blob: 21df57c9cdaf3d4a4c3cea467d70c433c47e35ba [file] [log] [blame]
//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "X86InstrInfo.h"
#include "X86.h"
#include "X86GenInstrInfo.inc"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/DerivedTypes.h"
#include "llvm/LLVMContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/MC/MCAsmInfo.h"
#include <limits>
using namespace llvm;
static cl::opt<bool>
NoFusing("disable-spill-fusing",
cl::desc("Disable fusing of spill code into instructions"));
static cl::opt<bool>
PrintFailedFusing("print-failed-fuse-candidates",
cl::desc("Print instructions that the allocator wants to"
" fuse, but the X86 backend currently can't"),
cl::Hidden);
static cl::opt<bool>
ReMatPICStubLoad("remat-pic-stub-load",
cl::desc("Re-materialize load from stub in PIC mode"),
cl::init(false), cl::Hidden);
X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
: TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
TM(tm), RI(tm, *this) {
enum {
TB_NOT_REVERSABLE = 1U << 31,
TB_FLAGS = TB_NOT_REVERSABLE
};
static const unsigned OpTbl2Addr[][2] = {
{ X86::ADC32ri, X86::ADC32mi },
{ X86::ADC32ri8, X86::ADC32mi8 },
{ X86::ADC32rr, X86::ADC32mr },
{ X86::ADC64ri32, X86::ADC64mi32 },
{ X86::ADC64ri8, X86::ADC64mi8 },
{ X86::ADC64rr, X86::ADC64mr },
{ X86::ADD16ri, X86::ADD16mi },
{ X86::ADD16ri8, X86::ADD16mi8 },
{ X86::ADD16ri_DB, X86::ADD16mi | TB_NOT_REVERSABLE },
{ X86::ADD16ri8_DB, X86::ADD16mi8 | TB_NOT_REVERSABLE },
{ X86::ADD16rr, X86::ADD16mr },
{ X86::ADD16rr_DB, X86::ADD16mr | TB_NOT_REVERSABLE },
{ X86::ADD32ri, X86::ADD32mi },
{ X86::ADD32ri8, X86::ADD32mi8 },
{ X86::ADD32ri_DB, X86::ADD32mi | TB_NOT_REVERSABLE },
{ X86::ADD32ri8_DB, X86::ADD32mi8 | TB_NOT_REVERSABLE },
{ X86::ADD32rr, X86::ADD32mr },
{ X86::ADD32rr_DB, X86::ADD32mr | TB_NOT_REVERSABLE },
{ X86::ADD64ri32, X86::ADD64mi32 },
{ X86::ADD64ri8, X86::ADD64mi8 },
{ X86::ADD64ri32_DB,X86::ADD64mi32 | TB_NOT_REVERSABLE },
{ X86::ADD64ri8_DB, X86::ADD64mi8 | TB_NOT_REVERSABLE },
{ X86::ADD64rr, X86::ADD64mr },
{ X86::ADD64rr_DB, X86::ADD64mr | TB_NOT_REVERSABLE },
{ X86::ADD8ri, X86::ADD8mi },
{ X86::ADD8rr, X86::ADD8mr },
{ X86::AND16ri, X86::AND16mi },
{ X86::AND16ri8, X86::AND16mi8 },
{ X86::AND16rr, X86::AND16mr },
{ X86::AND32ri, X86::AND32mi },
{ X86::AND32ri8, X86::AND32mi8 },
{ X86::AND32rr, X86::AND32mr },
{ X86::AND64ri32, X86::AND64mi32 },
{ X86::AND64ri8, X86::AND64mi8 },
{ X86::AND64rr, X86::AND64mr },
{ X86::AND8ri, X86::AND8mi },
{ X86::AND8rr, X86::AND8mr },
{ X86::DEC16r, X86::DEC16m },
{ X86::DEC32r, X86::DEC32m },
{ X86::DEC64_16r, X86::DEC64_16m },
{ X86::DEC64_32r, X86::DEC64_32m },
{ X86::DEC64r, X86::DEC64m },
{ X86::DEC8r, X86::DEC8m },
{ X86::INC16r, X86::INC16m },
{ X86::INC32r, X86::INC32m },
{ X86::INC64_16r, X86::INC64_16m },
{ X86::INC64_32r, X86::INC64_32m },
{ X86::INC64r, X86::INC64m },
{ X86::INC8r, X86::INC8m },
{ X86::NEG16r, X86::NEG16m },
{ X86::NEG32r, X86::NEG32m },
{ X86::NEG64r, X86::NEG64m },
{ X86::NEG8r, X86::NEG8m },
{ X86::NOT16r, X86::NOT16m },
{ X86::NOT32r, X86::NOT32m },
{ X86::NOT64r, X86::NOT64m },
{ X86::NOT8r, X86::NOT8m },
{ X86::OR16ri, X86::OR16mi },
{ X86::OR16ri8, X86::OR16mi8 },
{ X86::OR16rr, X86::OR16mr },
{ X86::OR32ri, X86::OR32mi },
{ X86::OR32ri8, X86::OR32mi8 },
{ X86::OR32rr, X86::OR32mr },
{ X86::OR64ri32, X86::OR64mi32 },
{ X86::OR64ri8, X86::OR64mi8 },
{ X86::OR64rr, X86::OR64mr },
{ X86::OR8ri, X86::OR8mi },
{ X86::OR8rr, X86::OR8mr },
{ X86::ROL16r1, X86::ROL16m1 },
{ X86::ROL16rCL, X86::ROL16mCL },
{ X86::ROL16ri, X86::ROL16mi },
{ X86::ROL32r1, X86::ROL32m1 },
{ X86::ROL32rCL, X86::ROL32mCL },
{ X86::ROL32ri, X86::ROL32mi },
{ X86::ROL64r1, X86::ROL64m1 },
{ X86::ROL64rCL, X86::ROL64mCL },
{ X86::ROL64ri, X86::ROL64mi },
{ X86::ROL8r1, X86::ROL8m1 },
{ X86::ROL8rCL, X86::ROL8mCL },
{ X86::ROL8ri, X86::ROL8mi },
{ X86::ROR16r1, X86::ROR16m1 },
{ X86::ROR16rCL, X86::ROR16mCL },
{ X86::ROR16ri, X86::ROR16mi },
{ X86::ROR32r1, X86::ROR32m1 },
{ X86::ROR32rCL, X86::ROR32mCL },
{ X86::ROR32ri, X86::ROR32mi },
{ X86::ROR64r1, X86::ROR64m1 },
{ X86::ROR64rCL, X86::ROR64mCL },
{ X86::ROR64ri, X86::ROR64mi },
{ X86::ROR8r1, X86::ROR8m1 },
{ X86::ROR8rCL, X86::ROR8mCL },
{ X86::ROR8ri, X86::ROR8mi },
{ X86::SAR16r1, X86::SAR16m1 },
{ X86::SAR16rCL, X86::SAR16mCL },
{ X86::SAR16ri, X86::SAR16mi },
{ X86::SAR32r1, X86::SAR32m1 },
{ X86::SAR32rCL, X86::SAR32mCL },
{ X86::SAR32ri, X86::SAR32mi },
{ X86::SAR64r1, X86::SAR64m1 },
{ X86::SAR64rCL, X86::SAR64mCL },
{ X86::SAR64ri, X86::SAR64mi },
{ X86::SAR8r1, X86::SAR8m1 },
{ X86::SAR8rCL, X86::SAR8mCL },
{ X86::SAR8ri, X86::SAR8mi },
{ X86::SBB32ri, X86::SBB32mi },
{ X86::SBB32ri8, X86::SBB32mi8 },
{ X86::SBB32rr, X86::SBB32mr },
{ X86::SBB64ri32, X86::SBB64mi32 },
{ X86::SBB64ri8, X86::SBB64mi8 },
{ X86::SBB64rr, X86::SBB64mr },
{ X86::SHL16rCL, X86::SHL16mCL },
{ X86::SHL16ri, X86::SHL16mi },
{ X86::SHL32rCL, X86::SHL32mCL },
{ X86::SHL32ri, X86::SHL32mi },
{ X86::SHL64rCL, X86::SHL64mCL },
{ X86::SHL64ri, X86::SHL64mi },
{ X86::SHL8rCL, X86::SHL8mCL },
{ X86::SHL8ri, X86::SHL8mi },
{ X86::SHLD16rrCL, X86::SHLD16mrCL },
{ X86::SHLD16rri8, X86::SHLD16mri8 },
{ X86::SHLD32rrCL, X86::SHLD32mrCL },
{ X86::SHLD32rri8, X86::SHLD32mri8 },
{ X86::SHLD64rrCL, X86::SHLD64mrCL },
{ X86::SHLD64rri8, X86::SHLD64mri8 },
{ X86::SHR16r1, X86::SHR16m1 },
{ X86::SHR16rCL, X86::SHR16mCL },
{ X86::SHR16ri, X86::SHR16mi },
{ X86::SHR32r1, X86::SHR32m1 },
{ X86::SHR32rCL, X86::SHR32mCL },
{ X86::SHR32ri, X86::SHR32mi },
{ X86::SHR64r1, X86::SHR64m1 },
{ X86::SHR64rCL, X86::SHR64mCL },
{ X86::SHR64ri, X86::SHR64mi },
{ X86::SHR8r1, X86::SHR8m1 },
{ X86::SHR8rCL, X86::SHR8mCL },
{ X86::SHR8ri, X86::SHR8mi },
{ X86::SHRD16rrCL, X86::SHRD16mrCL },
{ X86::SHRD16rri8, X86::SHRD16mri8 },
{ X86::SHRD32rrCL, X86::SHRD32mrCL },
{ X86::SHRD32rri8, X86::SHRD32mri8 },
{ X86::SHRD64rrCL, X86::SHRD64mrCL },
{ X86::SHRD64rri8, X86::SHRD64mri8 },
{ X86::SUB16ri, X86::SUB16mi },
{ X86::SUB16ri8, X86::SUB16mi8 },
{ X86::SUB16rr, X86::SUB16mr },
{ X86::SUB32ri, X86::SUB32mi },
{ X86::SUB32ri8, X86::SUB32mi8 },
{ X86::SUB32rr, X86::SUB32mr },
{ X86::SUB64ri32, X86::SUB64mi32 },
{ X86::SUB64ri8, X86::SUB64mi8 },
{ X86::SUB64rr, X86::SUB64mr },
{ X86::SUB8ri, X86::SUB8mi },
{ X86::SUB8rr, X86::SUB8mr },
{ X86::XOR16ri, X86::XOR16mi },
{ X86::XOR16ri8, X86::XOR16mi8 },
{ X86::XOR16rr, X86::XOR16mr },
{ X86::XOR32ri, X86::XOR32mi },
{ X86::XOR32ri8, X86::XOR32mi8 },
{ X86::XOR32rr, X86::XOR32mr },
{ X86::XOR64ri32, X86::XOR64mi32 },
{ X86::XOR64ri8, X86::XOR64mi8 },
{ X86::XOR64rr, X86::XOR64mr },
{ X86::XOR8ri, X86::XOR8mi },
{ X86::XOR8rr, X86::XOR8mr }
};
for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
unsigned RegOp = OpTbl2Addr[i][0];
unsigned MemOp = OpTbl2Addr[i][1] & ~TB_FLAGS;
assert(!RegOp2MemOpTable2Addr.count(RegOp) && "Duplicated entries?");
RegOp2MemOpTable2Addr[RegOp] = std::make_pair(MemOp, 0U);
// If this is not a reversable operation (because there is a many->one)
// mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
if (OpTbl2Addr[i][1] & TB_NOT_REVERSABLE)
continue;
// Index 0, folded load and store, no alignment requirement.
unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
assert(!MemOp2RegOpTable.count(MemOp) &&
"Duplicated entries in unfolding maps?");
MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
}
// If the third value is 1, then it's folding either a load or a store.
static const unsigned OpTbl0[][4] = {
{ X86::BT16ri8, X86::BT16mi8, 1, 0 },
{ X86::BT32ri8, X86::BT32mi8, 1, 0 },
{ X86::BT64ri8, X86::BT64mi8, 1, 0 },
{ X86::CALL32r, X86::CALL32m, 1, 0 },
{ X86::CALL64r, X86::CALL64m, 1, 0 },
{ X86::WINCALL64r, X86::WINCALL64m, 1, 0 },
{ X86::CMP16ri, X86::CMP16mi, 1, 0 },
{ X86::CMP16ri8, X86::CMP16mi8, 1, 0 },
{ X86::CMP16rr, X86::CMP16mr, 1, 0 },
{ X86::CMP32ri, X86::CMP32mi, 1, 0 },
{ X86::CMP32ri8, X86::CMP32mi8, 1, 0 },
{ X86::CMP32rr, X86::CMP32mr, 1, 0 },
{ X86::CMP64ri32, X86::CMP64mi32, 1, 0 },
{ X86::CMP64ri8, X86::CMP64mi8, 1, 0 },
{ X86::CMP64rr, X86::CMP64mr, 1, 0 },
{ X86::CMP8ri, X86::CMP8mi, 1, 0 },
{ X86::CMP8rr, X86::CMP8mr, 1, 0 },
{ X86::DIV16r, X86::DIV16m, 1, 0 },
{ X86::DIV32r, X86::DIV32m, 1, 0 },
{ X86::DIV64r, X86::DIV64m, 1, 0 },
{ X86::DIV8r, X86::DIV8m, 1, 0 },
{ X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
{ X86::FsMOVAPDrr, X86::MOVSDmr | TB_NOT_REVERSABLE , 0, 0 },
{ X86::FsMOVAPSrr, X86::MOVSSmr | TB_NOT_REVERSABLE , 0, 0 },
{ X86::IDIV16r, X86::IDIV16m, 1, 0 },
{ X86::IDIV32r, X86::IDIV32m, 1, 0 },
{ X86::IDIV64r, X86::IDIV64m, 1, 0 },
{ X86::IDIV8r, X86::IDIV8m, 1, 0 },
{ X86::IMUL16r, X86::IMUL16m, 1, 0 },
{ X86::IMUL32r, X86::IMUL32m, 1, 0 },
{ X86::IMUL64r, X86::IMUL64m, 1, 0 },
{ X86::IMUL8r, X86::IMUL8m, 1, 0 },
{ X86::JMP32r, X86::JMP32m, 1, 0 },
{ X86::JMP64r, X86::JMP64m, 1, 0 },
{ X86::MOV16ri, X86::MOV16mi, 0, 0 },
{ X86::MOV16rr, X86::MOV16mr, 0, 0 },
{ X86::MOV32ri, X86::MOV32mi, 0, 0 },
{ X86::MOV32rr, X86::MOV32mr, 0, 0 },
{ X86::MOV64ri32, X86::MOV64mi32, 0, 0 },
{ X86::MOV64rr, X86::MOV64mr, 0, 0 },
{ X86::MOV8ri, X86::MOV8mi, 0, 0 },
{ X86::MOV8rr, X86::MOV8mr, 0, 0 },
{ X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
{ X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 },
{ X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 },
{ X86::MOVDQArr, X86::MOVDQAmr, 0, 16 },
{ X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
{ X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
{ X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
{ X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 },
{ X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 },
{ X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 },
{ X86::MUL16r, X86::MUL16m, 1, 0 },
{ X86::MUL32r, X86::MUL32m, 1, 0 },
{ X86::MUL64r, X86::MUL64m, 1, 0 },
{ X86::MUL8r, X86::MUL8m, 1, 0 },
{ X86::SETAEr, X86::SETAEm, 0, 0 },
{ X86::SETAr, X86::SETAm, 0, 0 },
{ X86::SETBEr, X86::SETBEm, 0, 0 },
{ X86::SETBr, X86::SETBm, 0, 0 },
{ X86::SETEr, X86::SETEm, 0, 0 },
{ X86::SETGEr, X86::SETGEm, 0, 0 },
{ X86::SETGr, X86::SETGm, 0, 0 },
{ X86::SETLEr, X86::SETLEm, 0, 0 },
{ X86::SETLr, X86::SETLm, 0, 0 },
{ X86::SETNEr, X86::SETNEm, 0, 0 },
{ X86::SETNOr, X86::SETNOm, 0, 0 },
{ X86::SETNPr, X86::SETNPm, 0, 0 },
{ X86::SETNSr, X86::SETNSm, 0, 0 },
{ X86::SETOr, X86::SETOm, 0, 0 },
{ X86::SETPr, X86::SETPm, 0, 0 },
{ X86::SETSr, X86::SETSm, 0, 0 },
{ X86::TAILJMPr, X86::TAILJMPm, 1, 0 },
{ X86::TAILJMPr64, X86::TAILJMPm64, 1, 0 },
{ X86::TEST16ri, X86::TEST16mi, 1, 0 },
{ X86::TEST32ri, X86::TEST32mi, 1, 0 },
{ X86::TEST64ri32, X86::TEST64mi32, 1, 0 },
{ X86::TEST8ri, X86::TEST8mi, 1, 0 }
};
for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
unsigned RegOp = OpTbl0[i][0];
unsigned MemOp = OpTbl0[i][1] & ~TB_FLAGS;
unsigned FoldedLoad = OpTbl0[i][2];
unsigned Align = OpTbl0[i][3];
assert(!RegOp2MemOpTable0.count(RegOp) && "Duplicated entries?");
RegOp2MemOpTable0[RegOp] = std::make_pair(MemOp, Align);
// If this is not a reversable operation (because there is a many->one)
// mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
if (OpTbl0[i][1] & TB_NOT_REVERSABLE)
continue;
// Index 0, folded load or store.
unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
assert(!MemOp2RegOpTable.count(MemOp) && "Duplicated entries?");
MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
}
static const unsigned OpTbl1[][3] = {
{ X86::CMP16rr, X86::CMP16rm, 0 },
{ X86::CMP32rr, X86::CMP32rm, 0 },
{ X86::CMP64rr, X86::CMP64rm, 0 },
{ X86::CMP8rr, X86::CMP8rm, 0 },
{ X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
{ X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
{ X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
{ X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
{ X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
{ X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
{ X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
{ X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
{ X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
{ X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
{ X86::FsMOVAPDrr, X86::MOVSDrm | TB_NOT_REVERSABLE , 0 },
{ X86::FsMOVAPSrr, X86::MOVSSrm | TB_NOT_REVERSABLE , 0 },
{ X86::IMUL16rri, X86::IMUL16rmi, 0 },
{ X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
{ X86::IMUL32rri, X86::IMUL32rmi, 0 },
{ X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
{ X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
{ X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
{ X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
{ X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
{ X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 },
{ X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 },
{ X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 },
{ X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 },
{ X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 },
{ X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
{ X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
{ X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
{ X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
{ X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
{ X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
{ X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
{ X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
{ X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
{ X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
{ X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 },
{ X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, 16 },
{ X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, 16 },
{ X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
{ X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
{ X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
{ X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
{ X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
{ X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
{ X86::MOV16rr, X86::MOV16rm, 0 },
{ X86::MOV32rr, X86::MOV32rm, 0 },
{ X86::MOV64rr, X86::MOV64rm, 0 },
{ X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
{ X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
{ X86::MOV8rr, X86::MOV8rm, 0 },
{ X86::MOVAPDrr, X86::MOVAPDrm, 16 },
{ X86::MOVAPSrr, X86::MOVAPSrm, 16 },
{ X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
{ X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
{ X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
{ X86::MOVDQArr, X86::MOVDQArm, 16 },
{ X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 },
{ X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 },
{ X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
{ X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
{ X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
{ X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
{ X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
{ X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
{ X86::MOVUPDrr, X86::MOVUPDrm, 16 },
{ X86::MOVUPSrr, X86::MOVUPSrm, 0 },
{ X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
{ X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
{ X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
{ X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
{ X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
{ X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
{ X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
{ X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
{ X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
{ X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
{ X86::PSHUFDri, X86::PSHUFDmi, 16 },
{ X86::PSHUFHWri, X86::PSHUFHWmi, 16 },
{ X86::PSHUFLWri, X86::PSHUFLWmi, 16 },
{ X86::RCPPSr, X86::RCPPSm, 16 },
{ X86::RCPPSr_Int, X86::RCPPSm_Int, 16 },
{ X86::RSQRTPSr, X86::RSQRTPSm, 16 },
{ X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 },
{ X86::RSQRTSSr, X86::RSQRTSSm, 0 },
{ X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
{ X86::SQRTPDr, X86::SQRTPDm, 16 },
{ X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 },
{ X86::SQRTPSr, X86::SQRTPSm, 16 },
{ X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 },
{ X86::SQRTSDr, X86::SQRTSDm, 0 },
