Reserved.set(BasePtr);
// Some targets reserve R9.
if (STI.isR9Reserved())
Reserved.set(ARM::R9);
// Reserve D16-D31 if the subtarget doesn't support them.
if (!STI.hasVFP3() || STI.hasD16()) {
assert(ARM::D31 == ARM::D16 + 15);
for (unsigned i = 0; i != 16; ++i)
Reserved.set(ARM::D16 + i);
}
return Reserved;
}
bool ARMBaseRegisterInfo::isReservedReg(const MachineFunction &MF,
unsigned Reg) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
switch (Reg) {
default: break;
case ARM::SP:
case ARM::PC:
return true;
case ARM::R6:
if (hasBasePointer(MF))
return true;
break;
case ARM::R7:
case ARM::R11:
if (FramePtr == Reg && TFI->hasFP(MF))
return true;
break;
case ARM::R9:
return STI.isR9Reserved();
}
return false;
}
bool
ARMBaseRegisterInfo::canCombineSubRegIndices(const TargetRegisterClass *RC,
SmallVectorImpl<unsigned> &SubIndices,
unsigned &NewSubIdx) const {
unsigned Size = RC->getSize() * 8;
if (Size < 6)
return 0;
NewSubIdx = 0; // Whole register.
unsigned NumRegs = SubIndices.size();
if (NumRegs == 8) {
// 8 D registers -> 1 QQQQ register.
return (Size == 512 &&
SubIndices[0] == ARM::dsub_0 &&
SubIndices[1] == ARM::dsub_1 &&
SubIndices[2] == ARM::dsub_2 &&
SubIndices[3] == ARM::dsub_3 &&
SubIndices[4] == ARM::dsub_4 &&
SubIndices[5] == ARM::dsub_5 &&
SubIndices[6] == ARM::dsub_6 &&
SubIndices[7] == ARM::dsub_7);
} else if (NumRegs == 4) {
if (SubIndices[0] == ARM::qsub_0) {
// 4 Q registers -> 1 QQQQ register.
return (Size == 512 &&
SubIndices[1] == ARM::qsub_1 &&
SubIndices[2] == ARM::qsub_2 &&
SubIndices[3] == ARM::qsub_3);
} else if (SubIndices[0] == ARM::dsub_0) {
// 4 D registers -> 1 QQ register.
if (Size >= 256 &&
SubIndices[1] == ARM::dsub_1 &&
SubIndices[2] == ARM::dsub_2 &&
SubIndices[3] == ARM::dsub_3) {
if (Size == 512)
NewSubIdx = ARM::qqsub_0;
return true;
}
} else if (SubIndices[0] == ARM::dsub_4) {
// 4 D registers -> 1 QQ register (2nd).
if (Size == 512 &&
SubIndices[1] == ARM::dsub_5 &&
SubIndices[2] == ARM::dsub_6 &&
SubIndices[3] == ARM::dsub_7) {
NewSubIdx = ARM::qqsub_1;
return true;
}
} else if (SubIndices[0] == ARM::ssub_0) {
// 4 S registers -> 1 Q register.
if (Size >= 128 &&
SubIndices[1] == ARM::ssub_1 &&
SubIndices[2] == ARM::ssub_2 &&
SubIndices[3] == ARM::ssub_3) {
if (Size >= 256)
NewSubIdx = ARM::qsub_0;
return true;
}
}
} else if (NumRegs == 2) {
if (SubIndices[0] == ARM::qsub_0) {
// 2 Q registers -> 1 QQ register.
if (Size >= 256 && SubIndices[1] == ARM::qsub_1) {
if (Size == 512)
NewSubIdx = ARM::qqsub_0;
return true;
}
} else if (SubIndices[0] == ARM::qsub_2) {
// 2 Q registers -> 1 QQ register (2nd).
if (Size == 512 && SubIndices[1] == ARM::qsub_3) {
NewSubIdx = ARM::qqsub_1;
return true;
}
} else if (SubIndices[0] == ARM::dsub_0) {
// 2 D registers -> 1 Q register.
if (Size >= 128 && SubIndices[1] == ARM::dsub_1) {
if (Size >= 256)
NewSubIdx = ARM::qsub_0;
return true;
}
} else if (SubIndices[0] == ARM::dsub_2) {
// 2 D registers -> 1 Q register (2nd).
if (Size >= 256 && SubIndices[1] == ARM::dsub_3) {
NewSubIdx = ARM::qsub_1;
return true;
}
} else if (SubIndices[0] == ARM::dsub_4) {
// 2 D registers -> 1 Q register (3rd).
