blob: 0c1ac6982d2a597a32760de15baa94a57328a34f [file] [log] [blame]
//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the FastISel class.
//
// "Fast" instruction selection is designed to emit very poor code quickly.
// Also, it is not designed to be able to do much lowering, so most illegal
// types (e.g. i64 on 32-bit targets) and operations are not supported. It is
// also not intended to be able to do much optimization, except in a few cases
// where doing optimizations reduces overall compile time. For example, folding
// constants into immediate fields is often done, because it's cheap and it
// reduces the number of instructions later phases have to examine.
//
// "Fast" instruction selection is able to fail gracefully and transfer
// control to the SelectionDAG selector for operations that it doesn't
// support. In many cases, this allows us to avoid duplicating a lot of
// the complicated lowering logic that SelectionDAG currently has.
//
// The intended use for "fast" instruction selection is "-O0" mode
// compilation, where the quality of the generated code is irrelevant when
// weighed against the speed at which the code can be generated. Also,
// at -O0, the LLVM optimizers are not running, and this makes the
// compile time of codegen a much higher portion of the overall compile
// time. Despite its limitations, "fast" instruction selection is able to
// handle enough code on its own to provide noticeable overall speedups
// in -O0 compiles.
//
// Basic operations are supported in a target-independent way, by reading
// the same instruction descriptions that the SelectionDAG selector reads,
// and identifying simple arithmetic operations that can be directly selected
// from simple operators. More complicated operations currently require
// target-specific code.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "isel"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Operator.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
"target-independent selector");
STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
"target-specific selector");
STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
/// startNewBlock - Set the current block to which generated machine
/// instructions will be appended, and clear the local CSE map.
///
void FastISel::startNewBlock() {
LocalValueMap.clear();
EmitStartPt = 0;
// Advance the emit start point past any EH_LABEL instructions.
MachineBasicBlock::iterator
I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
EmitStartPt = I;
++I;
}
LastLocalValue = EmitStartPt;
}
void FastISel::flushLocalValueMap() {
LocalValueMap.clear();
LastLocalValue = EmitStartPt;
recomputeInsertPt();
}
bool FastISel::hasTrivialKill(const Value *V) const {
// Don't consider constants or arguments to have trivial kills.
const Instruction *I = dyn_cast<Instruction>(V);
if (!I)
return false;
// No-op casts are trivially coalesced by fast-isel.
if (const CastInst *Cast = dyn_cast<CastInst>(I))
if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
!hasTrivialKill(Cast->getOperand(0)))
return false;
// GEPs with all zero indices are trivially coalesced by fast-isel.
if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
return false;
// Only instructions with a single use in the same basic block are considered
// to have trivial kills.
return I->hasOneUse() &&
!(I->getOpcode() == Instruction::BitCast ||
I->getOpcode() == Instruction::PtrToInt ||
I->getOpcode() == Instruction::IntToPtr) &&
cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
}
unsigned FastISel::getRegForValue(const Value *V) {
EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
// Don't handle non-simple values in FastISel.
if (!RealVT.isSimple())
return 0;
// Ignore illegal types. We must do this before looking up the value
// in ValueMap because Arguments are given virtual registers regardless
// of whether FastISel can handle them.
MVT VT = RealVT.getSimpleVT();
if (!TLI.isTypeLegal(VT)) {
// Handle integer promotions, though, because they're common and easy.
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
else
return 0;
}
// Look up the value to see if we already have a register for it.
unsigned Reg = lookUpRegForValue(V);
if (Reg != 0)
return Reg;
// In bottom-up mode, just create the virtual register which will be used
// to hold the value. It will be materialized later.
if (isa<Instruction>(V) &&
(!isa<AllocaInst>(V) ||
!FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
return FuncInfo.InitializeRegForValue(V);
SavePoint SaveInsertPt = enterLocalValueArea();
// Materialize the value in a register. Emit any instructions in the
// local value area.
Reg = materializeRegForValue(V, VT);
leaveLocalValueArea(SaveInsertPt);
return Reg;
}
/// materializeRegForValue - Helper for getRegForValue. This function is
/// called when the value isn't already available in a register and must
/// be materialized with new instructions.
unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
unsigned Reg = 0;
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getValue().getActiveBits() <= 64)
Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
} else if (isa<AllocaInst>(V)) {
Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
} else if (isa<ConstantPointerNull>(V)) {
// Translate this as an integer zero so that it can be
// local-CSE'd with actual integer zeros.
