blob: 107a42b2951cb6e26286bfa304f0dee1842cb57f [file] [log] [blame]
//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file performs vector type splitting and scalarization for LegalizeTypes.
// Scalarization is the act of changing a computation in an illegal one-element
// vector type to be a computation in its scalar element type. For example,
// implementing <1 x f32> arithmetic in a scalar f32 register. This is needed
// as a base case when scalarizing vector arithmetic like <4 x f32>, which
// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
// types.
// Splitting is the act of changing a computation in an invalid vector type to
// be a computation in two vectors of half the size. For example, implementing
// <128 x f32> operations in terms of two <64 x f32> operations.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Result Vector Scalarization: <1 x ty> -> ty.
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
DEBUG(dbgs() << "Scalarize node result " << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n");
SDValue R = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
report_fatal_error("Do not know how to scalarize the result of this "
"operator!\n");
case ISD::MERGE_VALUES: R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
case ISD::BITCAST: R = ScalarizeVecRes_BITCAST(N); break;
case ISD::BUILD_VECTOR: R = N->getOperand(0); break;
case ISD::CONVERT_RNDSAT: R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
case ISD::FP_ROUND: R = ScalarizeVecRes_FP_ROUND(N); break;
case ISD::FP_ROUND_INREG: R = ScalarizeVecRes_InregOp(N); break;
case ISD::FPOWI: R = ScalarizeVecRes_FPOWI(N); break;
case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
case ISD::LOAD: R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
case ISD::SCALAR_TO_VECTOR: R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
case ISD::SELECT: R = ScalarizeVecRes_SELECT(N); break;
case ISD::SELECT_CC: R = ScalarizeVecRes_SELECT_CC(N); break;
case ISD::SETCC: R = ScalarizeVecRes_SETCC(N); break;
case ISD::UNDEF: R = ScalarizeVecRes_UNDEF(N); break;
case ISD::VECTOR_SHUFFLE: R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
case ISD::ANY_EXTEND:
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::FABS:
case ISD::FCEIL:
case ISD::FCOS:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FFLOOR:
case ISD::FLOG:
case ISD::FLOG10:
case ISD::FLOG2:
case ISD::FNEARBYINT:
case ISD::FNEG:
case ISD::FP_EXTEND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FRINT:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
case ISD::SIGN_EXTEND:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP:
case ISD::ZERO_EXTEND:
R = ScalarizeVecRes_UnaryOp(N);
break;
case ISD::ADD:
case ISD::AND:
case ISD::FADD:
case ISD::FDIV:
case ISD::FMUL:
case ISD::FPOW:
case ISD::FREM:
case ISD::FSUB:
case ISD::MUL:
case ISD::OR:
case ISD::SDIV:
case ISD::SREM:
case ISD::SUB:
case ISD::UDIV:
case ISD::UREM:
case ISD::XOR:
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
R = ScalarizeVecRes_BinOp(N);
break;
}
// If R is null, the sub-method took care of registering the result.
if (R.getNode())
SetScalarizedVector(SDValue(N, ResNo), R);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(0));
SDValue RHS = GetScalarizedVector(N->getOperand(1));
return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N,
unsigned ResNo) {
SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
return GetScalarizedVector(Op);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
EVT NewVT = N->getValueType(0).getVectorElementType();
return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
NewVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
EVT NewVT = N->getValueType(0).getVectorElementType();
SDValue Op0 = GetScalarizedVector(N->getOperand(0));
return DAG.getConvertRndSat(NewVT, N->getDebugLoc(),
Op0, DAG.getValueType(NewVT),
DAG.getValueType(Op0.getValueType()),
N->getOperand(3),
N->getOperand(4),
cast<CvtRndSatSDNode>(N)->getCvtCode());
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
N->getValueType(0).getVectorElementType(),
N->getOperand(0), N->getOperand(1));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) {
EVT NewVT = N->getValueType(0).getVectorElementType();
SDValue Op = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(),
NewVT, Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
SDValue Op = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(ISD::FPOWI, N->getDebugLoc(),
Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
// The value to insert may have a wider type than the vector element type,
// so be sure to truncate it to the element type if necessary.
SDValue Op = N->getOperand(1);
EVT EltVT = N->getValueType(0).getVectorElementType();
if (Op.getValueType() != EltVT)
// FIXME: Can this happen for floating point types?
Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, Op);
return Op;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
assert(N->isUnindexed() && "Indexed vector load?");
SDValue Result = DAG.getLoad(ISD::UNINDEXED,
N->getExtensionType(),
N->getValueType(0).getVectorElementType(),
N->getDebugLoc(),
N->getChain(), N->getBasePtr(),
DAG.getUNDEF(N->getBasePtr().getValueType()),
N->getPointerInfo(),
N->getMemoryVT().getVectorElementType(),
N->isVolatile(), N->isNonTemporal(),
N->getOriginalAlignment());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
return Result;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
// Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
EVT DestVT = N->getValueType(0).getVectorElementType();
SDValue Op = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), N->getDebugLoc(), DestVT, Op);
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
EVT EltVT = N->getValueType(0).getVectorElementType();
EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
SDValue LHS = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), N->getDebugLoc(), EltVT,
LHS, DAG.getValueType(ExtVT));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
// If the operand is wider than the vector element type then it is implicitly
// truncated. Make that explicit here.
EVT EltVT = N->getValueType(0).getVectorElementType();
SDValue InOp = N->getOperand(0);
if (InOp.getValueType() != EltVT)
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), EltVT, InOp);
return InOp;
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(1));
return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
LHS.getValueType(), N->getOperand(0), LHS,
GetScalarizedVector(N->getOperand(2)));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
SDValue LHS = GetScalarizedVector(N->getOperand(2));
return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), LHS.getValueType(),
N->getOperand(0), N->getOperand(1),
LHS, GetScalarizedVector(N->getOperand(3)),
N->getOperand(4));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
assert(N->getValueType(0).isVector() ==
N->getOperand(0).getValueType().isVector() &&
"Scalar/Vector type mismatch");
if (N->getValueType(0).isVector()) return ScalarizeVecRes_VSETCC(N);
SDValue LHS = GetScalarizedVector(N->getOperand(0));
SDValue RHS = GetScalarizedVector(N->getOperand(1));
DebugLoc DL = N->getDebugLoc();
// Turn it into a scalar SETCC.
return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
// Figure out if the scalar is the LHS or RHS and return it.
SDValue Arg = N->getOperand(2).getOperand(0);
if (Arg.getOpcode() == ISD::UNDEF)
return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
return GetScalarizedVector(N->getOperand(Op));
}
SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
"Operand types must be vectors");
SDValue LHS = GetScalarizedVector(N->getOperand(0));
SDValue RHS = GetScalarizedVector(N->getOperand(1));
EVT NVT = N->getValueType(0).getVectorElementType();
DebugLoc DL = N->getDebugLoc();
// Turn it into a scalar SETCC.
SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
N->getOperand(2));
// Vectors may have a different boolean contents to scalars. Promote the
// value appropriately.
ISD::NodeType ExtendCode =
TargetLowering::getExtendForContent(TLI.getBooleanContents(true));
return DAG.getNode(ExtendCode, DL, NVT, Res);
}
//===----------------------------------------------------------------------===//
// Operand Vector Scalarization <1 x ty> -> ty.
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": ";
N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
if (Res.getNode() == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to scalarize this operator's operand!");
case ISD::BITCAST:
Res = ScalarizeVecOp_BITCAST(N);
break;
case ISD::CONCAT_VECTORS:
Res = ScalarizeVecOp_CONCAT_VECTORS(N);
break;
case ISD::EXTRACT_VECTOR_ELT:
Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
break;
case ISD::STORE:
Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
/// ScalarizeVecOp_BITCAST - If the value to convert is a vector that needs
/// to be scalarized, it must be <1 x ty>. Convert the element instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
SDValue Elt = GetScalarizedVector(N->getOperand(0));
return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
N->getValueType(0), Elt);
}
/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
/// use a BUILD_VECTOR instead.
SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
SmallVector<SDValue, 8> Ops(N->getNumOperands());
for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
Ops[i] = GetScalarizedVector(N->getOperand(i));
return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), N->getValueType(0),
&Ops[0], Ops.size());
}
/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
/// index.
SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
SDValue Res = GetScalarizedVector(N->getOperand(0));
if (Res.getValueType() != N->getValueType(0))
Res = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), N->getValueType(0),
Res);
return Res;
}
/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
/// scalarized, it must be <1 x ty>. Just store the element.
SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
assert(N->isUnindexed() && "Indexed store of one-element vector?");
assert(OpNo == 1 && "Do not know how to scalarize this operand!");
DebugLoc dl = N->getDebugLoc();
if (N->isTruncatingStore())
return DAG.getTruncStore(N->getChain(), dl,
GetScalarizedVector(N->getOperand(1)),
N->getBasePtr(), N->getPointerInfo(),
N->getMemoryVT().getVectorElementType(),
N->isVolatile(), N->isNonTemporal(),
N->getAlignment());
return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
N->getBasePtr(), N->getPointerInfo(),
N->isVolatile(), N->isNonTemporal(),
N->getOriginalAlignment());
}
//===----------------------------------------------------------------------===//
// Result Vector Splitting
//===----------------------------------------------------------------------===//
/// SplitVectorResult - This method is called when the specified result of the
/// specified node is found to need vector splitting. At this point, the node
/// may also have invalid operands or may have other results that need
/// legalization, we just know that (at least) one result needs vector
/// splitting.
void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
DEBUG(dbgs() << "Split node result: ";
N->dump(&DAG);
dbgs() << "\n");
SDValue Lo, Hi;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "SplitVectorResult #" << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to split the result of this operator!");
case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
case ISD::VSELECT:
case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
case ISD::BITCAST: SplitVecRes_BITCAST(N, Lo, Hi); break;
case ISD::BUILD_VECTOR: SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
case ISD::CONCAT_VECTORS: SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
case ISD::FP_ROUND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
case ISD::FPOWI: SplitVecRes_FPOWI(N, Lo, Hi); break;
case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
case ISD::SCALAR_TO_VECTOR: SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
case ISD::LOAD:
SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
break;
case ISD::SETCC:
SplitVecRes_SETCC(N, Lo, Hi);
break;
case ISD::VECTOR_SHUFFLE:
SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
break;
case ISD::ANY_EXTEND:
case ISD::CONVERT_RNDSAT:
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::FABS:
case ISD::FCEIL:
case ISD::FCOS:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FFLOOR:
case ISD::FLOG:
case ISD::FLOG10:
case ISD::FLOG2:
case ISD::FNEARBYINT:
case ISD::FNEG:
case ISD::FP_EXTEND:
case ISD::FP_ROUND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::FRINT:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
case ISD::SIGN_EXTEND:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP:
case ISD::ZERO_EXTEND:
SplitVecRes_UnaryOp(N, Lo, Hi);
break;
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::SDIV:
case ISD::UDIV:
case ISD::FDIV:
case ISD::FPOW:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::UREM:
case ISD::SREM:
case ISD::FREM:
SplitVecRes_BinOp(N, Lo, Hi);
break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
if (Lo.getNode())
SetSplitVector(SDValue(N, ResNo), Lo, Hi);
}
void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue LHSLo, LHSHi;
GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
SDValue RHSLo, RHSHi;
GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
DebugLoc dl = N->getDebugLoc();
Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
}
void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
SDValue &Hi) {
// We know the result is a vector. The input may be either a vector or a
// scalar value.
EVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
DebugLoc dl = N->getDebugLoc();
SDValue InOp = N->getOperand(0);
EVT InVT = InOp.getValueType();
// Handle some special cases efficiently.
switch (getTypeAction(InVT)) {
case TargetLowering::TypeLegal:
case TargetLowering::TypePromoteInteger:
case TargetLowering::TypeSoftenFloat:
case TargetLowering::TypeScalarizeVector:
case TargetLowering::TypeWidenVector:
break;
case TargetLowering::TypeExpandInteger:
case TargetLowering::TypeExpandFloat:
// A scalar to vector conversion, where the scalar needs expansion.
// If the vector is being split in two then we can just convert the
// expanded pieces.
if (LoVT == HiVT) {
GetExpandedOp(InOp, Lo, Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
return;
}
break;
case TargetLowering::TypeSplitVector:
// If the input is a vector that needs to be split, convert each split
// piece of the input now.
GetSplitVector(InOp, Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
return;
}
// In the general case, convert the input to an integer and split it by hand.
EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
if (TLI.isBigEndian())
std::swap(LoIntVT, HiIntVT);
SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
}
void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
EVT LoVT, HiVT;
DebugLoc dl = N->getDebugLoc();
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
unsigned LoNumElts = LoVT.getVectorNumElements();
SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, &LoOps[0], LoOps.size());
SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, &HiOps[0], HiOps.size());
}
void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
SDValue &Hi) {
assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
DebugLoc dl = N->getDebugLoc();
unsigned NumSubvectors = N->getNumOperands() / 2;
if (NumSubvectors == 1) {
Lo = N->getOperand(0);
Hi = N->getOperand(1);
return;
}
EVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, &LoOps[0], LoOps.size());
SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, &HiOps[0], HiOps.size());
}
void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(1);
DebugLoc dl = N->getDebugLoc();
EVT LoVT, HiVT;
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec,
DAG.getIntPtrConstant(IdxVal + LoVT.getVectorNumElements()));
}
void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
SDValue &Hi) {
DebugLoc dl = N->getDebugLoc();
GetSplitVector(N->getOperand(0), Lo, Hi);
Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
}
void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue LHSLo, LHSHi;
GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
DebugLoc dl = N->getDebugLoc();
EVT LoVT, HiVT;
GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT(), LoVT, HiVT);
Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
DAG.getValueType(LoVT));
Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
DAG.getValueType(HiVT));
}
void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
SDValue &Hi) {
SDValue Vec = N->getOperand(0);
SDValue Elt = N->getOperand(1);
SDValue Idx = N->getOperand(2);
DebugLoc dl = N->getDebugLoc();
GetSplitVector(Vec, Lo, Hi);
if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
unsigned IdxVal = CIdx->getZExtValue();
unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
if (IdxVal < LoNumElts)
Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
Lo.getValueType(), Lo, Elt, Idx);
else
Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
DAG.getIntPtrConstant(IdxVal - LoNumElts));
return;
}
// Spill the vector to the stack.
EVT VecVT = Vec.getValueType();
EVT EltVT = VecVT.getVectorElementType();
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
MachinePointerInfo(), false, false, 0);
// Store the new element. This may be larger than the vector element type,
// so use a truncating store.
SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
unsigned Alignment =
TLI.getTargetData()->getPrefTypeAlignment(VecType);
Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT,
false, false, 0);
// Load the Lo part from the stack slot.
Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
false, false, 0);
// Increment the pointer to the other part.
unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
DAG.getIntPtrConstant(IncrementSize));
// Load the Hi part from the stack slot.
Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
false, false, MinAlign(Alignment, IncrementSize));
}
void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
SDValue &Hi) {
EVT LoVT, HiVT;
DebugLoc dl = N->getDebugLoc();
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
Hi = DAG.getUNDEF(HiVT);
}
void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
SDValue &Hi) {
assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
EVT LoVT, HiVT;
DebugLoc dl = LD->getDebugLoc();
GetSplitDestVTs(LD->getValueType(0), LoVT, HiVT);
ISD::LoadExtType ExtType = LD->getExtensionType();
SDValue Ch = LD->getChain();
SDValue Ptr = LD->getBasePtr();
SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
EVT MemoryVT = LD->getMemoryVT();
unsigned Alignment = LD->getOriginalAlignment();
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
EVT LoMemVT, HiMemVT;
GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal,
Alignment);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
LD->getPointerInfo().getWithOffset(IncrementSize),
HiMemVT, isVolatile, isNonTemporal, Alignment);
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(LD, 1), Ch);
}
void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
"Operand types must be vectors");
EVT LoVT, HiVT;
DebugLoc DL = N->getDebugLoc();
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
// Split the input.
EVT InVT = N->getOperand(0).getValueType();
SDValue LL, LH, RL, RH;
EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
LoVT.getVectorNumElements());
LL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
DAG.getIntPtrConstant(0));
LH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(0),
DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
RL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
DAG.getIntPtrConstant(0));
RH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, N->getOperand(1),
DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
}
void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
SDValue &Hi) {
// Get the dest types - they may not match the input types, e.g. int_to_fp.
EVT LoVT, HiVT;
DebugLoc dl = N->getDebugLoc();
GetSplitDestVTs(N->getValueType(0), LoVT, HiVT);
// Split the input.
EVT InVT = N->getOperand(0).getValueType();
switch (getTypeAction(InVT)) {
default: llvm_unreachable("Unexpected type action!");
case TargetLowering::TypeLegal: {
EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
LoVT.getVectorNumElements());
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
DAG.getIntPtrConstant(0));
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, N->getOperand(0),
DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
break;
}
case TargetLowering::TypePromoteInteger: {
SDValue InOp = GetPromotedInteger(N->getOperand(0));
EVT InNVT = EVT::getVectorVT(*DAG.getContext(),
InOp.getValueType().getVectorElementType(),
LoVT.getVectorNumElements());
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
DAG.getIntPtrConstant(0));
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
break;
}
case TargetLowering::TypeSplitVector:
GetSplitVector(N->getOperand(0), Lo, Hi);
break;
case TargetLowering::TypeWidenVector: {
// If the result needs to be split and the input needs to be widened,
// the two types must have different lengths. Use the widened result
// and extract from it to do the split.