if (Size == 512 && SubIndices[1] == ARM::dsub_5) {
NewSubIdx = ARM::qsub_2;
return true;
}
} else if (SubIndices[0] == ARM::dsub_6) {
// 2 D registers -> 1 Q register (3rd).
if (Size == 512 && SubIndices[1] == ARM::dsub_7) {
NewSubIdx = ARM::qsub_3;
return true;
}
} else if (SubIndices[0] == ARM::ssub_0) {
// 2 S registers -> 1 D register.
if (SubIndices[1] == ARM::ssub_1) {
if (Size >= 128)
NewSubIdx = ARM::dsub_0;
return true;
}
} else if (SubIndices[0] == ARM::ssub_2) {
// 2 S registers -> 1 D register (2nd).
if (Size >= 128 && SubIndices[1] == ARM::ssub_3) {
NewSubIdx = ARM::dsub_1;
return true;
}
}
}
return false;
}
const TargetRegisterClass*
ARMBaseRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC)
const {
const TargetRegisterClass *Super = RC;
TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
do {
switch (Super->getID()) {
case ARM::GPRRegClassID:
case ARM::SPRRegClassID:
case ARM::DPRRegClassID:
case ARM::QPRRegClassID:
case ARM::QQPRRegClassID:
case ARM::QQQQPRRegClassID:
return Super;
}
Super = *I++;
} while (Super);
return RC;
}
const TargetRegisterClass *
ARMBaseRegisterInfo::getPointerRegClass(unsigned Kind) const {
return ARM::GPRRegisterClass;
}
const TargetRegisterClass *
ARMBaseRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
if (RC == &ARM::CCRRegClass)
return 0; // Can't copy CCR registers.
return RC;
}
unsigned
ARMBaseRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
switch (RC->getID()) {
default:
return 0;
case ARM::tGPRRegClassID:
return TFI->hasFP(MF) ? 4 : 5;
case ARM::GPRRegClassID: {
unsigned FP = TFI->hasFP(MF) ? 1 : 0;
return 10 - FP - (STI.isR9Reserved() ? 1 : 0);
}
case ARM::SPRRegClassID: // Currently not used as 'rep' register class.
case ARM::DPRRegClassID:
return 32 - 10;
}
}
/// getRawAllocationOrder - Returns the register allocation order for a
/// specified register class with a target-dependent hint.
ArrayRef<uint16_t>
ARMBaseRegisterInfo::getRawAllocationOrder(const TargetRegisterClass *RC,
unsigned HintType, unsigned HintReg,
const MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
// Alternative register allocation orders when favoring even / odd registers
// of register pairs.
// No FP, R9 is available.
static const uint16_t GPREven1[] = {
ARM::R0, ARM::R2, ARM::R4, ARM::R6, ARM::R8, ARM::R10,
ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R7,
ARM::R9, ARM::R11
};
static const uint16_t GPROdd1[] = {
ARM::R1, ARM::R3, ARM::R5, ARM::R7, ARM::R9, ARM::R11,
ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6,
ARM::R8, ARM::R10
};
// FP is R7, R9 is available.
static const uint16_t GPREven2[] = {
ARM::R0, ARM::R2, ARM::R4, ARM::R8, ARM::R10,
ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R6,
ARM::R9, ARM::R11
};
static const uint16_t GPROdd2[] = {
ARM::R1, ARM::R3, ARM::R5, ARM::R9, ARM::R11,
ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6,
ARM::R8, ARM::R10
};
// FP is R11, R9 is available.
static const uint16_t GPREven3[] = {
ARM::R0, ARM::R2, ARM::R4, ARM::R6, ARM::R8,
ARM::R1, ARM::R3, ARM::R10,ARM::R12,ARM::LR, ARM::R5, ARM::R7,
ARM::R9
};
static const uint16_t GPROdd3[] = {
ARM::R1, ARM::R3, ARM::R5, ARM::R6, ARM::R9,
ARM::R0, ARM::R2, ARM::R10,ARM::R12,ARM::LR, ARM::R4, ARM::R7,
ARM::R8
};
// No FP, R9 is not available.
static const uint16_t GPREven4[] = {
ARM::R0, ARM::R2, ARM::R4, ARM::R6, ARM::R10,
ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R7, ARM::R8,
ARM::R11
};
static const uint16_t GPROdd4[] = {
ARM::R1, ARM::R3, ARM::R5, ARM::R7, ARM::R11,
ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6, ARM::R8,
ARM::R10
};
// FP is R7, R9 is not available.