Reg =
getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
} else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
if (CF->isNullValue()) {
Reg = TargetMaterializeFloatZero(CF);
} else {
// Try to emit the constant directly.
Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
}
if (!Reg) {
// Try to emit the constant by using an integer constant with a cast.
const APFloat &Flt = CF->getValueAPF();
EVT IntVT = TLI.getPointerTy();
uint64_t x[2];
uint32_t IntBitWidth = IntVT.getSizeInBits();
bool isExact;
(void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
APFloat::rmTowardZero, &isExact);
if (isExact) {
APInt IntVal(IntBitWidth, x);
unsigned IntegerReg =
getRegForValue(ConstantInt::get(V->getContext(), IntVal));
if (IntegerReg != 0)
Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
IntegerReg, /*Kill=*/false);
}
}
} else if (const Operator *Op = dyn_cast<Operator>(V)) {
if (!SelectOperator(Op, Op->getOpcode()))
if (!isa<Instruction>(Op) ||
!TargetSelectInstruction(cast<Instruction>(Op)))
return 0;
Reg = lookUpRegForValue(Op);
} else if (isa<UndefValue>(V)) {
Reg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
}
// If target-independent code couldn't handle the value, give target-specific
// code a try.
if (!Reg && isa<Constant>(V))
Reg = TargetMaterializeConstant(cast<Constant>(V));
// Don't cache constant materializations in the general ValueMap.
// To do so would require tracking what uses they dominate.
if (Reg != 0) {
LocalValueMap[V] = Reg;
LastLocalValue = MRI.getVRegDef(Reg);
}
return Reg;
}
unsigned FastISel::lookUpRegForValue(const Value *V) {
// Look up the value to see if we already have a register for it. We
// cache values defined by Instructions across blocks, and other values
// only locally. This is because Instructions already have the SSA
// def-dominates-use requirement enforced.
DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
if (I != FuncInfo.ValueMap.end())
return I->second;
return LocalValueMap[V];
}
/// UpdateValueMap - Update the value map to include the new mapping for this
/// instruction, or insert an extra copy to get the result in a previous
/// determined register.
/// NOTE: This is only necessary because we might select a block that uses
/// a value before we select the block that defines the value. It might be
/// possible to fix this by selecting blocks in reverse postorder.
void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
if (!isa<Instruction>(I)) {
LocalValueMap[I] = Reg;
return;
}
unsigned &AssignedReg = FuncInfo.ValueMap[I];
if (AssignedReg == 0)
// Use the new register.
AssignedReg = Reg;
else if (Reg != AssignedReg) {
// Arrange for uses of AssignedReg to be replaced by uses of Reg.
for (unsigned i = 0; i < NumRegs; i++)
FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
AssignedReg = Reg;
}
}
std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
unsigned IdxN = getRegForValue(Idx);
if (IdxN == 0)
// Unhandled operand. Halt "fast" selection and bail.
return std::pair<unsigned, bool>(0, false);
bool IdxNIsKill = hasTrivialKill(Idx);
// If the index is smaller or larger than intptr_t, truncate or extend it.
MVT PtrVT = TLI.getPointerTy();
EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
if (IdxVT.bitsLT(PtrVT)) {
IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
IdxN, IdxNIsKill);
IdxNIsKill = true;
}
else if (IdxVT.bitsGT(PtrVT)) {
IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
IdxN, IdxNIsKill);
IdxNIsKill = true;
}
return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
}
void FastISel::recomputeInsertPt() {
if (getLastLocalValue()) {
FuncInfo.InsertPt = getLastLocalValue();
FuncInfo.MBB = FuncInfo.InsertPt->getParent();
++FuncInfo.InsertPt;
} else
FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
// Now skip past any EH_LABELs, which must remain at the beginning.
while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
++FuncInfo.InsertPt;
}
void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E) {
assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
while (I != E) {
MachineInstr *Dead = &*I;
++I;
Dead->eraseFromParent();
++NumFastIselDead;
}
recomputeInsertPt();
}
FastISel::SavePoint FastISel::enterLocalValueArea() {
MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
DebugLoc OldDL = DL;
recomputeInsertPt();
DL = DebugLoc();
SavePoint SP = { OldInsertPt, OldDL };
return SP;
}
void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
LastLocalValue = llvm::prior(FuncInfo.InsertPt);
// Restore the previous insert position.