SDValue InOp = GetWidenedVector(N->getOperand(0));
EVT InNVT = EVT::getVectorVT(*DAG.getContext(), InVT.getVectorElementType(),
LoVT.getVectorNumElements());
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
DAG.getIntPtrConstant(0));
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InNVT, InOp,
DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
break;
}
}
if (N->getOpcode() == ISD::FP_ROUND) {
Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1));
} else if (N->getOpcode() == ISD::CONVERT_RNDSAT) {
SDValue DTyOpLo = DAG.getValueType(LoVT);
SDValue DTyOpHi = DAG.getValueType(HiVT);
SDValue STyOpLo = DAG.getValueType(Lo.getValueType());
SDValue STyOpHi = DAG.getValueType(Hi.getValueType());
SDValue RndOp = N->getOperand(3);
SDValue SatOp = N->getOperand(4);
ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp,
CvtCode);
Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp,
CvtCode);
} else {
Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
}
}
void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
SDValue &Lo, SDValue &Hi) {
// The low and high parts of the original input give four input vectors.
SDValue Inputs[4];
DebugLoc dl = N->getDebugLoc();
GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
EVT NewVT = Inputs[0].getValueType();
unsigned NewElts = NewVT.getVectorNumElements();
// If Lo or Hi uses elements from at most two of the four input vectors, then
// express it as a vector shuffle of those two inputs. Otherwise extract the
// input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
SmallVector<int, 16> Ops;
for (unsigned High = 0; High < 2; ++High) {
SDValue &Output = High ? Hi : Lo;
// Build a shuffle mask for the output, discovering on the fly which
// input vectors to use as shuffle operands (recorded in InputUsed).
// If building a suitable shuffle vector proves too hard, then bail
// out with useBuildVector set.
unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
unsigned FirstMaskIdx = High * NewElts;
bool useBuildVector = false;
for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
// The mask element. This indexes into the input.
int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
// The input vector this mask element indexes into.
unsigned Input = (unsigned)Idx / NewElts;
if (Input >= array_lengthof(Inputs)) {
// The mask element does not index into any input vector.
Ops.push_back(-1);
continue;
}
// Turn the index into an offset from the start of the input vector.
Idx -= Input * NewElts;
// Find or create a shuffle vector operand to hold this input.
unsigned OpNo;
for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
if (InputUsed[OpNo] == Input) {
// This input vector is already an operand.
break;
} else if (InputUsed[OpNo] == -1U) {
// Create a new operand for this input vector.
InputUsed[OpNo] = Input;
break;
}
}
if (OpNo >= array_lengthof(InputUsed)) {
// More than two input vectors used! Give up on trying to create a
// shuffle vector. Insert all elements into a BUILD_VECTOR instead.
useBuildVector = true;
break;
}
// Add the mask index for the new shuffle vector.
Ops.push_back(Idx + OpNo * NewElts);
}
if (useBuildVector) {
EVT EltVT = NewVT.getVectorElementType();
SmallVector<SDValue, 16> SVOps;
// Extract the input elements by hand.
for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
// The mask element. This indexes into the input.
int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
// The input vector this mask element indexes into.
unsigned Input = (unsigned)Idx / NewElts;
if (Input >= array_lengthof(Inputs)) {
// The mask element is "undef" or indexes off the end of the input.
SVOps.push_back(DAG.getUNDEF(EltVT));
continue;
}
// Turn the index into an offset from the start of the input vector.
Idx -= Input * NewElts;
// Extract the vector element by hand.
SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
Inputs[Input], DAG.getIntPtrConstant(Idx)));
}
// Construct the Lo/Hi output using a BUILD_VECTOR.
Output = DAG.getNode(ISD::BUILD_VECTOR,dl,NewVT, &SVOps[0], SVOps.size());
} else if (InputUsed[0] == -1U) {
// No input vectors were used! The result is undefined.
Output = DAG.getUNDEF(NewVT);
} else {
SDValue Op0 = Inputs[InputUsed[0]];
// If only one input was used, use an undefined vector for the other.
SDValue Op1 = InputUsed[1] == -1U ?
DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
// At least one input vector was used. Create a new shuffle vector.
Output = DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
}
Ops.clear();
}
}
//===----------------------------------------------------------------------===//
// Operand Vector Splitting
//===----------------------------------------------------------------------===//
/// SplitVectorOperand - This method is called when the specified operand of the
/// specified node is found to need vector splitting. At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need legalization as well as the specified one.
bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
DEBUG(dbgs() << "Split node operand: ";
N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
if (Res.getNode() == 0) {
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to split this operator's operand!");
case ISD::SETCC: Res = SplitVecOp_VSETCC(N); break;
case ISD::BITCAST: Res = SplitVecOp_BITCAST(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
case ISD::CONCAT_VECTORS: Res = SplitVecOp_CONCAT_VECTORS(N); break;
case ISD::FP_ROUND: Res = SplitVecOp_FP_ROUND(N); break;
case ISD::STORE:
Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
break;
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::FP_EXTEND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
case ISD::FTRUNC:
case ISD::TRUNCATE:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
Res = SplitVecOp_UnaryOp(N);
break;
}
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
// The result has a legal vector type, but the input needs splitting.
EVT ResVT = N->getValueType(0);
SDValue Lo, Hi;
DebugLoc dl = N->getDebugLoc();
GetSplitVector(N->getOperand(0), Lo, Hi);
EVT InVT = Lo.getValueType();
EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
InVT.getVectorNumElements());
Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
}
SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
// For example, i64 = BITCAST v4i16 on alpha. Typically the vector will
// end up being split all the way down to individual components. Convert the
// split pieces into integers and reassemble.
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
Lo = BitConvertToInteger(Lo);
Hi = BitConvertToInteger(Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), N->getValueType(0),
JoinIntegers(Lo, Hi));
}
SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
// We know that the extracted result type is legal.
EVT SubVT = N->getValueType(0);
SDValue Idx = N->getOperand(1);
DebugLoc dl = N->getDebugLoc();
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
uint64_t LoElts = Lo.getValueType().getVectorNumElements();
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (IdxVal < LoElts) {
assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
"Extracted subvector crosses vector split!");
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
} else {
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
}
}
SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
SDValue Vec = N->getOperand(0);
SDValue Idx = N->getOperand(1);
EVT VecVT = Vec.getValueType();
if (isa<ConstantSDNode>(Idx)) {
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
SDValue Lo, Hi;
GetSplitVector(Vec, Lo, Hi);
uint64_t LoElts = Lo.getValueType().getVectorNumElements();
if (IdxVal < LoElts)
return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0);
return SDValue(DAG.UpdateNodeOperands(N, Hi,
DAG.getConstant(IdxVal - LoElts,
Idx.getValueType())), 0);
}
// Store the vector to the stack.
EVT EltVT = VecVT.getVectorElementType();
DebugLoc dl = N->getDebugLoc();
SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
MachinePointerInfo(), false, false, 0);
// Load back the required element.
StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
MachinePointerInfo(), EltVT, false, false, 0);
}
SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
assert(N->isUnindexed() && "Indexed store of vector?");
assert(OpNo == 1 && "Can only split the stored value");
DebugLoc DL = N->getDebugLoc();
bool isTruncating = N->isTruncatingStore();
SDValue Ch = N->getChain();
SDValue Ptr = N->getBasePtr();
EVT MemoryVT = N->getMemoryVT();
unsigned Alignment = N->getOriginalAlignment();
bool isVol = N->isVolatile();
bool isNT = N->isNonTemporal();
SDValue Lo, Hi;
GetSplitVector(N->getOperand(1), Lo, Hi);
EVT LoMemVT, HiMemVT;
GetSplitDestVTs(MemoryVT, LoMemVT, HiMemVT);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
if (isTruncating)
Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
LoMemVT, isVol, isNT, Alignment);
else
Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
isVol, isNT, Alignment);
// Increment the pointer to the other half.
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
if (isTruncating)
Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
HiMemVT, isVol, isNT, Alignment);
else
Hi = DAG.getStore(Ch, DL, Hi, Ptr,
N->getPointerInfo().getWithOffset(IncrementSize),
isVol, isNT, Alignment);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
}
SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
DebugLoc DL = N->getDebugLoc();
// The input operands all must have the same type, and we know the result the
// result type is valid. Convert this to a buildvector which extracts all the
// input elements.