static const uint16_t GPREven5[] = {
ARM::R0, ARM::R2, ARM::R4, ARM::R10,
ARM::R1, ARM::R3, ARM::R12,ARM::LR, ARM::R5, ARM::R6, ARM::R8,
ARM::R11
};
static const uint16_t GPROdd5[] = {
ARM::R1, ARM::R3, ARM::R5, ARM::R11,
ARM::R0, ARM::R2, ARM::R12,ARM::LR, ARM::R4, ARM::R6, ARM::R8,
ARM::R10
};
// FP is R11, R9 is not available.
static const uint16_t GPREven6[] = {
ARM::R0, ARM::R2, ARM::R4, ARM::R6,
ARM::R1, ARM::R3, ARM::R10,ARM::R12,ARM::LR, ARM::R5, ARM::R7, ARM::R8
};
static const uint16_t GPROdd6[] = {
ARM::R1, ARM::R3, ARM::R5, ARM::R7,
ARM::R0, ARM::R2, ARM::R10,ARM::R12,ARM::LR, ARM::R4, ARM::R6, ARM::R8
};
// We only support even/odd hints for GPR and rGPR.
if (RC != ARM::GPRRegisterClass && RC != ARM::rGPRRegisterClass)
return RC->getRawAllocationOrder(MF);
if (HintType == ARMRI::RegPairEven) {
if (isPhysicalRegister(HintReg) && getRegisterPairEven(HintReg, MF) == 0)
// It's no longer possible to fulfill this hint. Return the default
// allocation order.
return RC->getRawAllocationOrder(MF);
if (!TFI->hasFP(MF)) {
if (!STI.isR9Reserved())
return makeArrayRef(GPREven1);
else
return makeArrayRef(GPREven4);
} else if (FramePtr == ARM::R7) {
if (!STI.isR9Reserved())
return makeArrayRef(GPREven2);
else
return makeArrayRef(GPREven5);
} else { // FramePtr == ARM::R11
if (!STI.isR9Reserved())
return makeArrayRef(GPREven3);
else
return makeArrayRef(GPREven6);
}
} else if (HintType == ARMRI::RegPairOdd) {
if (isPhysicalRegister(HintReg) && getRegisterPairOdd(HintReg, MF) == 0)
// It's no longer possible to fulfill this hint. Return the default
// allocation order.
return RC->getRawAllocationOrder(MF);
if (!TFI->hasFP(MF)) {
if (!STI.isR9Reserved())
return makeArrayRef(GPROdd1);
else
return makeArrayRef(GPROdd4);
} else if (FramePtr == ARM::R7) {
if (!STI.isR9Reserved())
return makeArrayRef(GPROdd2);
else
return makeArrayRef(GPROdd5);
} else { // FramePtr == ARM::R11
if (!STI.isR9Reserved())
return makeArrayRef(GPROdd3);
else
return makeArrayRef(GPROdd6);
}
}
return RC->getRawAllocationOrder(MF);
}
/// ResolveRegAllocHint - Resolves the specified register allocation hint
/// to a physical register. Returns the physical register if it is successful.
unsigned
ARMBaseRegisterInfo::ResolveRegAllocHint(unsigned Type, unsigned Reg,
const MachineFunction &MF) const {
if (Reg == 0 || !isPhysicalRegister(Reg))
return 0;
if (Type == 0)
return Reg;
else if (Type == (unsigned)ARMRI::RegPairOdd)
// Odd register.
return getRegisterPairOdd(Reg, MF);
else if (Type == (unsigned)ARMRI::RegPairEven)
// Even register.
return getRegisterPairEven(Reg, MF);
return 0;
}
void
ARMBaseRegisterInfo::UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
MachineFunction &MF) const {
MachineRegisterInfo *MRI = &MF.getRegInfo();
std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
if ((Hint.first == (unsigned)ARMRI::RegPairOdd ||
Hint.first == (unsigned)ARMRI::RegPairEven) &&
TargetRegisterInfo::isVirtualRegister(Hint.second)) {
// If 'Reg' is one of the even / odd register pair and it's now changed
// (e.g. coalesced) into a different register. The other register of the
// pair allocation hint must be updated to reflect the relationship
// change.
unsigned OtherReg = Hint.second;
Hint = MRI->getRegAllocationHint(OtherReg);
if (Hint.second == Reg)
// Make sure the pair has not already divorced.