FuncInfo.InsertPt = OldInsertPt.InsertPt;
DL = OldInsertPt.DL;
}
/// SelectBinaryOp - Select and emit code for a binary operator instruction,
/// which has an opcode which directly corresponds to the given ISD opcode.
///
bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
return false;
// We only handle legal types. For example, on x86-32 the instruction
// selector contains all of the 64-bit instructions from x86-64,
// under the assumption that i64 won't be used if the target doesn't
// support it.
if (!TLI.isTypeLegal(VT)) {
// MVT::i1 is special. Allow AND, OR, or XOR because they
// don't require additional zeroing, which makes them easy.
if (VT == MVT::i1 &&
(ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
ISDOpcode == ISD::XOR))
VT = TLI.getTypeToTransformTo(I->getContext(), VT);
else
return false;
}
// Check if the first operand is a constant, and handle it as "ri". At -O0,
// we don't have anything that canonicalizes operand order.
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
unsigned Op1 = getRegForValue(I->getOperand(1));
if (Op1 == 0) return false;
bool Op1IsKill = hasTrivialKill(I->getOperand(1));
unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
Op1IsKill, CI->getZExtValue(),
VT.getSimpleVT());
if (ResultReg == 0) return false;
// We successfully emitted code for the given LLVM Instruction.
UpdateValueMap(I, ResultReg);
return true;
}
unsigned Op0 = getRegForValue(I->getOperand(0));
if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail.
return false;
bool Op0IsKill = hasTrivialKill(I->getOperand(0));
// Check if the second operand is a constant and handle it appropriately.
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t Imm = CI->getZExtValue();
// Transform "sdiv exact X, 8" -> "sra X, 3".
if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
cast<BinaryOperator>(I)->isExact() &&
isPowerOf2_64(Imm)) {
Imm = Log2_64(Imm);
ISDOpcode = ISD::SRA;
}
// Transform "urem x, pow2" -> "and x, pow2-1".
if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
isPowerOf2_64(Imm)) {
--Imm;
ISDOpcode = ISD::AND;
}
unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
Op0IsKill, Imm, VT.getSimpleVT());
if (ResultReg == 0) return false;
// We successfully emitted code for the given LLVM Instruction.
UpdateValueMap(I, ResultReg);
return true;
}
// Check if the second operand is a constant float.
if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
ISDOpcode, Op0, Op0IsKill, CF);
if (ResultReg != 0) {
// We successfully emitted code for the given LLVM Instruction.
UpdateValueMap(I, ResultReg);
return true;
}
}
unsigned Op1 = getRegForValue(I->getOperand(1));
if (Op1 == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
bool Op1IsKill = hasTrivialKill(I->getOperand(1));
// Now we have both operands in registers. Emit the instruction.
unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
ISDOpcode,
Op0, Op0IsKill,
Op1, Op1IsKill);
if (ResultReg == 0)
// Target-specific code wasn't able to find a machine opcode for
// the given ISD opcode and type. Halt "fast" selection and bail.
return false;
// We successfully emitted code for the given LLVM Instruction.
UpdateValueMap(I, ResultReg);
return true;
}
bool FastISel::SelectGetElementPtr(const User *I) {
unsigned N = getRegForValue(I->getOperand(0));
if (N == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
bool NIsKill = hasTrivialKill(I->getOperand(0));
// Keep a running tab of the total offset to coalesce multiple N = N + Offset
// into a single N = N + TotalOffset.
uint64_t TotalOffs = 0;
// FIXME: What's a good SWAG number for MaxOffs?