// TODO: If the input elements are power-two vectors, we could convert this to
// a new CONCAT_VECTORS node with elements that are half-wide.
SmallVector<SDValue, 32> Elts;
EVT EltVT = N->getValueType(0).getVectorElementType();
for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
SDValue Op = N->getOperand(op);
for (unsigned i = 0, e = Op.getValueType().getVectorNumElements();
i != e; ++i) {
Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
Op, DAG.getIntPtrConstant(i)));
}
}
return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0),
&Elts[0], Elts.size());
}
SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
"Operand types must be vectors");
// The result has a legal vector type, but the input needs splitting.
SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes;
DebugLoc DL = N->getDebugLoc();
GetSplitVector(N->getOperand(0), Lo0, Hi0);
GetSplitVector(N->getOperand(1), Lo1, Hi1);
unsigned PartElements = Lo0.getValueType().getVectorNumElements();
EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements);
EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements);
LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2));
HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2));
SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes);
return PromoteTargetBoolean(Con, N->getValueType(0));
}
SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) {
// The result has a legal vector type, but the input needs splitting.
EVT ResVT = N->getValueType(0);
SDValue Lo, Hi;
DebugLoc DL = N->getDebugLoc();
GetSplitVector(N->getOperand(0), Lo, Hi);
EVT InVT = Lo.getValueType();
EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
InVT.getVectorNumElements());
Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1));
Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1));
return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
}
//===----------------------------------------------------------------------===//
// Result Vector Widening
//===----------------------------------------------------------------------===//
void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
DEBUG(dbgs() << "Widen node result " << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n");
// See if the target wants to custom widen this node.
if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
return;
SDValue Res = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "WidenVectorResult #" << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to widen the result of this operator!");
case ISD::MERGE_VALUES: Res = WidenVecRes_MERGE_VALUES(N, ResNo); break;
case ISD::BITCAST: Res = WidenVecRes_BITCAST(N); break;
case ISD::BUILD_VECTOR: Res = WidenVecRes_BUILD_VECTOR(N); break;
case ISD::CONCAT_VECTORS: Res = WidenVecRes_CONCAT_VECTORS(N); break;
case ISD::CONVERT_RNDSAT: Res = WidenVecRes_CONVERT_RNDSAT(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
case ISD::FP_ROUND_INREG: Res = WidenVecRes_InregOp(N); break;
case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
case ISD::LOAD: Res = WidenVecRes_LOAD(N); break;
case ISD::SCALAR_TO_VECTOR: Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
case ISD::SELECT: Res = WidenVecRes_SELECT(N); break;
case ISD::SELECT_CC: Res = WidenVecRes_SELECT_CC(N); break;
case ISD::SETCC: Res = WidenVecRes_SETCC(N); break;
case ISD::UNDEF: Res = WidenVecRes_UNDEF(N); break;
case ISD::VECTOR_SHUFFLE:
Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
break;
case ISD::ADD:
case ISD::AND:
case ISD::BSWAP:
case ISD::FADD:
case ISD::FCOPYSIGN:
case ISD::FDIV:
case ISD::FMUL:
case ISD::FPOW:
case ISD::FREM:
case ISD::FSUB:
case ISD::MUL:
case ISD::MULHS:
case ISD::MULHU:
case ISD::OR:
case ISD::SDIV:
case ISD::SREM:
case ISD::UDIV:
case ISD::UREM:
case ISD::SUB:
case ISD::XOR:
Res = WidenVecRes_Binary(N);
break;
case ISD::FPOWI:
Res = WidenVecRes_POWI(N);
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
Res = WidenVecRes_Shift(N);
break;
case ISD::ANY_EXTEND:
case ISD::FP_EXTEND:
case ISD::FP_ROUND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SIGN_EXTEND:
case ISD::SINT_TO_FP:
case ISD::TRUNCATE:
case ISD::UINT_TO_FP:
case ISD::ZERO_EXTEND:
Res = WidenVecRes_Convert(N);
break;
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::FABS:
case ISD::FCEIL:
case ISD::FCOS:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FFLOOR:
case ISD::FLOG:
case ISD::FLOG10:
case ISD::FLOG2:
case ISD::FNEARBYINT:
case ISD::FNEG:
case ISD::FRINT:
case ISD::FSIN:
case ISD::FSQRT:
case ISD::FTRUNC:
Res = WidenVecRes_Unary(N);
break;
}
// If Res is null, the sub-method took care of registering the result.
if (Res.getNode())
SetWidenedVector(SDValue(N, ResNo), Res);
}
SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
// Binary op widening.
unsigned Opcode = N->getOpcode();
DebugLoc dl = N->getDebugLoc();
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT WidenEltVT = WidenVT.getVectorElementType();
EVT VT = WidenVT;
unsigned NumElts = VT.getVectorNumElements();
while (!TLI.isTypeLegal(VT) && NumElts != 1) {
NumElts = NumElts / 2;
VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
}
if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) {
// Operation doesn't trap so just widen as normal.
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
}
// No legal vector version so unroll the vector operation and then widen.
if (NumElts == 1)
return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
// Since the operation can trap, apply operation on the original vector.
EVT MaxVT = VT;
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
SmallVector<SDValue, 16> ConcatOps(CurNumElts);
unsigned ConcatEnd = 0; // Current ConcatOps index.
int Idx = 0; // Current Idx into input vectors.
// NumElts := greatest legal vector size (at most WidenVT)
// while (orig. vector has unhandled elements) {
// take munches of size NumElts from the beginning and add to ConcatOps
// NumElts := next smaller supported vector size or 1
// }
while (CurNumElts != 0) {
while (CurNumElts >= NumElts) {
SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
DAG.getIntPtrConstant(Idx));
SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2,
DAG.getIntPtrConstant(Idx));
ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2);
Idx += NumElts;
CurNumElts -= NumElts;
}
do {
NumElts = NumElts / 2;
VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
} while (!TLI.isTypeLegal(VT) && NumElts != 1);
if (NumElts == 1) {
for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
InOp1, DAG.getIntPtrConstant(Idx));
SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
InOp2, DAG.getIntPtrConstant(Idx));
ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
EOp1, EOp2);
}
CurNumElts = 0;
}
}
// Check to see if we have a single operation with the widen type.
if (ConcatEnd == 1) {
VT = ConcatOps[0].getValueType();
if (VT == WidenVT)
return ConcatOps[0];
}
// while (Some element of ConcatOps is not of type MaxVT) {
// From the end of ConcatOps, collect elements of the same type and put
// them into an op of the next larger supported type
// }
while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
Idx = ConcatEnd - 1;
VT = ConcatOps[Idx--].getValueType();
while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
Idx--;
int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
EVT NextVT;
do {
NextSize *= 2;
NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
} while (!TLI.isTypeLegal(NextVT));
if (!VT.isVector()) {
// Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
SDValue VecOp = DAG.getUNDEF(NextVT);
unsigned NumToInsert = ConcatEnd - Idx - 1;
for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp,
ConcatOps[OpIdx], DAG.getIntPtrConstant(i));
}
ConcatOps[Idx+1] = VecOp;
ConcatEnd = Idx + 2;
} else {
// Vector type, create a CONCAT_VECTORS of type NextVT
SDValue undefVec = DAG.getUNDEF(VT);
unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
unsigned RealVals = ConcatEnd - Idx - 1;
unsigned SubConcatEnd = 0;
unsigned SubConcatIdx = Idx + 1;
while (SubConcatEnd < RealVals)
SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
while (SubConcatEnd < OpsToConcat)
SubConcatOps[SubConcatEnd++] = undefVec;
ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
NextVT, &SubConcatOps[0],
OpsToConcat);
ConcatEnd = SubConcatIdx + 1;
}
}
// Check to see if we have a single operation with the widen type.
if (ConcatEnd == 1) {
VT = ConcatOps[0].getValueType();
if (VT == WidenVT)
return ConcatOps[0];
}
// add undefs of size MaxVT until ConcatOps grows to length of WidenVT
unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
if (NumOps != ConcatEnd ) {
SDValue UndefVal = DAG.getUNDEF(MaxVT);
for (unsigned j = ConcatEnd; j < NumOps; ++j)
ConcatOps[j] = UndefVal;
}
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &ConcatOps[0], NumOps);
}
SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
SDValue InOp = N->getOperand(0);
DebugLoc DL = N->getDebugLoc();
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
EVT InVT = InOp.getValueType();
EVT InEltVT = InVT.getVectorElementType();
EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
unsigned Opcode = N->getOpcode();
unsigned InVTNumElts = InVT.getVectorNumElements();
if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
InOp = GetWidenedVector(N->getOperand(0));
InVT = InOp.getValueType();
InVTNumElts = InVT.getVectorNumElements();
if (InVTNumElts == WidenNumElts) {
if (N->getNumOperands() == 1)
return DAG.getNode(Opcode, DL, WidenVT, InOp);
return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1));
}
}
if (TLI.isTypeLegal(InWidenVT)) {
// Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input
// and then widening it. To avoid this, we widen the input only if
// it results in a legal type.