MRI->setRegAllocationHint(OtherReg, Hint.first, NewReg);
}
}
bool
ARMBaseRegisterInfo::avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
// CortexA9 has a Write-after-write hazard for NEON registers.
if (!STI.isCortexA9())
return false;
switch (RC->getID()) {
case ARM::DPRRegClassID:
case ARM::DPR_8RegClassID:
case ARM::DPR_VFP2RegClassID:
case ARM::QPRRegClassID:
case ARM::QPR_8RegClassID:
case ARM::QPR_VFP2RegClassID:
case ARM::SPRRegClassID:
case ARM::SPR_8RegClassID:
// Avoid reusing S, D, and Q registers.
// Don't increase register pressure for QQ and QQQQ.
return true;
default:
return false;
}
}
bool ARMBaseRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
if (!EnableBasePointer)
return false;
// When outgoing call frames are so large that we adjust the stack pointer
// around the call, we can no longer use the stack pointer to reach the
// emergency spill slot.
if (needsStackRealignment(MF) && !TFI->hasReservedCallFrame(MF))
return true;
// Thumb has trouble with negative offsets from the FP. Thumb2 has a limited
// negative range for ldr/str (255), and thumb1 is positive offsets only.
// It's going to be better to use the SP or Base Pointer instead. When there
// are variable sized objects, we can't reference off of the SP, so we
// reserve a Base Pointer.
if (AFI->isThumbFunction() && MFI->hasVarSizedObjects()) {
// Conservatively estimate whether the negative offset from the frame
// pointer will be sufficient to reach. If a function has a smallish
// frame, it's less likely to have lots of spills and callee saved
// space, so it's all more likely to be within range of the frame pointer.
// If it's wrong, the scavenger will still enable access to work, it just
// won't be optimal.
if (AFI->isThumb2Function() && MFI->getLocalFrameSize() < 128)
return false;
return true;
}
return false;
}
bool ARMBaseRegisterInfo::canRealignStack(const MachineFunction &MF) const {
const MachineRegisterInfo *MRI = &MF.getRegInfo();
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// We can't realign the stack if:
// 1. Dynamic stack realignment is explicitly disabled,
// 2. This is a Thumb1 function (it's not useful, so we don't bother), or
// 3. There are VLAs in the function and the base pointer is disabled.
if (!MF.getTarget().Options.RealignStack)
return false;
if (AFI->isThumb1OnlyFunction())
return false;
// Stack realignment requires a frame pointer. If we already started
// register allocation with frame pointer elimination, it is too late now.
if (!MRI->canReserveReg(FramePtr))
return false;
// We may also need a base pointer if there are dynamic allocas or stack
// pointer adjustments around calls.
if (MF.getTarget().getFrameLowering()->hasReservedCallFrame(MF))
return true;
if (!EnableBasePointer)
return false;
// A base pointer is required and allowed. Check that it isn't too late to
// reserve it.
return MRI->canReserveReg(BasePtr);
}
bool ARMBaseRegisterInfo::
needsStackRealignment(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const Function *F = MF.getFunction();
unsigned StackAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
F->hasFnAttr(Attribute::StackAlignment));
return requiresRealignment && canRealignStack(MF);
}
bool ARMBaseRegisterInfo::
cannotEliminateFrame(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI->adjustsStack())
return true;
return MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken()
|| needsStackRealignment(MF);
}
unsigned
ARMBaseRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
if (TFI->hasFP(MF))
return FramePtr;
return ARM::SP;
}
unsigned ARMBaseRegisterInfo::getEHExceptionRegister() const {
llvm_unreachable("What is the exception register");
}
unsigned ARMBaseRegisterInfo::getEHHandlerRegister() const {
llvm_unreachable("What is the exception handler register");
}
unsigned ARMBaseRegisterInfo::getRegisterPairEven(unsigned Reg,
const MachineFunction &MF) const {
switch (Reg) {
default: break;
// Return 0 if either register of the pair is a special register.