uint64_t MaxOffs = 2048;
Type *Ty = I->getOperand(0)->getType();
MVT VT = TLI.getPointerTy();
for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
E = I->op_end(); OI != E; ++OI) {
const Value *Idx = *OI;
if (StructType *StTy = dyn_cast<StructType>(Ty)) {
unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
if (Field) {
// N = N + Offset
TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field);
if (TotalOffs >= MaxOffs) {
N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
if (N == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
NIsKill = true;
TotalOffs = 0;
}
}
Ty = StTy->getElementType(Field);
} else {
Ty = cast<SequentialType>(Ty)->getElementType();
// If this is a constant subscript, handle it quickly.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
if (CI->isZero()) continue;
// N = N + Offset
TotalOffs +=
TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
if (TotalOffs >= MaxOffs) {
N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
if (N == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
NIsKill = true;
TotalOffs = 0;
}
continue;
}
if (TotalOffs) {
N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
if (N == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
NIsKill = true;
TotalOffs = 0;
}
// N = N + Idx * ElementSize;
uint64_t ElementSize = TD.getTypeAllocSize(Ty);
std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
unsigned IdxN = Pair.first;
bool IdxNIsKill = Pair.second;
if (IdxN == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
if (ElementSize != 1) {
IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
if (IdxN == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
IdxNIsKill = true;
}
N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
if (N == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
}
}
if (TotalOffs) {
N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
if (N == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
}
// We successfully emitted code for the given LLVM Instruction.
UpdateValueMap(I, N);
return true;
}
bool FastISel::SelectCall(const User *I) {
const CallInst *Call = cast<CallInst>(I);
// Handle simple inline asms.
if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
// Don't attempt to handle constraints.
if (!IA->getConstraintString().empty())
return false;
unsigned ExtraInfo = 0;
if (IA->hasSideEffects())
ExtraInfo |= InlineAsm::Extra_HasSideEffects;
if (IA->isAlignStack())
ExtraInfo |= InlineAsm::Extra_IsAlignStack;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::INLINEASM))
.addExternalSymbol(IA->getAsmString().c_str())
.addImm(ExtraInfo);
return true;
}
MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
ComputeUsesVAFloatArgument(*Call, &MMI);
const Function *F = Call->getCalledFunction();
if (!F) return false;
// Handle selected intrinsic function calls.
switch (F->getIntrinsicID()) {
default: break;
// At -O0 we don't care about the lifetime intrinsics.
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
return true;
case Intrinsic::dbg_declare: {
const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
if (!DIVariable(DI->getVariable()).Verify() ||
!FuncInfo.MF->getMMI().hasDebugInfo()) {
DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
return true;
}
const Value *Address = DI->getAddress();
if (!Address || isa<UndefValue>(Address)) {
DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
return true;
}
unsigned Reg = 0;
unsigned Offset = 0;
if (const Argument *Arg = dyn_cast<Argument>(Address)) {
// Some arguments' frame index is recorded during argument lowering.
Offset = FuncInfo.getArgumentFrameIndex(Arg);
if (Offset)
Reg = TRI.getFrameRegister(*FuncInfo.MF);
}
if (!Reg)
Reg = lookUpRegForValue(Address);
// If we have a VLA that has a "use" in a metadata node that's then used
// here but it has no other uses, then we have a problem. E.g.,
//
// int foo (const int *x) {
// char a[*x];
// return 0;
// }
//
// If we assign 'a' a vreg and fast isel later on has to use the selection
// DAG isel, it will want to copy the value to the vreg. However, there are
// no uses, which goes counter to what selection DAG isel expects.
if (!Reg && !Address->use_empty() && isa<Instruction>(Address) &&
(!isa<AllocaInst>(Address) ||
!FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
Reg = FuncInfo.InitializeRegForValue(Address);
if (Reg)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::DBG_VALUE))
.addReg(Reg, RegState::Debug).addImm(Offset)
.addMetadata(DI->getVariable());
else
// We can't yet handle anything else here because it would require
// generating code, thus altering codegen because of debug info.
DEBUG(dbgs() << "Dropping debug info for " << DI);
return true;
}
case Intrinsic::dbg_value: {
// This form of DBG_VALUE is target-independent.
const DbgValueInst *DI = cast<DbgValueInst>(Call);
const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
const Value *V = DI->getValue();
if (!V) {
// Currently the optimizer can produce this; insert an undef to
// help debugging. Probably the optimizer should not do this.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(0U).addImm(DI->getOffset())
.addMetadata(DI->getVariable());
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getBitWidth() > 64)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addCImm(CI).addImm(DI->getOffset())
.addMetadata(DI->getVariable());
else
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addImm(CI->getZExtValue()).addImm(DI->getOffset())
.addMetadata(DI->getVariable());
} else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addFPImm(CF).addImm(DI->getOffset())
.addMetadata(DI->getVariable());
} else if (unsigned Reg = lookUpRegForValue(V)) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Reg, RegState::Debug).addImm(DI->getOffset())
.addMetadata(DI->getVariable());
} else {
// We can't yet handle anything else here because it would require
// generating code, thus altering codegen because of debug info.