if (WidenNumElts % InVTNumElts == 0) {
// Widen the input and call convert on the widened input vector.
unsigned NumConcat = WidenNumElts/InVTNumElts;
SmallVector<SDValue, 16> Ops(NumConcat);
Ops[0] = InOp;
SDValue UndefVal = DAG.getUNDEF(InVT);
for (unsigned i = 1; i != NumConcat; ++i)
Ops[i] = UndefVal;
SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT,
&Ops[0], NumConcat);
if (N->getNumOperands() == 1)
return DAG.getNode(Opcode, DL, WidenVT, InVec);
return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1));
}
if (InVTNumElts % WidenNumElts == 0) {
SDValue InVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InWidenVT,
InOp, DAG.getIntPtrConstant(0));
// Extract the input and convert the shorten input vector.
if (N->getNumOperands() == 1)
return DAG.getNode(Opcode, DL, WidenVT, InVal);
return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1));
}
}
// Otherwise unroll into some nasty scalar code and rebuild the vector.
SmallVector<SDValue, 16> Ops(WidenNumElts);
EVT EltVT = WidenVT.getVectorElementType();
unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
unsigned i;
for (i=0; i < MinElts; ++i) {
SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
DAG.getIntPtrConstant(i));
if (N->getNumOperands() == 1)
Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val);
else
Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1));
}
SDValue UndefVal = DAG.getUNDEF(EltVT);
for (; i < WidenNumElts; ++i)
Ops[i] = UndefVal;
return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, &Ops[0], WidenNumElts);
}
SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp = GetWidenedVector(N->getOperand(0));
SDValue ShOp = N->getOperand(1);
return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp, ShOp);
}
SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp = GetWidenedVector(N->getOperand(0));
SDValue ShOp = N->getOperand(1);
EVT ShVT = ShOp.getValueType();
if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) {
ShOp = GetWidenedVector(ShOp);
ShVT = ShOp.getValueType();
}
EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(),
ShVT.getVectorElementType(),
WidenVT.getVectorNumElements());
if (ShVT != ShWidenVT)
ShOp = ModifyToType(ShOp, ShWidenVT);
return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp, ShOp);
}
SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
// Unary op widening.
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp = GetWidenedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), N->getDebugLoc(), WidenVT, InOp);
}
SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
cast<VTSDNode>(N->getOperand(1))->getVT()
.getVectorElementType(),
WidenVT.getVectorNumElements());
SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
WidenVT, WidenLHS, DAG.getValueType(ExtVT));
}
SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) {
SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo);
return GetWidenedVector(WidenVec);
}
SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
SDValue InOp = N->getOperand(0);
EVT InVT = InOp.getValueType();
EVT VT = N->getValueType(0);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
DebugLoc dl = N->getDebugLoc();
switch (getTypeAction(InVT)) {
default:
assert(false && "Unknown type action!");
break;
case TargetLowering::TypeLegal:
break;
case TargetLowering::TypePromoteInteger:
// If the InOp is promoted to the same size, convert it. Otherwise,
// fall out of the switch and widen the promoted input.
InOp = GetPromotedInteger(InOp);
InVT = InOp.getValueType();
if (WidenVT.bitsEq(InVT))
return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
break;
case TargetLowering::TypeSoftenFloat:
case TargetLowering::TypeExpandInteger:
case TargetLowering::TypeExpandFloat:
case TargetLowering::TypeScalarizeVector:
case TargetLowering::TypeSplitVector:
break;
case TargetLowering::TypeWidenVector:
// If the InOp is widened to the same size, convert it. Otherwise, fall
// out of the switch and widen the widened input.
InOp = GetWidenedVector(InOp);
InVT = InOp.getValueType();
if (WidenVT.bitsEq(InVT))
// The input widens to the same size. Convert to the widen value.
return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
break;
}
unsigned WidenSize = WidenVT.getSizeInBits();
unsigned InSize = InVT.getSizeInBits();
// x86mmx is not an acceptable vector element type, so don't try.
if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) {
// Determine new input vector type. The new input vector type will use
// the same element type (if its a vector) or use the input type as a
// vector. It is the same size as the type to widen to.
EVT NewInVT;
unsigned NewNumElts = WidenSize / InSize;
if (InVT.isVector()) {
EVT InEltVT = InVT.getVectorElementType();
NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT,
WidenSize / InEltVT.getSizeInBits());
} else {
NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
}
if (TLI.isTypeLegal(NewInVT)) {
// Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input
// and then widening it. To avoid this, we widen the input only if
// it results in a legal type.
SmallVector<SDValue, 16> Ops(NewNumElts);
SDValue UndefVal = DAG.getUNDEF(InVT);
Ops[0] = InOp;
for (unsigned i = 1; i < NewNumElts; ++i)
Ops[i] = UndefVal;
SDValue NewVec;
if (InVT.isVector())
NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl,
NewInVT, &Ops[0], NewNumElts);
else
NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
NewInVT, &Ops[0], NewNumElts);
return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
}
}
return CreateStackStoreLoad(InOp, WidenVT);
}
SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
DebugLoc dl = N->getDebugLoc();
// Build a vector with undefined for the new nodes.
EVT VT = N->getValueType(0);
EVT EltVT = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
NewOps.reserve(WidenNumElts);
for (unsigned i = NumElts; i < WidenNumElts; ++i)
NewOps.push_back(DAG.getUNDEF(EltVT));
return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &NewOps[0], NewOps.size());
}
SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
EVT InVT = N->getOperand(0).getValueType();
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
DebugLoc dl = N->getDebugLoc();
unsigned WidenNumElts = WidenVT.getVectorNumElements();
unsigned NumInElts = InVT.getVectorNumElements();
unsigned NumOperands = N->getNumOperands();
bool InputWidened = false; // Indicates we need to widen the input.
if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) {
if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
// Add undef vectors to widen to correct length.
unsigned NumConcat = WidenVT.getVectorNumElements() /
InVT.getVectorNumElements();
SDValue UndefVal = DAG.getUNDEF(InVT);
SmallVector<SDValue, 16> Ops(NumConcat);
for (unsigned i=0; i < NumOperands; ++i)
Ops[i] = N->getOperand(i);
for (unsigned i = NumOperands; i != NumConcat; ++i)
Ops[i] = UndefVal;
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &Ops[0], NumConcat);
}
} else {
InputWidened = true;
if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
// The inputs and the result are widen to the same value.
unsigned i;
for (i=1; i < NumOperands; ++i)
if (N->getOperand(i).getOpcode() != ISD::UNDEF)
break;
if (i == NumOperands)
// Everything but the first operand is an UNDEF so just return the
// widened first operand.
return GetWidenedVector(N->getOperand(0));
if (NumOperands == 2) {
// Replace concat of two operands with a shuffle.
SmallVector<int, 16> MaskOps(WidenNumElts, -1);
for (unsigned i = 0; i < NumInElts; ++i) {
MaskOps[i] = i;
MaskOps[i + NumInElts] = i + WidenNumElts;
}
return DAG.getVectorShuffle(WidenVT, dl,
GetWidenedVector(N->getOperand(0)),
GetWidenedVector(N->getOperand(1)),
&MaskOps[0]);
}
}
}
// Fall back to use extracts and build vector.