// So no R12, etc.
case ARM::R1: return ARM::R0;
case ARM::R3: return ARM::R2;
case ARM::R5: return ARM::R4;
case ARM::R7:
return (isReservedReg(MF, ARM::R7) || isReservedReg(MF, ARM::R6))
? 0 : ARM::R6;
case ARM::R9: return isReservedReg(MF, ARM::R9) ? 0 :ARM::R8;
case ARM::R11: return isReservedReg(MF, ARM::R11) ? 0 : ARM::R10;
case ARM::S1: return ARM::S0;
case ARM::S3: return ARM::S2;
case ARM::S5: return ARM::S4;
case ARM::S7: return ARM::S6;
case ARM::S9: return ARM::S8;
case ARM::S11: return ARM::S10;
case ARM::S13: return ARM::S12;
case ARM::S15: return ARM::S14;
case ARM::S17: return ARM::S16;
case ARM::S19: return ARM::S18;
case ARM::S21: return ARM::S20;
case ARM::S23: return ARM::S22;
case ARM::S25: return ARM::S24;
case ARM::S27: return ARM::S26;
case ARM::S29: return ARM::S28;
case ARM::S31: return ARM::S30;
case ARM::D1: return ARM::D0;
case ARM::D3: return ARM::D2;
case ARM::D5: return ARM::D4;
case ARM::D7: return ARM::D6;
case ARM::D9: return ARM::D8;
case ARM::D11: return ARM::D10;
case ARM::D13: return ARM::D12;
case ARM::D15: return ARM::D14;
case ARM::D17: return ARM::D16;
case ARM::D19: return ARM::D18;
case ARM::D21: return ARM::D20;
case ARM::D23: return ARM::D22;
case ARM::D25: return ARM::D24;
case ARM::D27: return ARM::D26;
case ARM::D29: return ARM::D28;
case ARM::D31: return ARM::D30;
}
return 0;
}
unsigned ARMBaseRegisterInfo::getRegisterPairOdd(unsigned Reg,
const MachineFunction &MF) const {
switch (Reg) {
default: break;
// Return 0 if either register of the pair is a special register.
// So no R12, etc.
case ARM::R0: return ARM::R1;
case ARM::R2: return ARM::R3;
case ARM::R4: return ARM::R5;
case ARM::R6:
return (isReservedReg(MF, ARM::R7) || isReservedReg(MF, ARM::R6))
? 0 : ARM::R7;
case ARM::R8: return isReservedReg(MF, ARM::R9) ? 0 :ARM::R9;
case ARM::R10: return isReservedReg(MF, ARM::R11) ? 0 : ARM::R11;
case ARM::S0: return ARM::S1;
case ARM::S2: return ARM::S3;
case ARM::S4: return ARM::S5;
case ARM::S6: return ARM::S7;
case ARM::S8: return ARM::S9;
case ARM::S10: return ARM::S11;
case ARM::S12: return ARM::S13;
case ARM::S14: return ARM::S15;
case ARM::S16: return ARM::S17;
case ARM::S18: return ARM::S19;
case ARM::S20: return ARM::S21;
case ARM::S22: return ARM::S23;
case ARM::S24: return ARM::S25;
case ARM::S26: return ARM::S27;
case ARM::S28: return ARM::S29;
case ARM::S30: return ARM::S31;
case ARM::D0: return ARM::D1;
case ARM::D2: return ARM::D3;
case ARM::D4: return ARM::D5;
case ARM::D6: return ARM::D7;
case ARM::D8: return ARM::D9;
case ARM::D10: return ARM::D11;
case ARM::D12: return ARM::D13;
case ARM::D14: return ARM::D15;
case ARM::D16: return ARM::D17;
case ARM::D18: return ARM::D19;
case ARM::D20: return ARM::D21;
case ARM::D22: return ARM::D23;
case ARM::D24: return ARM::D25;
case ARM::D26: return ARM::D27;
case ARM::D28: return ARM::D29;
case ARM::D30: return ARM::D31;
}
return 0;
}
/// emitLoadConstPool - Emits a load from constpool to materialize the
/// specified immediate.