{ X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
{ X86::SQRTSSr, X86::SQRTSSm, 0 },
{ X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
{ X86::TEST16rr, X86::TEST16rm, 0 },
{ X86::TEST32rr, X86::TEST32rm, 0 },
{ X86::TEST64rr, X86::TEST64rm, 0 },
{ X86::TEST8rr, X86::TEST8rm, 0 },
// FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
{ X86::UCOMISDrr, X86::UCOMISDrm, 0 },
{ X86::UCOMISSrr, X86::UCOMISSrm, 0 }
};
for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
unsigned RegOp = OpTbl1[i][0];
unsigned MemOp = OpTbl1[i][1] & ~TB_FLAGS;
unsigned Align = OpTbl1[i][2];
assert(!RegOp2MemOpTable1.count(RegOp) && "Duplicate entries");
RegOp2MemOpTable1[RegOp] = std::make_pair(MemOp, Align);
// If this is not a reversable operation (because there is a many->one)
// mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
if (OpTbl1[i][1] & TB_NOT_REVERSABLE)
continue;
// Index 1, folded load
unsigned AuxInfo = 1 | (1 << 4);
assert(!MemOp2RegOpTable.count(MemOp) && "Duplicate entries");
MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
}
static const unsigned OpTbl2[][3] = {
{ X86::ADC32rr, X86::ADC32rm, 0 },
{ X86::ADC64rr, X86::ADC64rm, 0 },
{ X86::ADD16rr, X86::ADD16rm, 0 },
{ X86::ADD16rr_DB, X86::ADD16rm | TB_NOT_REVERSABLE, 0 },
{ X86::ADD32rr, X86::ADD32rm, 0 },
{ X86::ADD32rr_DB, X86::ADD32rm | TB_NOT_REVERSABLE, 0 },
{ X86::ADD64rr, X86::ADD64rm, 0 },
{ X86::ADD64rr_DB, X86::ADD64rm | TB_NOT_REVERSABLE, 0 },
{ X86::ADD8rr, X86::ADD8rm, 0 },
{ X86::ADDPDrr, X86::ADDPDrm, 16 },
{ X86::ADDPSrr, X86::ADDPSrm, 16 },
{ X86::ADDSDrr, X86::ADDSDrm, 0 },
{ X86::ADDSSrr, X86::ADDSSrm, 0 },
{ X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 },
{ X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 },
{ X86::AND16rr, X86::AND16rm, 0 },
{ X86::AND32rr, X86::AND32rm, 0 },
{ X86::AND64rr, X86::AND64rm, 0 },
{ X86::AND8rr, X86::AND8rm, 0 },
{ X86::ANDNPDrr, X86::ANDNPDrm, 16 },
{ X86::ANDNPSrr, X86::ANDNPSrm, 16 },
{ X86::ANDPDrr, X86::ANDPDrm, 16 },
{ X86::ANDPSrr, X86::ANDPSrm, 16 },
{ X86::CMOVA16rr, X86::CMOVA16rm, 0 },
{ X86::CMOVA32rr, X86::CMOVA32rm, 0 },
{ X86::CMOVA64rr, X86::CMOVA64rm, 0 },
{ X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
{ X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
{ X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
{ X86::CMOVB16rr, X86::CMOVB16rm, 0 },
{ X86::CMOVB32rr, X86::CMOVB32rm, 0 },
{ X86::CMOVB64rr, X86::CMOVB64rm, 0 },
{ X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
{ X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
{ X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
{ X86::CMOVE16rr, X86::CMOVE16rm, 0 },
{ X86::CMOVE32rr, X86::CMOVE32rm, 0 },
{ X86::CMOVE64rr, X86::CMOVE64rm, 0 },
{ X86::CMOVG16rr, X86::CMOVG16rm, 0 },
{ X86::CMOVG32rr, X86::CMOVG32rm, 0 },
{ X86::CMOVG64rr, X86::CMOVG64rm, 0 },
{ X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
{ X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
{ X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
{ X86::CMOVL16rr, X86::CMOVL16rm, 0 },
{ X86::CMOVL32rr, X86::CMOVL32rm, 0 },
{ X86::CMOVL64rr, X86::CMOVL64rm, 0 },
{ X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
{ X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
{ X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
{ X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
{ X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
{ X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
{ X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
{ X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
{ X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
{ X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
{ X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
{ X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
{ X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
{ X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
{ X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
{ X86::CMOVO16rr, X86::CMOVO16rm, 0 },
{ X86::CMOVO32rr, X86::CMOVO32rm, 0 },
{ X86::CMOVO64rr, X86::CMOVO64rm, 0 },
{ X86::CMOVP16rr, X86::CMOVP16rm, 0 },
{ X86::CMOVP32rr, X86::CMOVP32rm, 0 },
{ X86::CMOVP64rr, X86::CMOVP64rm, 0 },
{ X86::CMOVS16rr, X86::CMOVS16rm, 0 },
{ X86::CMOVS32rr, X86::CMOVS32rm, 0 },
{ X86::CMOVS64rr, X86::CMOVS64rm, 0 },
{ X86::CMPPDrri, X86::CMPPDrmi, 16 },
{ X86::CMPPSrri, X86::CMPPSrmi, 16 },
{ X86::CMPSDrr, X86::CMPSDrm, 0 },
{ X86::CMPSSrr, X86::CMPSSrm, 0 },
{ X86::DIVPDrr, X86::DIVPDrm, 16 },
{ X86::DIVPSrr, X86::DIVPSrm, 16 },
{ X86::DIVSDrr, X86::DIVSDrm, 0 },
{ X86::DIVSSrr, X86::DIVSSrm, 0 },
{ X86::FsANDNPDrr, X86::FsANDNPDrm, 16 },
{ X86::FsANDNPSrr, X86::FsANDNPSrm, 16 },
{ X86::FsANDPDrr, X86::FsANDPDrm, 16 },
{ X86::FsANDPSrr, X86::FsANDPSrm, 16 },
{ X86::FsORPDrr, X86::FsORPDrm, 16 },
{ X86::FsORPSrr, X86::FsORPSrm, 16 },
{ X86::FsXORPDrr, X86::FsXORPDrm, 16 },
{ X86::FsXORPSrr, X86::FsXORPSrm, 16 },
{ X86::HADDPDrr, X86::HADDPDrm, 16 },
{ X86::HADDPSrr, X86::HADDPSrm, 16 },
{ X86::HSUBPDrr, X86::HSUBPDrm, 16 },
{ X86::HSUBPSrr, X86::HSUBPSrm, 16 },
{ X86::IMUL16rr, X86::IMUL16rm, 0 },
{ X86::IMUL32rr, X86::IMUL32rm, 0 },
{ X86::IMUL64rr, X86::IMUL64rm, 0 },
{ X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
{ X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
{ X86::MAXPDrr, X86::MAXPDrm, 16 },
{ X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 },
{ X86::MAXPSrr, X86::MAXPSrm, 16 },
{ X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 },
{ X86::MAXSDrr, X86::MAXSDrm, 0 },
{ X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
{ X86::MAXSSrr, X86::MAXSSrm, 0 },
{ X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
{ X86::MINPDrr, X86::MINPDrm, 16 },
{ X86::MINPDrr_Int, X86::MINPDrm_Int, 16 },
{ X86::MINPSrr, X86::MINPSrm, 16 },
{ X86::MINPSrr_Int, X86::MINPSrm_Int, 16 },
{ X86::MINSDrr, X86::MINSDrm, 0 },
{ X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
{ X86::MINSSrr, X86::MINSSrm, 0 },
{ X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
{ X86::MULPDrr, X86::MULPDrm, 16 },
{ X86::MULPSrr, X86::MULPSrm, 16 },
{ X86::MULSDrr, X86::MULSDrm, 0 },
{ X86::MULSSrr, X86::MULSSrm, 0 },
{ X86::OR16rr, X86::OR16rm, 0 },
{ X86::OR32rr, X86::OR32rm, 0 },
{ X86::OR64rr, X86::OR64rm, 0 },
{ X86::OR8rr, X86::OR8rm, 0 },
{ X86::ORPDrr, X86::ORPDrm, 16 },
{ X86::ORPSrr, X86::ORPSrm, 16 },
{ X86::PACKSSDWrr, X86::PACKSSDWrm, 16 },
{ X86::PACKSSWBrr, X86::PACKSSWBrm, 16 },
{ X86::PACKUSWBrr, X86::PACKUSWBrm, 16 },
{ X86::PADDBrr, X86::PADDBrm, 16 },
{ X86::PADDDrr, X86::PADDDrm, 16 },
{ X86::PADDQrr, X86::PADDQrm, 16 },
{ X86::PADDSBrr, X86::PADDSBrm, 16 },
{ X86::PADDSWrr, X86::PADDSWrm, 16 },
{ X86::PADDWrr, X86::PADDWrm, 16 },
{ X86::PANDNrr, X86::PANDNrm, 16 },
{ X86::PANDrr, X86::PANDrm, 16 },
{ X86::PAVGBrr, X86::PAVGBrm, 16 },
{ X86::PAVGWrr, X86::PAVGWrm, 16 },
{ X86::PCMPEQBrr, X86::PCMPEQBrm, 16 },
{ X86::PCMPEQDrr, X86::PCMPEQDrm, 16 },
{ X86::PCMPEQWrr, X86::PCMPEQWrm, 16 },
{ X86::PCMPGTBrr, X86::PCMPGTBrm, 16 },
{ X86::PCMPGTDrr, X86::PCMPGTDrm, 16 },
{ X86::PCMPGTWrr, X86::PCMPGTWrm, 16 },
{ X86::PINSRWrri, X86::PINSRWrmi, 16 },
{ X86::PMADDWDrr, X86::PMADDWDrm, 16 },
{ X86::PMAXSWrr, X86::PMAXSWrm, 16 },
{ X86::PMAXUBrr, X86::PMAXUBrm, 16 },
{ X86::PMINSWrr, X86::PMINSWrm, 16 },
{ X86::PMINUBrr, X86::PMINUBrm, 16 },
{ X86::PMULDQrr, X86::PMULDQrm, 16 },
{ X86::PMULHUWrr, X86::PMULHUWrm, 16 },
{ X86::PMULHWrr, X86::PMULHWrm, 16 },
{ X86::PMULLDrr, X86::PMULLDrm, 16 },
{ X86::PMULLWrr, X86::PMULLWrm, 16 },
{ X86::PMULUDQrr, X86::PMULUDQrm, 16 },
{ X86::PORrr, X86::PORrm, 16 },
{ X86::PSADBWrr, X86::PSADBWrm, 16 },
{ X86::PSLLDrr, X86::PSLLDrm, 16 },
{ X86::PSLLQrr, X86::PSLLQrm, 16 },
{ X86::PSLLWrr, X86::PSLLWrm, 16 },
{ X86::PSRADrr, X86::PSRADrm, 16 },
{ X86::PSRAWrr, X86::PSRAWrm, 16 },
{ X86::PSRLDrr, X86::PSRLDrm, 16 },
{ X86::PSRLQrr, X86::PSRLQrm, 16 },
{ X86::PSRLWrr, X86::PSRLWrm, 16 },
{ X86::PSUBBrr, X86::PSUBBrm, 16 },
{ X86::PSUBDrr, X86::PSUBDrm, 16 },
{ X86::PSUBSBrr, X86::PSUBSBrm, 16 },
{ X86::PSUBSWrr, X86::PSUBSWrm, 16 },
{ X86::PSUBWrr, X86::PSUBWrm, 16 },
{ X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 },
{ X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 },
{ X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 },
{ X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 },
{ X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 },
{ X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 },
{ X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 },
{ X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 },
{ X86::PXORrr, X86::PXORrm, 16 },
{ X86::SBB32rr, X86::SBB32rm, 0 },
{ X86::SBB64rr, X86::SBB64rm, 0 },
{ X86::SHUFPDrri, X86::SHUFPDrmi, 16 },
{ X86::SHUFPSrri, X86::SHUFPSrmi, 16 },
{ X86::SUB16rr, X86::SUB16rm, 0 },
{ X86::SUB32rr, X86::SUB32rm, 0 },
{ X86::SUB64rr, X86::SUB64rm, 0 },
{ X86::SUB8rr, X86::SUB8rm, 0 },
{ X86::SUBPDrr, X86::SUBPDrm, 16 },
{ X86::SUBPSrr, X86::SUBPSrm, 16 },
{ X86::SUBSDrr, X86::SUBSDrm, 0 },
{ X86::SUBSSrr, X86::SUBSSrm, 0 },
// FIXME: TEST*rr -> swapped operand of TEST*mr.