EVT EltVT = WidenVT.getVectorElementType();
SmallVector<SDValue, 16> Ops(WidenNumElts);
unsigned Idx = 0;
for (unsigned i=0; i < NumOperands; ++i) {
SDValue InOp = N->getOperand(i);
if (InputWidened)
InOp = GetWidenedVector(InOp);
for (unsigned j=0; j < NumInElts; ++j)
Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
DAG.getIntPtrConstant(j));
}
SDValue UndefVal = DAG.getUNDEF(EltVT);
for (; Idx < WidenNumElts; ++Idx)
Ops[Idx] = UndefVal;
return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
}
SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
DebugLoc dl = N->getDebugLoc();
SDValue InOp = N->getOperand(0);
SDValue RndOp = N->getOperand(3);
SDValue SatOp = N->getOperand(4);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
EVT InVT = InOp.getValueType();
EVT InEltVT = InVT.getVectorElementType();
EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
SDValue DTyOp = DAG.getValueType(WidenVT);
SDValue STyOp = DAG.getValueType(InWidenVT);
ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
unsigned InVTNumElts = InVT.getVectorNumElements();
if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
InOp = GetWidenedVector(InOp);
InVT = InOp.getValueType();
InVTNumElts = InVT.getVectorNumElements();
if (InVTNumElts == WidenNumElts)
return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
SatOp, CvtCode);
}
if (TLI.isTypeLegal(InWidenVT)) {
// Because the result and the input are different vector types, widening
// the result could create a legal type but widening the input might make
// it an illegal type that might lead to repeatedly splitting the input
// and then widening it. To avoid this, we widen the input only if
// it results in a legal type.
if (WidenNumElts % InVTNumElts == 0) {
// Widen the input and call convert on the widened input vector.
unsigned NumConcat = WidenNumElts/InVTNumElts;
SmallVector<SDValue, 16> Ops(NumConcat);
Ops[0] = InOp;
SDValue UndefVal = DAG.getUNDEF(InVT);
for (unsigned i = 1; i != NumConcat; ++i)
Ops[i] = UndefVal;
InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, &Ops[0],NumConcat);
return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
SatOp, CvtCode);
}
if (InVTNumElts % WidenNumElts == 0) {
// Extract the input and convert the shorten input vector.
InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
DAG.getIntPtrConstant(0));
return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
SatOp, CvtCode);
}
}
// Otherwise unroll into some nasty scalar code and rebuild the vector.
SmallVector<SDValue, 16> Ops(WidenNumElts);
EVT EltVT = WidenVT.getVectorElementType();
DTyOp = DAG.getValueType(EltVT);
STyOp = DAG.getValueType(InEltVT);
unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
unsigned i;
for (i=0; i < MinElts; ++i) {
SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
DAG.getIntPtrConstant(i));
Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
SatOp, CvtCode);
}
SDValue UndefVal = DAG.getUNDEF(EltVT);
for (; i < WidenNumElts; ++i)
Ops[i] = UndefVal;
return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
}
SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
EVT VT = N->getValueType(0);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SDValue InOp = N->getOperand(0);
SDValue Idx = N->getOperand(1);
DebugLoc dl = N->getDebugLoc();
if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
InOp = GetWidenedVector(InOp);
EVT InVT = InOp.getValueType();
// Check if we can just return the input vector after widening.
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (IdxVal == 0 && InVT == WidenVT)
return InOp;
// Check if we can extract from the vector.
unsigned InNumElts = InVT.getVectorNumElements();
if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
// We could try widening the input to the right length but for now, extract
// the original elements, fill the rest with undefs and build a vector.
SmallVector<SDValue, 16> Ops(WidenNumElts);
EVT EltVT = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
unsigned i;
for (i=0; i < NumElts; ++i)
Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
DAG.getIntPtrConstant(IdxVal+i));
SDValue UndefVal = DAG.getUNDEF(EltVT);
for (; i < WidenNumElts; ++i)
Ops[i] = UndefVal;
return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
}
SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
SDValue InOp = GetWidenedVector(N->getOperand(0));
return DAG.getNode(ISD::INSERT_VECTOR_ELT, N->getDebugLoc(),
InOp.getValueType(), InOp,
N->getOperand(1), N->getOperand(2));
}
SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::LoadExtType ExtType = LD->getExtensionType();
SDValue Result;
SmallVector<SDValue, 16> LdChain; // Chain for the series of load
if (ExtType != ISD::NON_EXTLOAD)
Result = GenWidenVectorExtLoads(LdChain, LD, ExtType);
else
Result = GenWidenVectorLoads(LdChain, LD);
// If we generate a single load, we can use that for the chain. Otherwise,
// build a factor node to remember the multiple loads are independent and
// chain to that.
SDValue NewChain;
if (LdChain.size() == 1)
NewChain = LdChain[0];
else
NewChain = DAG.getNode(ISD::TokenFactor, LD->getDebugLoc(), MVT::Other,
&LdChain[0], LdChain.size());
// Modified the chain - switch anything that used the old chain to use
// the new one.
ReplaceValueWith(SDValue(N, 1), NewChain);
return Result;
}
SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.getNode(ISD::SCALAR_TO_VECTOR, N->getDebugLoc(),
WidenVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SDValue Cond1 = N->getOperand(0);
EVT CondVT = Cond1.getValueType();
if (CondVT.isVector()) {
EVT CondEltVT = CondVT.getVectorElementType();
EVT CondWidenVT = EVT::getVectorVT(*DAG.getContext(),
CondEltVT, WidenNumElts);
if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector)
Cond1 = GetWidenedVector(Cond1);
if (Cond1.getValueType() != CondWidenVT)
Cond1 = ModifyToType(Cond1, CondWidenVT);
}
SDValue InOp1 = GetWidenedVector(N->getOperand(1));
SDValue InOp2 = GetWidenedVector(N->getOperand(2));
assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
WidenVT, Cond1, InOp1, InOp2);
}
SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
SDValue InOp1 = GetWidenedVector(N->getOperand(2));
SDValue InOp2 = GetWidenedVector(N->getOperand(3));
return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
InOp1.getValueType(), N->getOperand(0),
N->getOperand(1), InOp1, InOp2, N->getOperand(4));
}
SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) {
assert(N->getValueType(0).isVector() ==
N->getOperand(0).getValueType().isVector() &&
"Scalar/Vector type mismatch");
if (N->getValueType(0).isVector()) return WidenVecRes_VSETCC(N);
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
return DAG.getNode(ISD::SETCC, N->getDebugLoc(), WidenVT,
InOp1, InOp2, N->getOperand(2));
}
SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.getUNDEF(WidenVT);
}
SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
unsigned NumElts = VT.getVectorNumElements();
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SDValue InOp1 = GetWidenedVector(N->getOperand(0));
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
// Adjust mask based on new input vector length.
SmallVector<int, 16> NewMask;
for (unsigned i = 0; i != NumElts; ++i) {
int Idx = N->getMaskElt(i);
if (Idx < (int)NumElts)
NewMask.push_back(Idx);
else
NewMask.push_back(Idx - NumElts + WidenNumElts);
}
for (unsigned i = NumElts; i != WidenNumElts; ++i)
NewMask.push_back(-1);
return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]);
}
SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
assert(N->getValueType(0).isVector() &&
N->getOperand(0).getValueType().isVector() &&
"Operands must be vectors");
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SDValue InOp1 = N->getOperand(0);
EVT InVT = InOp1.getValueType();
assert(InVT.isVector() && "can not widen non vector type");
EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(),
InVT.getVectorElementType(), WidenNumElts);
InOp1 = GetWidenedVector(InOp1);
SDValue InOp2 = GetWidenedVector(N->getOperand(1));
// Assume that the input and output will be widen appropriately. If not,
// we will have to unroll it at some point.
assert(InOp1.getValueType() == WidenInVT &&
InOp2.getValueType() == WidenInVT &&
"Input not widened to expected type!");
(void)WidenInVT;
return DAG.getNode(ISD::SETCC, N->getDebugLoc(),
WidenVT, InOp1, InOp2, N->getOperand(2));
}
//===----------------------------------------------------------------------===//
// Widen Vector Operand
//===----------------------------------------------------------------------===//
bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned ResNo) {
DEBUG(dbgs() << "Widen node operand " << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n");
SDValue Res = SDValue();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "WidenVectorOperand op #" << ResNo << ": ";
N->dump(&DAG);
dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to widen this operator's operand!");
case ISD::BITCAST: Res = WidenVecOp_BITCAST(N); break;
case ISD::CONCAT_VECTORS: Res = WidenVecOp_CONCAT_VECTORS(N); break;
case ISD::EXTRACT_SUBVECTOR: Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break;
case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
case ISD::STORE: Res = WidenVecOp_STORE(N); break;
case ISD::FP_EXTEND:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
case ISD::TRUNCATE:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
Res = WidenVecOp_Convert(N);
break;
}
// If Res is null, the sub-method took care of registering the result.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
// Since the result is legal and the input is illegal, it is unlikely
// that we can fix the input to a legal type so unroll the convert
// into some scalar code and create a nasty build vector.