DEBUG(dbgs() << "Dropping debug info for " << DI);
}
return true;
}
case Intrinsic::objectsize: {
ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
unsigned long long Res = CI->isZero() ? -1ULL : 0;
Constant *ResCI = ConstantInt::get(Call->getType(), Res);
unsigned ResultReg = getRegForValue(ResCI);
if (ResultReg == 0)
return false;
UpdateValueMap(Call, ResultReg);
return true;
}
}
// Usually, it does not make sense to initialize a value,
// make an unrelated function call and use the value, because
// it tends to be spilled on the stack. So, we move the pointer
// to the last local value to the beginning of the block, so that
// all the values which have already been materialized,
// appear after the call. It also makes sense to skip intrinsics
// since they tend to be inlined.
if (!isa<IntrinsicInst>(F))
flushLocalValueMap();
// An arbitrary call. Bail.
return false;
}
bool FastISel::SelectCast(const User *I, unsigned Opcode) {
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(I->getType());
if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
DstVT == MVT::Other || !DstVT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
return false;
// Check if the destination type is legal.
if (!TLI.isTypeLegal(DstVT))
return false;
// Check if the source operand is legal.
if (!TLI.isTypeLegal(SrcVT))
return false;
unsigned InputReg = getRegForValue(I->getOperand(0));
if (!InputReg)
// Unhandled operand. Halt "fast" selection and bail.
return false;
bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
DstVT.getSimpleVT(),
Opcode,
InputReg, InputRegIsKill);
if (!ResultReg)
return false;
UpdateValueMap(I, ResultReg);
return true;
}
bool FastISel::SelectBitCast(const User *I) {
// If the bitcast doesn't change the type, just use the operand value.
if (I->getType() == I->getOperand(0)->getType()) {
unsigned Reg = getRegForValue(I->getOperand(0));
if (Reg == 0)
return false;
UpdateValueMap(I, Reg);
return true;
}
// Bitcasts of other values become reg-reg copies or BITCAST operators.
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(I->getType());
if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
DstVT == MVT::Other || !DstVT.isSimple() ||
!TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
// Unhandled type. Halt "fast" selection and bail.
return false;
unsigned Op0 = getRegForValue(I->getOperand(0));
if (Op0 == 0)
// Unhandled operand. Halt "fast" selection and bail.
return false;
bool Op0IsKill = hasTrivialKill(I->getOperand(0));
// First, try to perform the bitcast by inserting a reg-reg copy.
unsigned ResultReg = 0;
if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
// Don't attempt a cross-class copy. It will likely fail.
if (SrcClass == DstClass) {
ResultReg = createResultReg(DstClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
ResultReg).addReg(Op0);
}
}
// If the reg-reg copy failed, select a BITCAST opcode.
if (!ResultReg)
ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
ISD::BITCAST, Op0, Op0IsKill);
if (!ResultReg)
return false;
UpdateValueMap(I, ResultReg);
return true;
}
bool
FastISel::SelectInstruction(const Instruction *I) {
// Just before the terminator instruction, insert instructions to
// feed PHI nodes in successor blocks.
if (isa<TerminatorInst>(I))
if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
return false;
DL = I->getDebugLoc();
MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
// First, try doing target-independent selection.
if (SelectOperator(I, I->getOpcode())) {
++NumFastIselSuccessIndependent;
DL = DebugLoc();
return true;
}
// Remove dead code. However, ignore call instructions since we've flushed
// the local value map and recomputed the insert point.
if (!isa<CallInst>(I)) {
recomputeInsertPt();
if (SavedInsertPt != FuncInfo.InsertPt)
removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
}
// Next, try calling the target to attempt to handle the instruction.