void ARMBaseRegisterInfo::
emitLoadConstPool(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
DebugLoc dl,
unsigned DestReg, unsigned SubIdx, int Val,
ARMCC::CondCodes Pred,
unsigned PredReg, unsigned MIFlags) const {
MachineFunction &MF = *MBB.getParent();
MachineConstantPool *ConstantPool = MF.getConstantPool();
const Constant *C =
ConstantInt::get(Type::getInt32Ty(MF.getFunction()->getContext()), Val);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
BuildMI(MBB, MBBI, dl, TII.get(ARM::LDRcp))
.addReg(DestReg, getDefRegState(true), SubIdx)
.addConstantPoolIndex(Idx)
.addImm(0).addImm(Pred).addReg(PredReg)
.setMIFlags(MIFlags);
}
bool ARMBaseRegisterInfo::
requiresRegisterScavenging(const MachineFunction &MF) const {
return true;
}
bool ARMBaseRegisterInfo::
requiresFrameIndexScavenging(const MachineFunction &MF) const {
return true;
}
bool ARMBaseRegisterInfo::
requiresVirtualBaseRegisters(const MachineFunction &MF) const {
return EnableLocalStackAlloc;
}
static void
emitSPUpdate(bool isARM,
MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
DebugLoc dl, const ARMBaseInstrInfo &TII,
int NumBytes,
ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
if (isARM)
emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, ARM::SP, NumBytes,
Pred, PredReg, TII);
else
emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::SP, ARM::SP, NumBytes,
Pred, PredReg, TII);
}
void ARMBaseRegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
if (!TFI->hasReservedCallFrame(MF)) {
// If we have alloca, convert as follows:
// ADJCALLSTACKDOWN -> sub, sp, sp, amount
// ADJCALLSTACKUP -> add, sp, sp, amount
MachineInstr *Old = I;
DebugLoc dl = Old->getDebugLoc();
unsigned Amount = Old->getOperand(0).getImm();
if (Amount != 0) {
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
unsigned Align = TFI->getStackAlignment();
Amount = (Amount+Align-1)/Align*Align;
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
assert(!AFI->isThumb1OnlyFunction() &&
"This eliminateCallFramePseudoInstr does not support Thumb1!");
bool isARM = !AFI->isThumbFunction();
// Replace the pseudo instruction with a new instruction...
unsigned Opc = Old->getOpcode();
int PIdx = Old->findFirstPredOperandIdx();
ARMCC::CondCodes Pred = (PIdx == -1)
? ARMCC::AL : (ARMCC::CondCodes)Old->getOperand(PIdx).getImm();
if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
// Note: PredReg is operand 2 for ADJCALLSTACKDOWN.
unsigned PredReg = Old->getOperand(2).getReg();
emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, Pred, PredReg);
} else {
// Note: PredReg is operand 3 for ADJCALLSTACKUP.
unsigned PredReg = Old->getOperand(3).getReg();
assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
emitSPUpdate(isARM, MBB, I, dl, TII, Amount, Pred, PredReg);
}
}
}
MBB.erase(I);
}
int64_t ARMBaseRegisterInfo::
getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const {
const MCInstrDesc &Desc = MI->getDesc();
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
int64_t InstrOffs = 0;
int Scale = 1;
unsigned ImmIdx = 0;
switch (AddrMode) {
case ARMII::AddrModeT2_i8:
case ARMII::AddrModeT2_i12:
case ARMII::AddrMode_i12:
InstrOffs = MI->getOperand(Idx+1).getImm();
Scale = 1;
break;
case ARMII::AddrMode5: {
// VFP address mode.
const MachineOperand &OffOp = MI->getOperand(Idx+1);
InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm());
if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub)
InstrOffs = -InstrOffs;
Scale = 4;
break;
}
case ARMII::AddrMode2: {
ImmIdx = Idx+2;
InstrOffs = ARM_AM::getAM2Offset(MI->getOperand(ImmIdx).getImm());
if (ARM_AM::getAM2Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs = -InstrOffs;
break;
}
case ARMII::AddrMode3: {
ImmIdx = Idx+2;
InstrOffs = ARM_AM::getAM3Offset(MI->getOperand(ImmIdx).getImm());
if (ARM_AM::getAM3Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs = -InstrOffs;
break;
}
case ARMII::AddrModeT1_s: {
ImmIdx = Idx+1;
InstrOffs = MI->getOperand(ImmIdx).getImm();
Scale = 4;
break;
}
default:
llvm_unreachable("Unsupported addressing mode!");
}
return InstrOffs * Scale;
}
/// needsFrameBaseReg - Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool ARMBaseRegisterInfo::
needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i) {
assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!");
}
// It's the load/store FI references that cause issues, as it can be difficult
// to materialize the offset if it won't fit in the literal field. Estimate
// based on the size of the local frame and some conservative assumptions
// about the rest of the stack frame (note, this is pre-regalloc, so
// we don't know everything for certain yet) whether this offset is likely
// to be out of range of the immediate. Return true if so.
// We only generate virtual base registers for loads and stores, so
// return false for everything else.
unsigned Opc = MI->getOpcode();
switch (Opc) {
case ARM::LDRi12: case ARM::LDRH: case ARM::LDRBi12:
case ARM::STRi12: case ARM::STRH: case ARM::STRBi12:
case ARM::t2LDRi12: case ARM::t2LDRi8:
case ARM::t2STRi12: case ARM::t2STRi8:
case ARM::VLDRS: case ARM::VLDRD:
case ARM::VSTRS: case ARM::VSTRD:
case ARM::tSTRspi: case ARM::tLDRspi:
if (ForceAllBaseRegAlloc)
return true;
break;
default:
return false;
}
// Without a virtual base register, if the function has variable sized
// objects, all fixed-size local references will be via the frame pointer,
// Approximate the offset and see if it's legal for the instruction.