EVT VT = N->getValueType(0);
EVT EltVT = VT.getVectorElementType();
DebugLoc dl = N->getDebugLoc();
unsigned NumElts = VT.getVectorNumElements();
SDValue InOp = N->getOperand(0);
if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
InOp = GetWidenedVector(InOp);
EVT InVT = InOp.getValueType();
EVT InEltVT = InVT.getVectorElementType();
unsigned Opcode = N->getOpcode();
SmallVector<SDValue, 16> Ops(NumElts);
for (unsigned i=0; i < NumElts; ++i)
Ops[i] = DAG.getNode(Opcode, dl, EltVT,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
DAG.getIntPtrConstant(i)));
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
}
SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) {
EVT VT = N->getValueType(0);
SDValue InOp = GetWidenedVector(N->getOperand(0));
EVT InWidenVT = InOp.getValueType();
DebugLoc dl = N->getDebugLoc();
// Check if we can convert between two legal vector types and extract.
unsigned InWidenSize = InWidenVT.getSizeInBits();
unsigned Size = VT.getSizeInBits();
// x86mmx is not an acceptable vector element type, so don't try.
if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) {
unsigned NewNumElts = InWidenSize / Size;
EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
if (TLI.isTypeLegal(NewVT)) {
SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
DAG.getIntPtrConstant(0));
}
}
return CreateStackStoreLoad(InOp, VT);
}
SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
// If the input vector is not legal, it is likely that we will not find a
// legal vector of the same size. Replace the concatenate vector with a
// nasty build vector.
EVT VT = N->getValueType(0);
EVT EltVT = VT.getVectorElementType();
DebugLoc dl = N->getDebugLoc();
unsigned NumElts = VT.getVectorNumElements();
SmallVector<SDValue, 16> Ops(NumElts);
EVT InVT = N->getOperand(0).getValueType();
unsigned NumInElts = InVT.getVectorNumElements();
unsigned Idx = 0;
unsigned NumOperands = N->getNumOperands();
for (unsigned i=0; i < NumOperands; ++i) {
SDValue InOp = N->getOperand(i);
if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
InOp = GetWidenedVector(InOp);
for (unsigned j=0; j < NumInElts; ++j)
Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
DAG.getIntPtrConstant(j));
}
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
}
SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
SDValue InOp = GetWidenedVector(N->getOperand(0));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, N->getDebugLoc(),
N->getValueType(0), InOp, N->getOperand(1));
}
SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
SDValue InOp = GetWidenedVector(N->getOperand(0));
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(),
N->getValueType(0), InOp, N->getOperand(1));
}
SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
// We have to widen the value but we want only to store the original
// vector type.
StoreSDNode *ST = cast<StoreSDNode>(N);
SmallVector<SDValue, 16> StChain;
if (ST->isTruncatingStore())
GenWidenVectorTruncStores(StChain, ST);
else
GenWidenVectorStores(StChain, ST);
if (StChain.size() == 1)
return StChain[0];
else
return DAG.getNode(ISD::TokenFactor, ST->getDebugLoc(),
MVT::Other,&StChain[0],StChain.size());
}
//===----------------------------------------------------------------------===//
// Vector Widening Utilities
//===----------------------------------------------------------------------===//
// Utility function to find the type to chop up a widen vector for load/store
// TLI: Target lowering used to determine legal types.
// Width: Width left need to load/store.
// WidenVT: The widen vector type to load to/store from
// Align: If 0, don't allow use of a wider type
// WidenEx: If Align is not 0, the amount additional we can load/store from.
static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI,
unsigned Width, EVT WidenVT,
unsigned Align = 0, unsigned WidenEx = 0) {
EVT WidenEltVT = WidenVT.getVectorElementType();
unsigned WidenWidth = WidenVT.getSizeInBits();
unsigned WidenEltWidth = WidenEltVT.getSizeInBits();
unsigned AlignInBits = Align*8;
// If we have one element to load/store, return it.
EVT RetVT = WidenEltVT;
if (Width == WidenEltWidth)
return RetVT;
// See if there is larger legal integer than the element type to load/store
unsigned VT;
for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE;
VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) {
EVT MemVT((MVT::SimpleValueType) VT);
unsigned MemVTWidth = MemVT.getSizeInBits();
if (MemVT.getSizeInBits() <= WidenEltWidth)
break;
if (TLI.isTypeLegal(MemVT) && (WidenWidth % MemVTWidth) == 0 &&
isPowerOf2_32(WidenWidth / MemVTWidth) &&
(MemVTWidth <= Width ||
(Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
RetVT = MemVT;
break;
}
}
// See if there is a larger vector type to load/store that has the same vector
// element type and is evenly divisible with the WidenVT.
for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
EVT MemVT = (MVT::SimpleValueType) VT;
unsigned MemVTWidth = MemVT.getSizeInBits();
if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() &&
(WidenWidth % MemVTWidth) == 0 &&
isPowerOf2_32(WidenWidth / MemVTWidth) &&
(MemVTWidth <= Width ||
(Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
if (RetVT.getSizeInBits() < MemVTWidth || MemVT == WidenVT)
return MemVT;
}
}
return RetVT;
}
// Builds a vector type from scalar loads
// VecTy: Resulting Vector type
// LDOps: Load operators to build a vector type
// [Start,End) the list of loads to use.
static SDValue BuildVectorFromScalar(SelectionDAG& DAG, EVT VecTy,
SmallVector<SDValue, 16>& LdOps,
unsigned Start, unsigned End) {
DebugLoc dl = LdOps[Start].getDebugLoc();
EVT LdTy = LdOps[Start].getValueType();
unsigned Width = VecTy.getSizeInBits();
unsigned NumElts = Width / LdTy.getSizeInBits();
EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts);
unsigned Idx = 1;
SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]);
for (unsigned i = Start + 1; i != End; ++i) {
EVT NewLdTy = LdOps[i].getValueType();
if (NewLdTy != LdTy) {
NumElts = Width / NewLdTy.getSizeInBits();
NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts);
VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp);
// Readjust position and vector position based on new load type
Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits();
LdTy = NewLdTy;
}
VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i],
DAG.getIntPtrConstant(Idx++));
}
return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp);
}
SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVector<SDValue, 16> &LdChain,
LoadSDNode *LD) {
// The strategy assumes that we can efficiently load powers of two widths.
// The routines chops the vector into the largest vector loads with the same
// element type or scalar loads and then recombines it to the widen vector
// type.
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
unsigned WidenWidth = WidenVT.getSizeInBits();
EVT LdVT = LD->getMemoryVT();
DebugLoc dl = LD->getDebugLoc();
assert(LdVT.isVector() && WidenVT.isVector());
assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
// Load information
SDValue Chain = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
unsigned Align = LD->getAlignment();
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
int LdWidth = LdVT.getSizeInBits();
int WidthDiff = WidenWidth - LdWidth; // Difference
unsigned LdAlign = (isVolatile) ? 0 : Align; // Allow wider loads
// Find the vector type that can load from.
EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
int NewVTWidth = NewVT.getSizeInBits();
SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(),
isVolatile, isNonTemporal, Align);
LdChain.push_back(LdOp.getValue(1));
// Check if we can load the element with one instruction
if (LdWidth <= NewVTWidth) {
if (!NewVT.isVector()) {
unsigned NumElts = WidenWidth / NewVTWidth;
EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp);
}
if (NewVT == WidenVT)
return LdOp;
assert(WidenWidth % NewVTWidth == 0);
unsigned NumConcat = WidenWidth / NewVTWidth;
SmallVector<SDValue, 16> ConcatOps(NumConcat);
SDValue UndefVal = DAG.getUNDEF(NewVT);
ConcatOps[0] = LdOp;
for (unsigned i = 1; i != NumConcat; ++i)
ConcatOps[i] = UndefVal;
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &ConcatOps[0],
NumConcat);
}
// Load vector by using multiple loads from largest vector to scalar
SmallVector<SDValue, 16> LdOps;
LdOps.push_back(LdOp);
LdWidth -= NewVTWidth;
unsigned Offset = 0;
while (LdWidth > 0) {
unsigned Increment = NewVTWidth / 8;
Offset += Increment;
BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
DAG.getIntPtrConstant(Increment));
if (LdWidth < NewVTWidth) {
// Our current type we are using is too large, find a better size
NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
NewVTWidth = NewVT.getSizeInBits();
}
SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr,
LD->getPointerInfo().getWithOffset(Offset),
isVolatile,
isNonTemporal, MinAlign(Align, Increment));
LdChain.push_back(LdOp.getValue(1));
LdOps.push_back(LdOp);
LdWidth -= NewVTWidth;
}
// Build the vector from the loads operations
unsigned End = LdOps.size();
if (!LdOps[0].getValueType().isVector())
// All the loads are scalar loads.
return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End);
// If the load contains vectors, build the vector using concat vector.
// All of the vectors used to loads are power of 2 and the scalars load
// can be combined to make a power of 2 vector.