SavedInsertPt = FuncInfo.InsertPt;
if (TargetSelectInstruction(I)) {
++NumFastIselSuccessTarget;
DL = DebugLoc();
return true;
}
// Check for dead code and remove as necessary.
recomputeInsertPt();
if (SavedInsertPt != FuncInfo.InsertPt)
removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
DL = DebugLoc();
return false;
}
/// FastEmitBranch - Emit an unconditional branch to the given block,
/// unless it is the immediate (fall-through) successor, and update
/// the CFG.
void
FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
if (FuncInfo.MBB->getBasicBlock()->size() > 1 && FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
// For more accurate line information if this is the only instruction
// in the block then emit it, otherwise we have the unconditional
// fall-through case, which needs no instructions.
} else {
// The unconditional branch case.
TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
SmallVector<MachineOperand, 0>(), DL);
}
FuncInfo.MBB->addSuccessor(MSucc);
}
/// SelectFNeg - Emit an FNeg operation.
///
bool
FastISel::SelectFNeg(const User *I) {
unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
if (OpReg == 0) return false;
bool OpRegIsKill = hasTrivialKill(I);
// If the target has ISD::FNEG, use it.
EVT VT = TLI.getValueType(I->getType());
unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
ISD::FNEG, OpReg, OpRegIsKill);
if (ResultReg != 0) {
UpdateValueMap(I, ResultReg);
return true;
}
// Bitcast the value to integer, twiddle the sign bit with xor,
// and then bitcast it back to floating-point.
if (VT.getSizeInBits() > 64) return false;
EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
if (!TLI.isTypeLegal(IntVT))
return false;
unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
ISD::BITCAST, OpReg, OpRegIsKill);
if (IntReg == 0)
return false;
unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
IntReg, /*Kill=*/true,
UINT64_C(1) << (VT.getSizeInBits()-1),
IntVT.getSimpleVT());
if (IntResultReg == 0)
return false;
ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
ISD::BITCAST, IntResultReg, /*Kill=*/true);
if (ResultReg == 0)
return false;
UpdateValueMap(I, ResultReg);
return true;
}
bool
FastISel::SelectExtractValue(const User *U) {
const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
if (!EVI)
return false;
// Make sure we only try to handle extracts with a legal result. But also
// allow i1 because it's easy.
EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
if (!RealVT.isSimple())
return false;
MVT VT = RealVT.getSimpleVT();
if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
return false;
const Value *Op0 = EVI->getOperand(0);
Type *AggTy = Op0->getType();
// Get the base result register.
unsigned ResultReg;
DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
if (I != FuncInfo.ValueMap.end())
ResultReg = I->second;
else if (isa<Instruction>(Op0))
ResultReg = FuncInfo.InitializeRegForValue(Op0);
else
return false; // fast-isel can't handle aggregate constants at the moment
// Get the actual result register, which is an offset from the base register.
unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
SmallVector<EVT, 4> AggValueVTs;
ComputeValueVTs(TLI, AggTy, AggValueVTs);
for (unsigned i = 0; i < VTIndex; i++)
ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
UpdateValueMap(EVI, ResultReg);
return true;
}
bool
FastISel::SelectOperator(const User *I, unsigned Opcode) {
switch (Opcode) {
case Instruction::Add:
return SelectBinaryOp(I, ISD::ADD);
case Instruction::FAdd:
return SelectBinaryOp(I, ISD::FADD);
case Instruction::Sub:
return SelectBinaryOp(I, ISD::SUB);
case Instruction::FSub:
// FNeg is currently represented in LLVM IR as a special case of FSub.