{ X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 },
{ X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 },
{ X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 },
{ X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 },
{ X86::XOR16rr, X86::XOR16rm, 0 },
{ X86::XOR32rr, X86::XOR32rm, 0 },
{ X86::XOR64rr, X86::XOR64rm, 0 },
{ X86::XOR8rr, X86::XOR8rm, 0 },
{ X86::XORPDrr, X86::XORPDrm, 16 },
{ X86::XORPSrr, X86::XORPSrm, 16 }
};
for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
unsigned RegOp = OpTbl2[i][0];
unsigned MemOp = OpTbl2[i][1] & ~TB_FLAGS;
unsigned Align = OpTbl2[i][2];
assert(!RegOp2MemOpTable2.count(RegOp) && "Duplicate entry!");
RegOp2MemOpTable2[RegOp] = std::make_pair(MemOp, Align);
// If this is not a reversable operation (because there is a many->one)
// mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
if (OpTbl2[i][1] & TB_NOT_REVERSABLE)
continue;
// Index 2, folded load
unsigned AuxInfo = 2 | (1 << 4);
assert(!MemOp2RegOpTable.count(MemOp) &&
"Duplicated entries in unfolding maps?");
MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
}
}
bool
X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const {
switch (MI.getOpcode()) {
default: break;
case X86::MOVSX16rr8:
case X86::MOVZX16rr8:
case X86::MOVSX32rr8:
case X86::MOVZX32rr8:
case X86::MOVSX64rr8:
case X86::MOVZX64rr8:
if (!TM.getSubtarget<X86Subtarget>().is64Bit())
// It's not always legal to reference the low 8-bit of the larger
// register in 32-bit mode.
return false;
case X86::MOVSX32rr16:
case X86::MOVZX32rr16:
case X86::MOVSX64rr16:
case X86::MOVZX64rr16:
case X86::MOVSX64rr32:
case X86::MOVZX64rr32: {
if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
// Be conservative.
return false;
SrcReg = MI.getOperand(1).getReg();
DstReg = MI.getOperand(0).getReg();
switch (MI.getOpcode()) {
default:
llvm_unreachable(0);
break;
case X86::MOVSX16rr8:
case X86::MOVZX16rr8:
case X86::MOVSX32rr8:
case X86::MOVZX32rr8:
case X86::MOVSX64rr8:
case X86::MOVZX64rr8:
SubIdx = X86::sub_8bit;
break;
case X86::MOVSX32rr16:
case X86::MOVZX32rr16:
case X86::MOVSX64rr16:
case X86::MOVZX64rr16:
SubIdx = X86::sub_16bit;
break;
case X86::MOVSX64rr32:
case X86::MOVZX64rr32:
SubIdx = X86::sub_32bit;
break;
}
return true;
}
}
return false;
}
/// isFrameOperand - Return true and the FrameIndex if the specified
/// operand and follow operands form a reference to the stack frame.
bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
int &FrameIndex) const {
if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
MI->getOperand(Op+1).getImm() == 1 &&
MI->getOperand(Op+2).getReg() == 0 &&
MI->getOperand(Op+3).getImm() == 0) {
FrameIndex = MI->getOperand(Op).getIndex();
return true;
}
return false;
}
static bool isFrameLoadOpcode(int Opcode) {
switch (Opcode) {
default: break;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp64m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MOVAPSrm:
case X86::MOVAPDrm:
case X86::MOVDQArm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
return true;
break;
}
return false;
}
static bool isFrameStoreOpcode(int Opcode) {
switch (Opcode) {
default: break;
case X86::MOV8mr:
case X86::MOV16mr:
case X86::MOV32mr:
case X86::MOV64mr:
case X86::ST_FpP64m:
case X86::MOVSSmr:
case X86::MOVSDmr:
case X86::MOVAPSmr:
case X86::MOVAPDmr:
case X86::MOVDQAmr:
case X86::MMX_MOVD64mr:
case X86::MMX_MOVQ64mr:
case X86::MMX_MOVNTQmr:
return true;
}
return false;
}
unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
if (isFrameLoadOpcode(MI->getOpcode()))
if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
return MI->getOperand(0).getReg();
return 0;
}
unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
if (isFrameLoadOpcode(MI->getOpcode())) {
unsigned Reg;
if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
const MachineMemOperand *Dummy;
return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
}
return 0;
}
bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const {
for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
oe = MI->memoperands_end();
o != oe;
++o) {
if ((*o)->isLoad() && (*o)->getValue())
if (const FixedStackPseudoSourceValue *Value =
dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
FrameIndex = Value->getFrameIndex();
MMO = *o;
return true;
}
}
return false;
}
unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
if (isFrameStoreOpcode(MI->getOpcode()))
if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
isFrameOperand(MI, 0, FrameIndex))
return MI->getOperand(X86::AddrNumOperands).getReg();
return 0;
}
unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
if (isFrameStoreOpcode(MI->getOpcode())) {
unsigned Reg;
if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
const MachineMemOperand *Dummy;
return hasStoreToStackSlot(MI, Dummy, FrameIndex);
}
return 0;
}
bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const {
for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
oe = MI->memoperands_end();
o != oe;
++o) {
if ((*o)->isStore() && (*o)->getValue())
if (const FixedStackPseudoSourceValue *Value =
dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
FrameIndex = Value->getFrameIndex();
MMO = *o;
return true;
}
}
return false;
}
/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
/// X86::MOVPC32r.
static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
bool isPICBase = false;
for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
E = MRI.def_end(); I != E; ++I) {
MachineInstr *DefMI = I.getOperand().getParent();
if (DefMI->getOpcode() != X86::MOVPC32r)
return false;
assert(!isPICBase && "More than one PIC base?");
isPICBase = true;
}
return isPICBase;
}
bool
X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
AliasAnalysis *AA) const {
switch (MI->getOpcode()) {
default: break;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp64m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVUPSrm_Int:
case X86::MOVAPDrm:
case X86::MOVDQArm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::FsMOVAPSrm:
case X86::FsMOVAPDrm: {
// Loads from constant pools are trivially rematerializable.
if (MI->getOperand(1).isReg() &&
MI->getOperand(2).isImm() &&
MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
MI->isInvariantLoad(AA)) {
unsigned BaseReg = MI->getOperand(1).getReg();
if (BaseReg == 0 || BaseReg == X86::RIP)
return true;
// Allow re-materialization of PIC load.
if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
return false;
const MachineFunction &MF = *MI->getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
bool isPICBase = false;
for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
E = MRI.def_end(); I != E; ++I) {
MachineInstr *DefMI = I.getOperand().getParent();
if (DefMI->getOpcode() != X86::MOVPC32r)
return false;
assert(!isPICBase && "More than one PIC base?");
isPICBase = true;
}
return isPICBase;
}
return false;
}
case X86::LEA32r:
case X86::LEA64r: {
if (MI->getOperand(2).isImm() &&
MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
!MI->getOperand(4).isReg()) {
// lea fi#, lea GV, etc. are all rematerializable.
if (!MI->getOperand(1).isReg())
return true;
unsigned BaseReg = MI->getOperand(1).getReg();
if (BaseReg == 0)
return true;
// Allow re-materialization of lea PICBase + x.
const MachineFunction &MF = *MI->getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
return regIsPICBase(BaseReg, MRI);
}
return false;
}
}
// All other instructions marked M_REMATERIALIZABLE are always trivially
// rematerializable.
return true;
}
/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
/// would clobber the EFLAGS condition register. Note the result may be
/// conservative. If it cannot definitely determine the safety after visiting
/// a few instructions in each direction it assumes it's not safe.
static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
MachineBasicBlock::iterator E = MBB.end();
// It's always safe to clobber EFLAGS at the end of a block.
if (I == E)
return true;
// For compile time consideration, if we are not able to determine the
// safety after visiting 4 instructions in each direction, we will assume
// it's not safe.
MachineBasicBlock::iterator Iter = I;
for (unsigned i = 0; i < 4; ++i) {
bool SeenDef = false;
for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
MachineOperand &MO = Iter->getOperand(j);
if (!MO.isReg())
continue;
if (MO.getReg() == X86::EFLAGS) {
if (MO.isUse())
return false;
SeenDef = true;
}
}
if (SeenDef)
// This instruction defines EFLAGS, no need to look any further.
return true;
++Iter;
// Skip over DBG_VALUE.
while (Iter != E && Iter->isDebugValue())
++Iter;
// If we make it to the end of the block, it's safe to clobber EFLAGS.
if (Iter == E)
return true;
}
MachineBasicBlock::iterator B = MBB.begin();
Iter = I;
for (unsigned i = 0; i < 4; ++i) {
// If we make it to the beginning of the block, it's safe to clobber
// EFLAGS iff EFLAGS is not live-in.
if (Iter == B)
return !MBB.isLiveIn(X86::EFLAGS);
--Iter;
// Skip over DBG_VALUE.
while (Iter != B && Iter->isDebugValue())
--Iter;
bool SawKill = false;
for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
MachineOperand &MO = Iter->getOperand(j);
if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
if (MO.isDef()) return MO.isDead();
if (MO.isKill()) SawKill = true;
}
}
if (SawKill)
// This instruction kills EFLAGS and doesn't redefine it, so
// there's no need to look further.
return true;
}
// Conservative answer.
return false;
}
void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg, unsigned SubIdx,
const MachineInstr *Orig,
const TargetRegisterInfo &TRI) const {
DebugLoc DL = Orig->getDebugLoc();
// MOV32r0 etc. are implemented with xor which clobbers condition code.