SmallVector<SDValue, 16> ConcatOps(End);
int i = End - 1;
int Idx = End;
EVT LdTy = LdOps[i].getValueType();
// First combine the scalar loads to a vector
if (!LdTy.isVector()) {
for (--i; i >= 0; --i) {
LdTy = LdOps[i].getValueType();
if (LdTy.isVector())
break;
}
ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i+1, End);
}
ConcatOps[--Idx] = LdOps[i];
for (--i; i >= 0; --i) {
EVT NewLdTy = LdOps[i].getValueType();
if (NewLdTy != LdTy) {
// Create a larger vector
ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy,
&ConcatOps[Idx], End - Idx);
Idx = End - 1;
LdTy = NewLdTy;
}
ConcatOps[--Idx] = LdOps[i];
}
if (WidenWidth == LdTy.getSizeInBits()*(End - Idx))
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
&ConcatOps[Idx], End - Idx);
// We need to fill the rest with undefs to build the vector
unsigned NumOps = WidenWidth / LdTy.getSizeInBits();
SmallVector<SDValue, 16> WidenOps(NumOps);
SDValue UndefVal = DAG.getUNDEF(LdTy);
{
unsigned i = 0;
for (; i != End-Idx; ++i)
WidenOps[i] = ConcatOps[Idx+i];
for (; i != NumOps; ++i)
WidenOps[i] = UndefVal;
}
return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &WidenOps[0],NumOps);
}
SDValue
DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVector<SDValue, 16>& LdChain,
LoadSDNode * LD,
ISD::LoadExtType ExtType) {
// For extension loads, it may not be more efficient to chop up the vector
// and then extended it. Instead, we unroll the load and build a new vector.
EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
EVT LdVT = LD->getMemoryVT();
DebugLoc dl = LD->getDebugLoc();
assert(LdVT.isVector() && WidenVT.isVector());
// Load information
SDValue Chain = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
unsigned Align = LD->getAlignment();
bool isVolatile = LD->isVolatile();
bool isNonTemporal = LD->isNonTemporal();
EVT EltVT = WidenVT.getVectorElementType();
EVT LdEltVT = LdVT.getVectorElementType();
unsigned NumElts = LdVT.getVectorNumElements();
// Load each element and widen
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SmallVector<SDValue, 16> Ops(WidenNumElts);
unsigned Increment = LdEltVT.getSizeInBits() / 8;
Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr,
LD->getPointerInfo(),
LdEltVT, isVolatile, isNonTemporal, Align);
LdChain.push_back(Ops[0].getValue(1));
unsigned i = 0, Offset = Increment;
for (i=1; i < NumElts; ++i, Offset += Increment) {
SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
BasePtr, DAG.getIntPtrConstant(Offset));
Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
isVolatile, isNonTemporal, Align);
LdChain.push_back(Ops[i].getValue(1));
}
// Fill the rest with undefs
SDValue UndefVal = DAG.getUNDEF(EltVT);
for (; i != WidenNumElts; ++i)
Ops[i] = UndefVal;
return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], Ops.size());
}
void DAGTypeLegalizer::GenWidenVectorStores(SmallVector<SDValue, 16>& StChain,
StoreSDNode *ST) {
// The strategy assumes that we can efficiently store powers of two widths.
// The routines chops the vector into the largest vector stores with the same
// element type or scalar stores.
SDValue Chain = ST->getChain();
SDValue BasePtr = ST->getBasePtr();
unsigned Align = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
SDValue ValOp = GetWidenedVector(ST->getValue());
DebugLoc dl = ST->getDebugLoc();
EVT StVT = ST->getMemoryVT();
unsigned StWidth = StVT.getSizeInBits();
EVT ValVT = ValOp.getValueType();
unsigned ValWidth = ValVT.getSizeInBits();
EVT ValEltVT = ValVT.getVectorElementType();
unsigned ValEltWidth = ValEltVT.getSizeInBits();
assert(StVT.getVectorElementType() == ValEltVT);
int Idx = 0; // current index to store
unsigned Offset = 0; // offset from base to store
while (StWidth != 0) {
// Find the largest vector type we can store with
EVT NewVT = FindMemType(DAG, TLI, StWidth, ValVT);
unsigned NewVTWidth = NewVT.getSizeInBits();
unsigned Increment = NewVTWidth / 8;
if (NewVT.isVector()) {
unsigned NumVTElts = NewVT.getVectorNumElements();
do {
SDValue EOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp,
DAG.getIntPtrConstant(Idx));
StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
ST->getPointerInfo().getWithOffset(Offset),
isVolatile, isNonTemporal,
MinAlign(Align, Offset)));
StWidth -= NewVTWidth;
Offset += Increment;
Idx += NumVTElts;
BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
DAG.getIntPtrConstant(Increment));
} while (StWidth != 0 && StWidth >= NewVTWidth);
} else {
// Cast the vector to the scalar type we can store
unsigned NumElts = ValWidth / NewVTWidth;
EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp);
// Readjust index position based on new vector type
Idx = Idx * ValEltWidth / NewVTWidth;
do {
SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp,
DAG.getIntPtrConstant(Idx++));
StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
ST->getPointerInfo().getWithOffset(Offset),
isVolatile, isNonTemporal,
MinAlign(Align, Offset)));
StWidth -= NewVTWidth;
Offset += Increment;
BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
DAG.getIntPtrConstant(Increment));
} while (StWidth != 0 && StWidth >= NewVTWidth);
// Restore index back to be relative to the original widen element type
Idx = Idx * NewVTWidth / ValEltWidth;
}
}
}
void
DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVector<SDValue, 16>& StChain,
StoreSDNode *ST) {
// For extension loads, it may not be more efficient to truncate the vector
// and then store it. Instead, we extract each element and then store it.
SDValue Chain = ST->getChain();
SDValue BasePtr = ST->getBasePtr();
unsigned Align = ST->getAlignment();
bool isVolatile = ST->isVolatile();
bool isNonTemporal = ST->isNonTemporal();
SDValue ValOp = GetWidenedVector(ST->getValue());
DebugLoc dl = ST->getDebugLoc();
EVT StVT = ST->getMemoryVT();
EVT ValVT = ValOp.getValueType();
// It must be true that we the widen vector type is bigger than where
// we need to store.
assert(StVT.isVector() && ValOp.getValueType().isVector());
assert(StVT.bitsLT(ValOp.getValueType()));
// For truncating stores, we can not play the tricks of chopping legal
// vector types and bit cast it to the right type. Instead, we unroll
// the store.
EVT StEltVT = StVT.getVectorElementType();
EVT ValEltVT = ValVT.getVectorElementType();
unsigned Increment = ValEltVT.getSizeInBits() / 8;
unsigned NumElts = StVT.getVectorNumElements();
SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
DAG.getIntPtrConstant(0));
StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr,
ST->getPointerInfo(), StEltVT,
isVolatile, isNonTemporal, Align));
unsigned Offset = Increment;
for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
BasePtr, DAG.getIntPtrConstant(Offset));
SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
DAG.getIntPtrConstant(0));
StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr,
ST->getPointerInfo().getWithOffset(Offset),
StEltVT, isVolatile, isNonTemporal,
MinAlign(Align, Offset)));
}
}
/// Modifies a vector input (widen or narrows) to a vector of NVT. The
/// input vector must have the same element type as NVT.
SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT) {
// Note that InOp might have been widened so it might already have
// the right width or it might need be narrowed.
EVT InVT = InOp.getValueType();
assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
"input and widen element type must match");
DebugLoc dl = InOp.getDebugLoc();
// Check if InOp already has the right width.
if (InVT == NVT)
return InOp;
unsigned InNumElts = InVT.getVectorNumElements();
unsigned WidenNumElts = NVT.getVectorNumElements();
if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
unsigned NumConcat = WidenNumElts / InNumElts;
SmallVector<SDValue, 16> Ops(NumConcat);
SDValue UndefVal = DAG.getUNDEF(InVT);
Ops[0] = InOp;
for (unsigned i = 1; i != NumConcat; ++i)
Ops[i] = UndefVal;
return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, &Ops[0], NumConcat);
}
if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
DAG.getIntPtrConstant(0));
// Fall back to extract and build.
SmallVector<SDValue, 16> Ops(WidenNumElts);
EVT EltVT = NVT.getVectorElementType();
unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
unsigned Idx;
for (Idx = 0; Idx < MinNumElts; ++Idx)
Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
DAG.getIntPtrConstant(Idx));
SDValue UndefVal = DAG.getUNDEF(EltVT);
for ( ; Idx < WidenNumElts; ++Idx)
Ops[Idx] = UndefVal;
return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &Ops[0], WidenNumElts);
}