// Note that the incoming offset is based on the SP value at function entry,
// so it'll be negative.
MachineFunction &MF = *MI->getParent()->getParent();
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Estimate an offset from the frame pointer.
// Conservatively assume all callee-saved registers get pushed. R4-R6
// will be earlier than the FP, so we ignore those.
// R7, LR
int64_t FPOffset = Offset - 8;
// ARM and Thumb2 functions also need to consider R8-R11 and D8-D15
if (!AFI->isThumbFunction() || !AFI->isThumb1OnlyFunction())
FPOffset -= 80;
// Estimate an offset from the stack pointer.
// The incoming offset is relating to the SP at the start of the function,
// but when we access the local it'll be relative to the SP after local
// allocation, so adjust our SP-relative offset by that allocation size.
Offset = -Offset;
Offset += MFI->getLocalFrameSize();
// Assume that we'll have at least some spill slots allocated.
// FIXME: This is a total SWAG number. We should run some statistics
// and pick a real one.
Offset += 128; // 128 bytes of spill slots
// If there is a frame pointer, try using it.
// The FP is only available if there is no dynamic realignment. We
// don't know for sure yet whether we'll need that, so we guess based
// on whether there are any local variables that would trigger it.
unsigned StackAlign = TFI->getStackAlignment();
if (TFI->hasFP(MF) &&
!((MFI->getLocalFrameMaxAlign() > StackAlign) && canRealignStack(MF))) {
if (isFrameOffsetLegal(MI, FPOffset))
return false;
}
// If we can reference via the stack pointer, try that.
// FIXME: This (and the code that resolves the references) can be improved
// to only disallow SP relative references in the live range of
// the VLA(s). In practice, it's unclear how much difference that
// would make, but it may be worth doing.
if (!MFI->hasVarSizedObjects() && isFrameOffsetLegal(MI, Offset))
return false;
// The offset likely isn't legal, we want to allocate a virtual base register.
return true;
}
/// materializeFrameBaseRegister - Insert defining instruction(s) for BaseReg to
/// be a pointer to FrameIdx at the beginning of the basic block.
void ARMBaseRegisterInfo::
materializeFrameBaseRegister(MachineBasicBlock *MBB,
unsigned BaseReg, int FrameIdx,
int64_t Offset) const {
ARMFunctionInfo *AFI = MBB->getParent()->getInfo<ARMFunctionInfo>();
unsigned ADDriOpc = !AFI->isThumbFunction() ? ARM::ADDri :
(AFI->isThumb1OnlyFunction() ? ARM::tADDrSPi : ARM::t2ADDri);
MachineBasicBlock::iterator Ins = MBB->begin();
DebugLoc DL; // Defaults to "unknown"
if (Ins != MBB->end())
DL = Ins->getDebugLoc();
const MCInstrDesc &MCID = TII.get(ADDriOpc);
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this));
MachineInstrBuilder MIB = AddDefaultPred(BuildMI(*MBB, Ins, DL, MCID, BaseReg)
.addFrameIndex(FrameIdx).addImm(Offset));
if (!AFI->isThumb1OnlyFunction())
AddDefaultCC(MIB);
}
void
ARMBaseRegisterInfo::resolveFrameIndex(MachineBasicBlock::iterator I,
unsigned BaseReg, int64_t Offset) const {
MachineInstr &MI = *I;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
int Off = Offset; // ARM doesn't need the general 64-bit offsets
unsigned i = 0;
assert(!AFI->isThumb1OnlyFunction() &&
"This resolveFrameIndex does not support Thumb1!");
while (!MI.getOperand(i).isFI()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
bool Done = false;
if (!AFI->isThumbFunction())
Done = rewriteARMFrameIndex(MI, i, BaseReg, Off, TII);
else {
assert(AFI->isThumb2Function());
Done = rewriteT2FrameIndex(MI, i, BaseReg, Off, TII);
}
assert (Done && "Unable to resolve frame index!");
(void)Done;
}
bool ARMBaseRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
int64_t Offset) const {
const MCInstrDesc &Desc = MI->getDesc();
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
unsigned i = 0;
while (!MI->getOperand(i).isFI()) {
++i;
assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!");
}
// AddrMode4 and AddrMode6 cannot handle any offset.
if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6)
return Offset == 0;
unsigned NumBits = 0;
unsigned Scale = 1;
bool isSigned = true;
switch (AddrMode) {
case ARMII::AddrModeT2_i8:
case ARMII::AddrModeT2_i12:
// i8 supports only negative, and i12 supports only positive, so
// based on Offset sign, consider the appropriate instruction
Scale = 1;
if (Offset < 0) {
NumBits = 8;
Offset = -Offset;
} else {
NumBits = 12;
}
break;
case ARMII::AddrMode5:
// VFP address mode.