// Re-materialize them as movri instructions to avoid side effects.
bool Clone = true;
unsigned Opc = Orig->getOpcode();
switch (Opc) {
default: break;
case X86::MOV8r0:
case X86::MOV16r0:
case X86::MOV32r0:
case X86::MOV64r0: {
if (!isSafeToClobberEFLAGS(MBB, I)) {
switch (Opc) {
default: break;
case X86::MOV8r0: Opc = X86::MOV8ri; break;
case X86::MOV16r0: Opc = X86::MOV16ri; break;
case X86::MOV32r0: Opc = X86::MOV32ri; break;
case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
}
Clone = false;
}
break;
}
}
if (Clone) {
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
MBB.insert(I, MI);
} else {
BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
}
MachineInstr *NewMI = prior(I);
NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
}
/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
/// is not marked dead.
static bool hasLiveCondCodeDef(MachineInstr *MI) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() &&
MO.getReg() == X86::EFLAGS && !MO.isDead()) {
return true;
}
}
return false;
}
/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
/// to a 32-bit superregister and then truncating back down to a 16-bit
/// subregister.
MachineInstr *
X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI,
LiveVariables *LV) const {
MachineInstr *MI = MBBI;
unsigned Dest = MI->getOperand(0).getReg();
unsigned Src = MI->getOperand(1).getReg();
bool isDead = MI->getOperand(0).isDead();
bool isKill = MI->getOperand(1).isKill();
unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
? X86::LEA64_32r : X86::LEA32r;
MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
// Build and insert into an implicit UNDEF value. This is OK because
// well be shifting and then extracting the lower 16-bits.
// This has the potential to cause partial register stall. e.g.
// movw (%rbp,%rcx,2), %dx
// leal -65(%rdx), %esi
// But testing has shown this *does* help performance in 64-bit mode (at
// least on modern x86 machines).
BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
MachineInstr *InsMI =
BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
.addReg(leaInReg, RegState::Define, X86::sub_16bit)
.addReg(Src, getKillRegState(isKill));
MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
get(Opc), leaOutReg);
switch (MIOpc) {
default:
llvm_unreachable(0);
break;
case X86::SHL16ri: {
unsigned ShAmt = MI->getOperand(2).getImm();
MIB.addReg(0).addImm(1 << ShAmt)
.addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
break;
}
case X86::INC16r:
case X86::INC64_16r:
addRegOffset(MIB, leaInReg, true, 1);
break;
case X86::DEC16r:
case X86::DEC64_16r:
addRegOffset(MIB, leaInReg, true, -1);
break;
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri_DB:
case X86::ADD16ri8_DB:
addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
break;
case X86::ADD16rr:
case X86::ADD16rr_DB: {
unsigned Src2 = MI->getOperand(2).getReg();
bool isKill2 = MI->getOperand(2).isKill();
unsigned leaInReg2 = 0;
MachineInstr *InsMI2 = 0;
if (Src == Src2) {
// ADD16rr %reg1028<kill>, %reg1028
// just a single insert_subreg.
addRegReg(MIB, leaInReg, true, leaInReg, false);
} else {
leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
// Build and insert into an implicit UNDEF value. This is OK because
// well be shifting and then extracting the lower 16-bits.
BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
InsMI2 =
BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
.addReg(leaInReg2, RegState::Define, X86::sub_16bit)
.addReg(Src2, getKillRegState(isKill2));
addRegReg(MIB, leaInReg, true, leaInReg2, true);
}
if (LV && isKill2 && InsMI2)
LV->replaceKillInstruction(Src2, MI, InsMI2);
break;
}
}
MachineInstr *NewMI = MIB;
MachineInstr *ExtMI =
BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
.addReg(Dest, RegState::Define | getDeadRegState(isDead))
.addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
if (LV) {
// Update live variables
LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
if (isKill)
LV->replaceKillInstruction(Src, MI, InsMI);
if (isDead)
LV->replaceKillInstruction(Dest, MI, ExtMI);
}
return ExtMI;
}
/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
/// may be able to convert a two-address instruction into a true
/// three-address instruction on demand. This allows the X86 target (for
/// example) to convert ADD and SHL instructions into LEA instructions if they
/// would require register copies due to two-addressness.
///
/// This method returns a null pointer if the transformation cannot be
/// performed, otherwise it returns the new instruction.
///
MachineInstr *
X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI,
LiveVariables *LV) const {
MachineInstr *MI = MBBI;
MachineFunction &MF = *MI->getParent()->getParent();
// All instructions input are two-addr instructions. Get the known operands.
unsigned Dest = MI->getOperand(0).getReg();
unsigned Src = MI->getOperand(1).getReg();
bool isDead = MI->getOperand(0).isDead();
bool isKill = MI->getOperand(1).isKill();
MachineInstr *NewMI = NULL;
// FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
// we have better subtarget support, enable the 16-bit LEA generation here.
// 16-bit LEA is also slow on Core2.
bool DisableLEA16 = true;
bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
unsigned MIOpc = MI->getOpcode();
switch (MIOpc) {
case X86::SHUFPSrri: {
assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
unsigned B = MI->getOperand(1).getReg();
unsigned C = MI->getOperand(2).getReg();
if (B != C) return 0;
unsigned A = MI->getOperand(0).getReg();
unsigned M = MI->getOperand(3).getImm();
NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
.addReg(A, RegState::Define | getDeadRegState(isDead))
.addReg(B, getKillRegState(isKill)).addImm(M);
break;
}
case X86::SHL64ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
// NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
// the flags produced by a shift yet, so this is safe.
unsigned ShAmt = MI->getOperand(2).getImm();
if (ShAmt == 0 || ShAmt >= 4) return 0;
// LEA can't handle RSP.
if (TargetRegisterInfo::isVirtualRegister(Src) &&
!MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
return 0;
NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
.addReg(Dest, RegState::Define | getDeadRegState(isDead))
.addReg(0).addImm(1 << ShAmt)
.addReg(Src, getKillRegState(isKill))
.addImm(0).addReg(0);
break;
}
case X86::SHL32ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
// NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
// the flags produced by a shift yet, so this is safe.
unsigned ShAmt = MI->getOperand(2).getImm();
if (ShAmt == 0 || ShAmt >= 4) return 0;
// LEA can't handle ESP.
if (TargetRegisterInfo::isVirtualRegister(Src) &&
!MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
return 0;
unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
.addReg(Dest, RegState::Define | getDeadRegState(isDead))
.addReg(0).addImm(1 << ShAmt)
.addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
break;
}
case X86::SHL16ri: {
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
// NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
// the flags produced by a shift yet, so this is safe.
unsigned ShAmt = MI->getOperand(2).getImm();
if (ShAmt == 0 || ShAmt >= 4) return 0;
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
.addReg(Dest, RegState::Define | getDeadRegState(isDead))
.addReg(0).addImm(1 << ShAmt)
.addReg(Src, getKillRegState(isKill))
.addImm(0).addReg(0);
break;
}
default: {
// The following opcodes also sets the condition code register(s). Only
// convert them to equivalent lea if the condition code register def's
// are dead!
if (hasLiveCondCodeDef(MI))
return 0;
switch (MIOpc) {
default: return 0;
case X86::INC64r:
case X86::INC32r:
case X86::INC64_32r: {
assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
// LEA can't handle RSP.
if (TargetRegisterInfo::isVirtualRegister(Src) &&
!MF.getRegInfo().constrainRegClass(Src,
MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass :
X86::GR32_NOSPRegisterClass))
return 0;
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
.addReg(Dest, RegState::Define |
getDeadRegState(isDead)),
Src, isKill, 1);
break;
}
case X86::INC16r:
case X86::INC64_16r:
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
.addReg(Dest, RegState::Define |
getDeadRegState(isDead)),
Src, isKill, 1);
break;
case X86::DEC64r:
case X86::DEC32r:
case X86::DEC64_32r: {
assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
// LEA can't handle RSP.
if (TargetRegisterInfo::isVirtualRegister(Src) &&
!MF.getRegInfo().constrainRegClass(Src,
MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass :
X86::GR32_NOSPRegisterClass))
return 0;
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
.addReg(Dest, RegState::Define |
getDeadRegState(isDead)),
Src, isKill, -1);
break;
}
case X86::DEC16r:
case X86::DEC64_16r:
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
.addReg(Dest, RegState::Define |
getDeadRegState(isDead)),
Src, isKill, -1);
break;
case X86::ADD64rr:
case X86::ADD64rr_DB:
case X86::ADD32rr:
case X86::ADD32rr_DB: {
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Opc;
TargetRegisterClass *RC;
if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
Opc = X86::LEA64r;
RC = X86::GR64_NOSPRegisterClass;
} else {
Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
RC = X86::GR32_NOSPRegisterClass;
}
unsigned Src2 = MI->getOperand(2).getReg();
bool isKill2 = MI->getOperand(2).isKill();
// LEA can't handle RSP.
if (TargetRegisterInfo::isVirtualRegister(Src2) &&
!MF.getRegInfo().constrainRegClass(Src2, RC))
return 0;
NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
.addReg(Dest, RegState::Define |
getDeadRegState(isDead)),
Src, isKill, Src2, isKill2);
if (LV && isKill2)
LV->replaceKillInstruction(Src2, MI, NewMI);
break;
}
case X86::ADD16rr:
case X86::ADD16rr_DB: {
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Src2 = MI->getOperand(2).getReg();
bool isKill2 = MI->getOperand(2).isKill();
NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
.addReg(Dest, RegState::Define |
getDeadRegState(isDead)),
Src, isKill, Src2, isKill2);
if (LV && isKill2)
LV->replaceKillInstruction(Src2, MI, NewMI);
break;
}
case X86::ADD64ri32:
case X86::ADD64ri8:
case X86::ADD64ri32_DB:
case X86::ADD64ri8_DB:
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
.addReg(Dest, RegState::Define |
getDeadRegState(isDead)),
Src, isKill, MI->getOperand(2).getImm());
break;
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri_DB:
case X86::ADD32ri8_DB: {
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
.addReg(Dest, RegState::Define |
getDeadRegState(isDead)),
Src, isKill, MI->getOperand(2).getImm());
break;
}
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri_DB:
case X86::ADD16ri8_DB:
if (DisableLEA16)
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
.addReg(Dest, RegState::Define |
getDeadRegState(isDead)),
Src, isKill, MI->getOperand(2).getImm());
break;
}
}
}
if (!NewMI) return 0;
if (LV) { // Update live variables
if (isKill)
LV->replaceKillInstruction(Src, MI, NewMI);
if (isDead)
LV->replaceKillInstruction(Dest, MI, NewMI);
}
MFI->insert(MBBI, NewMI); // Insert the new inst
return NewMI;
}
/// commuteInstruction - We have a few instructions that must be hacked on to
/// commute them.