if (BinaryOperator::isFNeg(I))
return SelectFNeg(I);
return SelectBinaryOp(I, ISD::FSUB);
case Instruction::Mul:
return SelectBinaryOp(I, ISD::MUL);
case Instruction::FMul:
return SelectBinaryOp(I, ISD::FMUL);
case Instruction::SDiv:
return SelectBinaryOp(I, ISD::SDIV);
case Instruction::UDiv:
return SelectBinaryOp(I, ISD::UDIV);
case Instruction::FDiv:
return SelectBinaryOp(I, ISD::FDIV);
case Instruction::SRem:
return SelectBinaryOp(I, ISD::SREM);
case Instruction::URem:
return SelectBinaryOp(I, ISD::UREM);
case Instruction::FRem:
return SelectBinaryOp(I, ISD::FREM);
case Instruction::Shl:
return SelectBinaryOp(I, ISD::SHL);
case Instruction::LShr:
return SelectBinaryOp(I, ISD::SRL);
case Instruction::AShr:
return SelectBinaryOp(I, ISD::SRA);
case Instruction::And:
return SelectBinaryOp(I, ISD::AND);
case Instruction::Or:
return SelectBinaryOp(I, ISD::OR);
case Instruction::Xor:
return SelectBinaryOp(I, ISD::XOR);
case Instruction::GetElementPtr:
return SelectGetElementPtr(I);
case Instruction::Br: {
const BranchInst *BI = cast<BranchInst>(I);
if (BI->isUnconditional()) {
const BasicBlock *LLVMSucc = BI->getSuccessor(0);
MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
FastEmitBranch(MSucc, BI->getDebugLoc());
return true;
}
// Conditional branches are not handed yet.
// Halt "fast" selection and bail.
return false;
}
case Instruction::Unreachable:
// Nothing to emit.
return true;
case Instruction::Alloca:
// FunctionLowering has the static-sized case covered.
if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
return true;
// Dynamic-sized alloca is not handled yet.
return false;
case Instruction::Call:
return SelectCall(I);
case Instruction::BitCast:
return SelectBitCast(I);
case Instruction::FPToSI:
return SelectCast(I, ISD::FP_TO_SINT);
case Instruction::ZExt:
return SelectCast(I, ISD::ZERO_EXTEND);
case Instruction::SExt:
return SelectCast(I, ISD::SIGN_EXTEND);
case Instruction::Trunc:
return SelectCast(I, ISD::TRUNCATE);
case Instruction::SIToFP:
return SelectCast(I, ISD::SINT_TO_FP);
case Instruction::IntToPtr: // Deliberate fall-through.
case Instruction::PtrToInt: {
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(I->getType());
if (DstVT.bitsGT(SrcVT))
return SelectCast(I, ISD::ZERO_EXTEND);
if (DstVT.bitsLT(SrcVT))
return SelectCast(I, ISD::TRUNCATE);
unsigned Reg = getRegForValue(I->getOperand(0));
if (Reg == 0) return false;
UpdateValueMap(I, Reg);
return true;
}
case Instruction::ExtractValue:
return SelectExtractValue(I);
case Instruction::PHI:
llvm_unreachable("FastISel shouldn't visit PHI nodes!");
default:
// Unhandled instruction. Halt "fast" selection and bail.
return false;
}
}
FastISel::FastISel(FunctionLoweringInfo &funcInfo)
: FuncInfo(funcInfo),
MRI(FuncInfo.MF->getRegInfo()),
MFI(*FuncInfo.MF->getFrameInfo()),
MCP(*FuncInfo.MF->getConstantPool()),
TM(FuncInfo.MF->getTarget()),
TD(*TM.getTargetData()),
TII(*TM.getInstrInfo()),
TLI(*TM.getTargetLowering()),
TRI(*TM.getRegisterInfo()) {
}
FastISel::~FastISel() {}
unsigned FastISel::FastEmit_(MVT, MVT,
unsigned) {
return 0;
}
unsigned FastISel::FastEmit_r(MVT, MVT,
unsigned,
unsigned /*Op0*/, bool /*Op0IsKill*/) {
return 0;
}
unsigned FastISel::FastEmit_rr(MVT, MVT,
unsigned,
unsigned /*Op0*/, bool /*Op0IsKill*/,
unsigned /*Op1*/, bool /*Op1IsKill*/) {
return 0;
}
unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
return 0;
}
unsigned FastISel::FastEmit_f(MVT, MVT,
unsigned, const ConstantFP * /*FPImm*/) {
return 0;
}
unsigned FastISel::FastEmit_ri(MVT, MVT,
unsigned,
unsigned /*Op0*/, bool /*Op0IsKill*/,
uint64_t /*Imm*/) {
return 0;
}
unsigned FastISel::FastEmit_rf(MVT, MVT,
unsigned,
unsigned /*Op0*/, bool /*Op0IsKill*/,
const ConstantFP * /*FPImm*/) {
return 0;
}
unsigned FastISel::FastEmit_rri(MVT, MVT,
unsigned,
unsigned /*Op0*/, bool /*Op0IsKill*/,
unsigned /*Op1*/, bool /*Op1IsKill*/,
uint64_t /*Imm*/) {
return 0;
}
/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
/// to emit an instruction with an immediate operand using FastEmit_ri.