NumBits = 8;
Scale = 4;
break;
case ARMII::AddrMode_i12:
case ARMII::AddrMode2:
NumBits = 12;
break;
case ARMII::AddrMode3:
NumBits = 8;
break;
case ARMII::AddrModeT1_s:
NumBits = 5;
Scale = 4;
isSigned = false;
break;
default:
llvm_unreachable("Unsupported addressing mode!");
}
Offset += getFrameIndexInstrOffset(MI, i);
// Make sure the offset is encodable for instructions that scale the
// immediate.
if ((Offset & (Scale-1)) != 0)
return false;
if (isSigned && Offset < 0)
Offset = -Offset;
unsigned Mask = (1 << NumBits) - 1;
if ((unsigned)Offset <= Mask * Scale)
return true;
return false;
}
void
ARMBaseRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, RegScavenger *RS) const {
unsigned i = 0;
MachineInstr &MI = *II;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const ARMFrameLowering *TFI =
static_cast<const ARMFrameLowering*>(MF.getTarget().getFrameLowering());
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
assert(!AFI->isThumb1OnlyFunction() &&
"This eliminateFrameIndex does not support Thumb1!");
while (!MI.getOperand(i).isFI()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
int FrameIndex = MI.getOperand(i).getIndex();
unsigned FrameReg;
int Offset = TFI->ResolveFrameIndexReference(MF, FrameIndex, FrameReg, SPAdj);
// PEI::scavengeFrameVirtualRegs() cannot accurately track SPAdj because the
// call frame setup/destroy instructions have already been eliminated. That
// means the stack pointer cannot be used to access the emergency spill slot
// when !hasReservedCallFrame().
#ifndef NDEBUG
if (RS && FrameReg == ARM::SP && FrameIndex == RS->getScavengingFrameIndex()){
assert(TFI->hasReservedCallFrame(MF) &&
"Cannot use SP to access the emergency spill slot in "
"functions without a reserved call frame");
assert(!MF.getFrameInfo()->hasVarSizedObjects() &&
"Cannot use SP to access the emergency spill slot in "
"functions with variable sized frame objects");
}
#endif // NDEBUG
// Special handling of dbg_value instructions.
if (MI.isDebugValue()) {
MI.getOperand(i). ChangeToRegister(FrameReg, false /*isDef*/);
MI.getOperand(i+1).ChangeToImmediate(Offset);
return;
}
// Modify MI as necessary to handle as much of 'Offset' as possible
bool Done = false;
if (!AFI->isThumbFunction())
Done = rewriteARMFrameIndex(MI, i, FrameReg, Offset, TII);
else {
assert(AFI->isThumb2Function());
Done = rewriteT2FrameIndex(MI, i, FrameReg, Offset, TII);
}
if (Done)
return;
// If we get here, the immediate doesn't fit into the instruction. We folded
// as much as possible above, handle the rest, providing a register that is
// SP+LargeImm.
assert((Offset ||
(MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode4 ||
(MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode6) &&
"This code isn't needed if offset already handled!");
unsigned ScratchReg = 0;
int PIdx = MI.findFirstPredOperandIdx();
ARMCC::CondCodes Pred = (PIdx == -1)
? ARMCC::AL : (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
unsigned PredReg = (PIdx == -1) ? 0 : MI.getOperand(PIdx+1).getReg();
if (Offset == 0)
// Must be addrmode4/6.
MI.getOperand(i).ChangeToRegister(FrameReg, false, false, false);
else {
ScratchReg = MF.getRegInfo().createVirtualRegister(ARM::GPRRegisterClass);
if (!AFI->isThumbFunction())
emitARMRegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
Offset, Pred, PredReg, TII);
else {
assert(AFI->isThumb2Function());
emitT2RegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
Offset, Pred, PredReg, TII);
}
// Update the original instruction to use the scratch register.
MI.getOperand(i).ChangeToRegister(ScratchReg, false, false, true);
}
}