///
MachineInstr *
X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
switch (MI->getOpcode()) {
case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
unsigned Opc;
unsigned Size;
switch (MI->getOpcode()) {
default: llvm_unreachable("Unreachable!");
case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
}
unsigned Amt = MI->getOperand(3).getImm();
if (NewMI) {
MachineFunction &MF = *MI->getParent()->getParent();
MI = MF.CloneMachineInstr(MI);
NewMI = false;
}
MI->setDesc(get(Opc));
MI->getOperand(3).setImm(Size-Amt);
return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
}
case X86::CMOVB16rr:
case X86::CMOVB32rr:
case X86::CMOVB64rr:
case X86::CMOVAE16rr:
case X86::CMOVAE32rr:
case X86::CMOVAE64rr:
case X86::CMOVE16rr:
case X86::CMOVE32rr:
case X86::CMOVE64rr:
case X86::CMOVNE16rr:
case X86::CMOVNE32rr:
case X86::CMOVNE64rr:
case X86::CMOVBE16rr:
case X86::CMOVBE32rr:
case X86::CMOVBE64rr:
case X86::CMOVA16rr:
case X86::CMOVA32rr:
case X86::CMOVA64rr:
case X86::CMOVL16rr:
case X86::CMOVL32rr:
case X86::CMOVL64rr:
case X86::CMOVGE16rr:
case X86::CMOVGE32rr:
case X86::CMOVGE64rr:
case X86::CMOVLE16rr:
case X86::CMOVLE32rr:
case X86::CMOVLE64rr:
case X86::CMOVG16rr:
case X86::CMOVG32rr:
case X86::CMOVG64rr:
case X86::CMOVS16rr:
case X86::CMOVS32rr:
case X86::CMOVS64rr:
case X86::CMOVNS16rr:
case X86::CMOVNS32rr:
case X86::CMOVNS64rr:
case X86::CMOVP16rr:
case X86::CMOVP32rr:
case X86::CMOVP64rr:
case X86::CMOVNP16rr:
case X86::CMOVNP32rr:
case X86::CMOVNP64rr:
case X86::CMOVO16rr:
case X86::CMOVO32rr:
case X86::CMOVO64rr:
case X86::CMOVNO16rr:
case X86::CMOVNO32rr:
case X86::CMOVNO64rr: {
unsigned Opc = 0;
switch (MI->getOpcode()) {
default: break;
case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
}
if (NewMI) {
MachineFunction &MF = *MI->getParent()->getParent();
MI = MF.CloneMachineInstr(MI);
NewMI = false;
}
MI->setDesc(get(Opc));
// Fallthrough intended.
}
default:
return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
}
}
static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
switch (BrOpc) {
default: return X86::COND_INVALID;
case X86::JE_4: return X86::COND_E;
case X86::JNE_4: return X86::COND_NE;
case X86::JL_4: return X86::COND_L;
case X86::JLE_4: return X86::COND_LE;
case X86::JG_4: return X86::COND_G;
case X86::JGE_4: return X86::COND_GE;
case X86::JB_4: return X86::COND_B;
case X86::JBE_4: return X86::COND_BE;
case X86::JA_4: return X86::COND_A;
case X86::JAE_4: return X86::COND_AE;
case X86::JS_4: return X86::COND_S;
case X86::JNS_4: return X86::COND_NS;
case X86::JP_4: return X86::COND_P;
case X86::JNP_4: return X86::COND_NP;
case X86::JO_4: return X86::COND_O;
case X86::JNO_4: return X86::COND_NO;
}
}
unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Illegal condition code!");
case X86::COND_E: return X86::JE_4;
case X86::COND_NE: return X86::JNE_4;
case X86::COND_L: return X86::JL_4;
case X86::COND_LE: return X86::JLE_4;
case X86::COND_G: return X86::JG_4;
case X86::COND_GE: return X86::JGE_4;
case X86::COND_B: return X86::JB_4;
case X86::COND_BE: return X86::JBE_4;
case X86::COND_A: return X86::JA_4;
case X86::COND_AE: return X86::JAE_4;
case X86::COND_S: return X86::JS_4;
case X86::COND_NS: return X86::JNS_4;
case X86::COND_P: return X86::JP_4;
case X86::COND_NP: return X86::JNP_4;
case X86::COND_O: return X86::JO_4;
case X86::COND_NO: return X86::JNO_4;
}
}
/// GetOppositeBranchCondition - Return the inverse of the specified condition,
/// e.g. turning COND_E to COND_NE.
X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Illegal condition code!");
case X86::COND_E: return X86::COND_NE;
case X86::COND_NE: return X86::COND_E;
case X86::COND_L: return X86::COND_GE;
case X86::COND_LE: return X86::COND_G;
case X86::COND_G: return X86::COND_LE;
case X86::COND_GE: return X86::COND_L;
case X86::COND_B: return X86::COND_AE;
case X86::COND_BE: return X86::COND_A;
case X86::COND_A: return X86::COND_BE;
case X86::COND_AE: return X86::COND_B;
case X86::COND_S: return X86::COND_NS;
case X86::COND_NS: return X86::COND_S;
case X86::COND_P: return X86::COND_NP;
case X86::COND_NP: return X86::COND_P;
case X86::COND_O: return X86::COND_NO;
case X86::COND_NO: return X86::COND_O;
}
}
bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
const TargetInstrDesc &TID = MI->getDesc();
if (!TID.isTerminator()) return false;
// Conditional branch is a special case.
if (TID.isBranch() && !TID.isBarrier())
return true;
if (!TID.isPredicable())
return true;
return !isPredicated(MI);
}
bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// Start from the bottom of the block and work up, examining the
// terminator instructions.
MachineBasicBlock::iterator I = MBB.end();
MachineBasicBlock::iterator UnCondBrIter = MBB.end();
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
// Working from the bottom, when we see a non-terminator instruction, we're
// done.
if (!isUnpredicatedTerminator(I))
break;
// A terminator that isn't a branch can't easily be handled by this
// analysis.
if (!I->getDesc().isBranch())
return true;
// Handle unconditional branches.
if (I->getOpcode() == X86::JMP_4) {
UnCondBrIter = I;
if (!AllowModify) {
TBB = I->getOperand(0).getMBB();
continue;
}
// If the block has any instructions after a JMP, delete them.
while (llvm::next(I) != MBB.end())
llvm::next(I)->eraseFromParent();
Cond.clear();
FBB = 0;
// Delete the JMP if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
TBB = 0;
I->eraseFromParent();
I = MBB.end();
UnCondBrIter = MBB.end();
continue;
}
// TBB is used to indicate the unconditional destination.
TBB = I->getOperand(0).getMBB();
continue;
}
// Handle conditional branches.
X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
if (BranchCode == X86::COND_INVALID)
return true; // Can't handle indirect branch.
// Working from the bottom, handle the first conditional branch.
if (Cond.empty()) {
MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
if (AllowModify && UnCondBrIter != MBB.end() &&
MBB.isLayoutSuccessor(TargetBB)) {
// If we can modify the code and it ends in something like:
//
// jCC L1
// jmp L2
// L1:
// ...
// L2:
//
// Then we can change this to:
//
// jnCC L2
// L1:
// ...
// L2:
//
// Which is a bit more efficient.
// We conditionally jump to the fall-through block.
BranchCode = GetOppositeBranchCondition(BranchCode);
unsigned JNCC = GetCondBranchFromCond(BranchCode);
MachineBasicBlock::iterator OldInst = I;
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
.addMBB(UnCondBrIter->getOperand(0).getMBB());
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
.addMBB(TargetBB);
MBB.addSuccessor(TargetBB);
OldInst->eraseFromParent();
UnCondBrIter->eraseFromParent();
// Restart the analysis.
UnCondBrIter = MBB.end();
I = MBB.end();
continue;
}
FBB = TBB;
TBB = I->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(BranchCode));
continue;
}
// Handle subsequent conditional branches. Only handle the case where all
// conditional branches branch to the same destination and their condition
// opcodes fit one of the special multi-branch idioms.
assert(Cond.size() == 1);
assert(TBB);
// Only handle the case where all conditional branches branch to the same
// destination.
if (TBB != I->getOperand(0).getMBB())
return true;
// If the conditions are the same, we can leave them alone.
X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
if (OldBranchCode == BranchCode)
continue;
// If they differ, see if they fit one of the known patterns. Theoretically,
// we could handle more patterns here, but we shouldn't expect to see them
// if instruction selection has done a reasonable job.
if ((OldBranchCode == X86::COND_NP &&
BranchCode == X86::COND_E) ||
(OldBranchCode == X86::COND_E &&
BranchCode == X86::COND_NP))
BranchCode = X86::COND_NP_OR_E;
else if ((OldBranchCode == X86::COND_P &&
BranchCode == X86::COND_NE) ||
(OldBranchCode == X86::COND_NE &&
BranchCode == X86::COND_P))
BranchCode = X86::COND_NE_OR_P;
else
return true;
// Update the MachineOperand.
Cond[0].setImm(BranchCode);
}
return false;
}
unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
if (I->getOpcode() != X86::JMP_4 &&
GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
++Count;
}
return Count;
}
unsigned
X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 1 || Cond.size() == 0) &&
"X86 branch conditions have one component!");
if (Cond.empty()) {
// Unconditional branch?
assert(!FBB && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
return 1;
}
// Conditional branch.
unsigned Count = 0;
X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
switch (CC) {
case X86::COND_NP_OR_E:
// Synthesize NP_OR_E with two branches.
BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
++Count;
BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
++Count;
break;
case X86::COND_NE_OR_P:
// Synthesize NE_OR_P with two branches.
BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
++Count;
BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
++Count;
break;
default: {
unsigned Opc = GetCondBranchFromCond(CC);
BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
++Count;
}
}
if (FBB) {
// Two-way Conditional branch. Insert the second branch.
BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
++Count;
}
return Count;
}
/// isHReg - Test if the given register is a physical h register.
static bool isHReg(unsigned Reg) {
return X86::GR8_ABCD_HRegClass.contains(Reg);
}
// Try and copy between VR128/VR64 and GR64 registers.
static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg) {
// SrcReg(VR128) -> DestReg(GR64)
// SrcReg(VR64) -> DestReg(GR64)
// SrcReg(GR64) -> DestReg(VR128)
// SrcReg(GR64) -> DestReg(VR64)
if (X86::GR64RegClass.contains(DestReg)) {
if (X86::VR128RegClass.contains(SrcReg)) {
// Copy from a VR128 register to a GR64 register.
return X86::MOVPQIto64rr;
} else if (X86::VR64RegClass.contains(SrcReg)) {
// Copy from a VR64 register to a GR64 register.
return X86::MOVSDto64rr;
}
} else if (X86::GR64RegClass.contains(SrcReg)) {
// Copy from a GR64 register to a VR128 register.
if (X86::VR128RegClass.contains(DestReg))
return X86::MOV64toPQIrr;
// Copy from a GR64 register to a VR64 register.
else if (X86::VR64RegClass.contains(DestReg))
return X86::MOV64toSDrr;
}
return 0;
}
void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
// First deal with the normal symmetric copies.
unsigned Opc = 0;
if (X86::GR64RegClass.contains(DestReg, SrcReg))
Opc = X86::MOV64rr;
else if (X86::GR32RegClass.contains(DestReg, SrcReg))
Opc = X86::MOV32rr;
else if (X86::GR16RegClass.contains(DestReg, SrcReg))
Opc = X86::MOV16rr;
else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
// Copying to or from a physical H register on x86-64 requires a NOREX
// move. Otherwise use a normal move.
if ((isHReg(DestReg) || isHReg(SrcReg)) &&
TM.getSubtarget<X86Subtarget>().is64Bit())
Opc = X86::MOV8rr_NOREX;
else
Opc = X86::MOV8rr;
} else if (X86::VR128RegClass.contains(DestReg, SrcReg))
Opc = X86::MOVAPSrr;
else if (X86::VR64RegClass.contains(DestReg, SrcReg))
Opc = X86::MMX_MOVQ64rr;
else
Opc = CopyToFromAsymmetricReg(DestReg, SrcReg);
if (Opc) {
BuildMI(MBB, MI, DL, get(Opc), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
// Moving EFLAGS to / from another register requires a push and a pop.
if (SrcReg == X86::EFLAGS) {
if (X86::GR64RegClass.contains(DestReg)) {
BuildMI(MBB, MI, DL, get(X86::PUSHF64));
BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
return;
} else if (X86::GR32RegClass.contains(DestReg)) {
BuildMI(MBB, MI, DL, get(X86::PUSHF32));
BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
return;
}
}
if (DestReg == X86::EFLAGS) {
if (X86::GR64RegClass.contains(SrcReg)) {
BuildMI(MBB, MI, DL, get(X86::PUSH64r))
.addReg(SrcReg, getKillRegState(KillSrc));
BuildMI(MBB, MI, DL, get(X86::POPF64));
return;
} else if (X86::GR32RegClass.contains(SrcReg)) {
BuildMI(MBB, MI, DL, get(X86::PUSH32r))
.addReg(SrcReg, getKillRegState(KillSrc));
BuildMI(MBB, MI, DL, get(X86::POPF32));
return;
}
}
DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
<< " to " << RI.getName(DestReg) << '\n');
llvm_unreachable("Cannot emit physreg copy instruction");
}
static unsigned getLoadStoreRegOpcode(unsigned Reg,
const TargetRegisterClass *RC,
bool isStackAligned,
const TargetMachine &TM,
bool load) {
switch (RC->getID()) {
default:
llvm_unreachable("Unknown regclass");
case X86::GR64RegClassID:
case X86::GR64_ABCDRegClassID:
case X86::GR64_NOREXRegClassID:
case X86::GR64_NOREX_NOSPRegClassID:
case X86::GR64_NOSPRegClassID:
case X86::GR64_TCRegClassID:
case X86::GR64_TCW64RegClassID:
return load ? X86::MOV64rm : X86::MOV64mr;
case X86::GR32RegClassID:
case X86::GR32_ABCDRegClassID:
case X86::GR32_ADRegClassID:
case X86::GR32_NOREXRegClassID:
case X86::GR32_NOSPRegClassID:
case X86::GR32_TCRegClassID:
return load ? X86::MOV32rm : X86::MOV32mr;
case X86::GR16RegClassID:
case X86::GR16_ABCDRegClassID:
case X86::GR16_NOREXRegClassID:
return load ? X86::MOV16rm : X86::MOV16mr;
case X86::GR8RegClassID:
// Copying to or from a physical H register on x86-64 requires a NOREX
// move. Otherwise use a normal move.
if (isHReg(Reg) &&
TM.getSubtarget<X86Subtarget>().is64Bit())
return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
else
return load ? X86::MOV8rm : X86::MOV8mr;
case X86::GR8_ABCD_LRegClassID:
case X86::GR8_NOREXRegClassID:
return load ? X86::MOV8rm :X86::MOV8mr;
case X86::GR8_ABCD_HRegClassID:
if (TM.getSubtarget<X86Subtarget>().is64Bit())
return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
else
return load ? X86::MOV8rm : X86::MOV8mr;
case X86::RFP80RegClassID:
return load ? X86::LD_Fp80m : X86::ST_FpP80m;
case X86::RFP64RegClassID:
return load ? X86::LD_Fp64m : X86::ST_Fp64m;
case X86::RFP32RegClassID:
return load ? X86::LD_Fp32m : X86::ST_Fp32m;
case X86::FR32RegClassID:
return load ? X86::MOVSSrm : X86::MOVSSmr;
case X86::FR64RegClassID:
return load ? X86::MOVSDrm : X86::MOVSDmr;
case X86::VR128RegClassID:
// If stack is realigned we can use aligned stores.
if (isStackAligned)
return load ? X86::MOVAPSrm : X86::MOVAPSmr;
else
return load ? X86::MOVUPSrm : X86::MOVUPSmr;
case X86::VR64RegClassID:
return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
}
}
static unsigned getStoreRegOpcode(unsigned SrcReg,
const TargetRegisterClass *RC,
bool isStackAligned,
TargetMachine &TM) {
return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
}
static unsigned getLoadRegOpcode(unsigned DestReg,
const TargetRegisterClass *RC,
bool isStackAligned,
const TargetMachine &TM) {
return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
}
void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
const MachineFunction &MF = *MBB.getParent();
assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
"Stack slot too small for store");
bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
DebugLoc DL = MBB.findDebugLoc(MI);
addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
.addReg(SrcReg, getKillRegState(isKill));
}
void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
bool isKill,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
MachineInstr::mmo_iterator MMOBegin,
MachineInstr::mmo_iterator MMOEnd,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
DebugLoc DL;
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB.addOperand(Addr[i]);
MIB.addReg(SrcReg, getKillRegState(isKill));
(*MIB).setMemRefs(MMOBegin, MMOEnd);
NewMIs.push_back(MIB);
}
void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
const MachineFunction &MF = *MBB.getParent();
bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
DebugLoc DL = MBB.findDebugLoc(MI);
addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
}
void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
SmallVectorImpl<MachineOperand> &Addr,
const TargetRegisterClass *RC,
MachineInstr::mmo_iterator MMOBegin,
MachineInstr::mmo_iterator MMOEnd,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
DebugLoc DL;
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
MIB.addOperand(Addr[i]);
(*MIB).setMemRefs(MMOBegin, MMOEnd);
NewMIs.push_back(MIB);
}
MachineInstr*
X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
int FrameIx, uint64_t Offset,
const MDNode *MDPtr,
DebugLoc DL) const {
X86AddressMode AM;
AM.BaseType = X86AddressMode::FrameIndexBase;
AM.Base.FrameIndex = FrameIx;
MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
return &*MIB;
}
static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
const SmallVectorImpl<MachineOperand> &MOs,
MachineInstr *MI,
const TargetInstrInfo &TII) {
// Create the base instruction with the memory operand as the first part.
MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
MI->getDebugLoc(), true);
MachineInstrBuilder MIB(NewMI);
unsigned NumAddrOps = MOs.size();
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB.addOperand(MOs[i]);
if (NumAddrOps < 4) // FrameIndex only
addOffset(MIB, 0);
// Loop over the rest of the ri operands, converting them over.
unsigned NumOps = MI->getDesc().getNumOperands()-2;
for (unsigned i = 0; i != NumOps; ++i) {
MachineOperand &MO = MI->getOperand(i+2);
MIB.addOperand(MO);
}
for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
MIB.addOperand(MO);
}
return MIB;
}
static MachineInstr *FuseInst(MachineFunction &MF,
unsigned Opcode, unsigned OpNo,
const SmallVectorImpl<MachineOperand> &MOs,
MachineInstr *MI, const TargetInstrInfo &TII) {
MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
MI->getDebugLoc(), true);
MachineInstrBuilder MIB(NewMI);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (i == OpNo) {
assert(MO.isReg() && "Expected to fold into reg operand!");
unsigned NumAddrOps = MOs.size();
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB.addOperand(MOs[i]);
if (NumAddrOps < 4) // FrameIndex only
addOffset(MIB, 0);
} else {
MIB.addOperand(MO);
}
}
return MIB;
}
static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
const SmallVectorImpl<MachineOperand> &MOs,
MachineInstr *MI) {
MachineFunction &MF = *MI->getParent()->getParent();
MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
unsigned NumAddrOps = MOs.size();
for (unsigned i = 0; i != NumAddrOps; ++i)
MIB.addOperand(MOs[i]);
if (NumAddrOps < 4) // FrameIndex only
addOffset(MIB, 0);
return MIB.addImm(0);
}
MachineInstr*
X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI, unsigned i,
const SmallVectorImpl<MachineOperand> &MOs,
unsigned Size, unsigned Align) const {
const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
bool isTwoAddrFold = false;
unsigned NumOps = MI->getDesc().getNumOperands();
bool isTwoAddr = NumOps > 1 &&
MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
MachineInstr *NewMI = NULL;
// Folding a memory location into the two-address part of a two-address
// instruction is different than folding it other places. It requires
// replacing the *two* registers with the memory location.