/// If that fails, it materializes the immediate into a register and try
/// FastEmit_rr instead.
unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
unsigned Op0, bool Op0IsKill,
uint64_t Imm, MVT ImmType) {
// If this is a multiply by a power of two, emit this as a shift left.
if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
Opcode = ISD::SHL;
Imm = Log2_64(Imm);
} else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
// div x, 8 -> srl x, 3
Opcode = ISD::SRL;
Imm = Log2_64(Imm);
}
// Horrible hack (to be removed), check to make sure shift amounts are
// in-range.
if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
Imm >= VT.getSizeInBits())
return 0;
// First check if immediate type is legal. If not, we can't use the ri form.
unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
if (ResultReg != 0)
return ResultReg;
unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
if (MaterialReg == 0) {
// This is a bit ugly/slow, but failing here means falling out of
// fast-isel, which would be very slow.
IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
VT.getSizeInBits());
MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
}
return FastEmit_rr(VT, VT, Opcode,
Op0, Op0IsKill,
MaterialReg, /*Kill=*/true);
}
unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
return MRI.createVirtualRegister(RC);
}
unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
const TargetRegisterClass* RC) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
return ResultReg;
}
unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
unsigned Op2, bool Op2IsKill) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill)
.addReg(Op2, Op2IsKill * RegState::Kill);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill)
.addReg(Op2, Op2IsKill * RegState::Kill);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addImm(Imm);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addImm(Imm);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm1, uint64_t Imm2) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addImm(Imm1)
.addImm(Imm2);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addImm(Imm1)
.addImm(Imm2);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
const ConstantFP *FPImm) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addFPImm(FPImm);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addFPImm(FPImm);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill)
.addImm(Imm);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill)
.addImm(Imm);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
uint64_t Imm1, uint64_t Imm2) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addImm(Imm1).addImm(Imm2);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
unsigned Op0, bool Op0IsKill,
uint32_t Idx) {
unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
"Cannot yet extract from physregs");
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
DL, TII.get(TargetOpcode::COPY), ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill), Idx);
return ResultReg;
}
/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
/// with all but the least significant bit set to zero.
unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
}
/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
/// Emit code to ensure constants are copied into registers when needed.
/// Remember the virtual registers that need to be added to the Machine PHI
/// nodes as input. We cannot just directly add them, because expansion
/// might result in multiple MBB's for one BB. As such, the start of the
/// BB might correspond to a different MBB than the end.
bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
const TerminatorInst *TI = LLVMBB->getTerminator();
SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
// Check successor nodes' PHI nodes that expect a constant to be available
// from this block.
for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
const BasicBlock *SuccBB = TI->getSuccessor(succ);
if (!isa<PHINode>(SuccBB->begin())) continue;
MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
// If this terminator has multiple identical successors (common for
// switches), only handle each succ once.
if (!SuccsHandled.insert(SuccMBB)) continue;
MachineBasicBlock::iterator MBBI = SuccMBB->begin();
// At this point we know that there is a 1-1 correspondence between LLVM PHI
// nodes and Machine PHI nodes, but the incoming operands have not been
// emitted yet.
for (BasicBlock::const_iterator I = SuccBB->begin();
const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
// Ignore dead phi's.
if (PN->use_empty()) continue;
// Only handle legal types. Two interesting things to note here. First,
// by bailing out early, we may leave behind some dead instructions,
// since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
// own moves. Second, this check is necessary because FastISel doesn't
// use CreateRegs to create registers, so it always creates
// exactly one register for each non-void instruction.
EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
// Handle integer promotions, though, because they're common and easy.
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
else {
FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
return false;
}
}
const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
// Set the DebugLoc for the copy. Prefer the location of the operand
// if there is one; use the location of the PHI otherwise.
DL = PN->getDebugLoc();
if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
DL = Inst->getDebugLoc();
unsigned Reg = getRegForValue(PHIOp);
if (Reg == 0) {
FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
return false;
}
FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
DL = DebugLoc();
}
}
return true;
}