if (isTwoAddr && NumOps >= 2 && i < 2 &&
MI->getOperand(0).isReg() &&
MI->getOperand(1).isReg() &&
MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
isTwoAddrFold = true;
} else if (i == 0) { // If operand 0
if (MI->getOpcode() == X86::MOV64r0)
NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
else if (MI->getOpcode() == X86::MOV32r0)
NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
else if (MI->getOpcode() == X86::MOV16r0)
NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
else if (MI->getOpcode() == X86::MOV8r0)
NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
if (NewMI)
return NewMI;
OpcodeTablePtr = &RegOp2MemOpTable0;
} else if (i == 1) {
OpcodeTablePtr = &RegOp2MemOpTable1;
} else if (i == 2) {
OpcodeTablePtr = &RegOp2MemOpTable2;
}
// If table selected...
if (OpcodeTablePtr) {
// Find the Opcode to fuse
DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
OpcodeTablePtr->find(MI->getOpcode());
if (I != OpcodeTablePtr->end()) {
unsigned Opcode = I->second.first;
unsigned MinAlign = I->second.second;
if (Align < MinAlign)
return NULL;
bool NarrowToMOV32rm = false;
if (Size) {
unsigned RCSize = MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
if (Size < RCSize) {
// Check if it's safe to fold the load. If the size of the object is
// narrower than the load width, then it's not.
if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
return NULL;
// If this is a 64-bit load, but the spill slot is 32, then we can do
// a 32-bit load which is implicitly zero-extended. This likely is due
// to liveintervalanalysis remat'ing a load from stack slot.
if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
return NULL;
Opcode = X86::MOV32rm;
NarrowToMOV32rm = true;
}
}
if (isTwoAddrFold)
NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
else
NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
if (NarrowToMOV32rm) {
// If this is the special case where we use a MOV32rm to load a 32-bit
// value and zero-extend the top bits. Change the destination register
// to a 32-bit one.
unsigned DstReg = NewMI->getOperand(0).getReg();
if (TargetRegisterInfo::isPhysicalRegister(DstReg))
NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
X86::sub_32bit));
else
NewMI->getOperand(0).setSubReg(X86::sub_32bit);
}
return NewMI;
}
}
// No fusion
if (PrintFailedFusing && !MI->isCopy())
dbgs() << "We failed to fuse operand " << i << " in " << *MI;
return NULL;
}
MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops,
int FrameIndex) const {
// Check switch flag
if (NoFusing) return NULL;
if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
switch (MI->getOpcode()) {
case X86::CVTSD2SSrr:
case X86::Int_CVTSD2SSrr:
case X86::CVTSS2SDrr:
case X86::Int_CVTSS2SDrr:
case X86::RCPSSr:
case X86::RCPSSr_Int:
case X86::ROUNDSDr:
case X86::ROUNDSSr:
case X86::RSQRTSSr:
case X86::RSQRTSSr_Int:
case X86::SQRTSSr:
case X86::SQRTSSr_Int:
return 0;
}
const MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned Size = MFI->getObjectSize(FrameIndex);
unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
unsigned RCSize = 0;
switch (MI->getOpcode()) {
default: return NULL;
case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
}
// Check if it's safe to fold the load. If the size of the object is
// narrower than the load width, then it's not.
if (Size < RCSize)
return NULL;
// Change to CMPXXri r, 0 first.
MI->setDesc(get(NewOpc));
MI->getOperand(1).ChangeToImmediate(0);
} else if (Ops.size() != 1)
return NULL;
SmallVector<MachineOperand,4> MOs;
MOs.push_back(MachineOperand::CreateFI(FrameIndex));
return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
}
MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops,
MachineInstr *LoadMI) const {
// Check switch flag
if (NoFusing) return NULL;
if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
switch (MI->getOpcode()) {
case X86::CVTSD2SSrr:
case X86::Int_CVTSD2SSrr:
case X86::CVTSS2SDrr:
case X86::Int_CVTSS2SDrr:
case X86::RCPSSr:
case X86::RCPSSr_Int:
case X86::ROUNDSDr:
case X86::ROUNDSSr:
case X86::RSQRTSSr:
case X86::RSQRTSSr_Int:
case X86::SQRTSSr:
case X86::SQRTSSr_Int:
return 0;
}
// Determine the alignment of the load.
unsigned Alignment = 0;
if (LoadMI->hasOneMemOperand())
Alignment = (*LoadMI->memoperands_begin())->getAlignment();
else
switch (LoadMI->getOpcode()) {
case X86::AVX_SET0PSY:
case X86::AVX_SET0PDY:
Alignment = 32;
break;
case X86::V_SET0PS:
case X86::V_SET0PD:
case X86::V_SET0PI:
case X86::V_SETALLONES:
case X86::AVX_SET0PS:
case X86::AVX_SET0PD:
case X86::AVX_SET0PI:
Alignment = 16;
break;
case X86::FsFLD0SD:
case X86::VFsFLD0SD:
Alignment = 8;
break;
case X86::FsFLD0SS:
case X86::VFsFLD0SS:
Alignment = 4;
break;
default:
llvm_unreachable("Don't know how to fold this instruction!");
}
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
unsigned NewOpc = 0;
switch (MI->getOpcode()) {
default: return NULL;
case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
}
// Change to CMPXXri r, 0 first.
MI->setDesc(get(NewOpc));
MI->getOperand(1).ChangeToImmediate(0);
} else if (Ops.size() != 1)
return NULL;
// Make sure the subregisters match.
// Otherwise we risk changing the size of the load.
if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
return NULL;
SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
switch (LoadMI->getOpcode()) {
case X86::V_SET0PS:
case X86::V_SET0PD:
case X86::V_SET0PI:
case X86::V_SETALLONES:
case X86::AVX_SET0PS:
case X86::AVX_SET0PD:
case X86::AVX_SET0PI:
case X86::AVX_SET0PSY:
case X86::AVX_SET0PDY:
case X86::FsFLD0SD:
case X86::FsFLD0SS: {
// Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
// Create a constant-pool entry and operands to load from it.
// Medium and large mode can't fold loads this way.
if (TM.getCodeModel() != CodeModel::Small &&
TM.getCodeModel() != CodeModel::Kernel)
return NULL;
// x86-32 PIC requires a PIC base register for constant pools.
unsigned PICBase = 0;
if (TM.getRelocationModel() == Reloc::PIC_) {
if (TM.getSubtarget<X86Subtarget>().is64Bit())
PICBase = X86::RIP;
else
// FIXME: PICBase = getGlobalBaseReg(&MF);
// This doesn't work for several reasons.
// 1. GlobalBaseReg may have been spilled.
// 2. It may not be live at MI.
return NULL;
}
// Create a constant-pool entry.
MachineConstantPool &MCP = *MF.getConstantPool();
const Type *Ty;
unsigned Opc = LoadMI->getOpcode();
if (Opc == X86::FsFLD0SS || Opc == X86::VFsFLD0SS)
Ty = Type::getFloatTy(MF.getFunction()->getContext());
else if (Opc == X86::FsFLD0SD || Opc == X86::VFsFLD0SD)
Ty = Type::getDoubleTy(MF.getFunction()->getContext());
else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
else
Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
Constant::getAllOnesValue(Ty) :
Constant::getNullValue(Ty);
unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
// Create operands to load from the constant pool entry.
MOs.push_back(MachineOperand::CreateReg(PICBase, false));
MOs.push_back(MachineOperand::CreateImm(1));
MOs.push_back(MachineOperand::CreateReg(0, false));
MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
MOs.push_back(MachineOperand::CreateReg(0, false));
break;
}
default: {
// Folding a normal load. Just copy the load's address operands.
unsigned NumOps = LoadMI->getDesc().getNumOperands();
for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
MOs.push_back(LoadMI->getOperand(i));
break;
}
}
return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
}
bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops) const {
// Check switch flag
if (NoFusing) return 0;
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
switch (MI->getOpcode()) {
default: return false;
case X86::TEST8rr:
case X86::TEST16rr:
case X86::TEST32rr:
case X86::TEST64rr:
return true;
}
}
if (Ops.size() != 1)
return false;
unsigned OpNum = Ops[0];
unsigned Opc = MI->getOpcode();
unsigned NumOps = MI->getDesc().getNumOperands();
bool isTwoAddr = NumOps > 1 &&
MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
// Folding a memory location into the two-address part of a two-address
// instruction is different than folding it other places. It requires
// replacing the *two* registers with the memory location.
const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
} else if (OpNum == 0) { // If operand 0
switch (Opc) {
case X86::MOV8r0:
case X86::MOV16r0:
case X86::MOV32r0:
case X86::MOV64r0: return true;
default: break;
}
OpcodeTablePtr = &RegOp2MemOpTable0;
} else if (OpNum == 1) {
OpcodeTablePtr = &RegOp2MemOpTable1;
} else if (OpNum == 2) {
OpcodeTablePtr = &RegOp2MemOpTable2;
}
if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
return true;
return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
}
bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
MemOp2RegOpTable.find(MI->getOpcode());
if (I == MemOp2RegOpTable.end())
return false;
unsigned Opc = I->second.first;
unsigned Index = I->second.second & 0xf;
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
if (UnfoldLoad && !FoldedLoad)
return false;
UnfoldLoad &= FoldedLoad;
if (UnfoldStore && !FoldedStore)
return false;
UnfoldStore &= FoldedStore;
const TargetInstrDesc &TID = get(Opc);
const TargetOperandInfo &TOI = TID.OpInfo[Index];
const TargetRegisterClass *RC = TOI.getRegClass(&RI);
if (!MI->hasOneMemOperand() &&
RC == &X86::VR128RegClass &&
!TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
// Without memoperands, loadRegFromAddr and storeRegToStackSlot will
// conservatively assume the address is unaligned. That's bad for
// performance.
return false;
SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
SmallVector<MachineOperand,2> BeforeOps;
SmallVector<MachineOperand,2> AfterOps;
SmallVector<MachineOperand,4> ImpOps;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (i >= Index && i < Index + X86::AddrNumOperands)
AddrOps.push_back(Op);
else if (Op.isReg() && Op.isImplicit())
ImpOps.push_back(Op);
else if (i < Index)
BeforeOps.push_back(Op);
else if (i > Index)
AfterOps.push_back(Op);
}
// Emit the load instruction.
if (UnfoldLoad) {
std::pair<MachineInstr::mmo_iterator,
MachineInstr::mmo_iterator> MMOs =
MF.extractLoadMemRefs(MI->memoperands_begin(),
MI->memoperands_end());
loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
if (UnfoldStore) {
// Address operands cannot be marked isKill.
for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
MachineOperand &MO = NewMIs[0]->getOperand(i);
if (MO.isReg())
MO.setIsKill(false);
}
}
}
// Emit the data processing instruction.
MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
MachineInstrBuilder MIB(DataMI);
if (FoldedStore)
MIB.addReg(Reg, RegState::Define);
for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
MIB.addOperand(BeforeOps[i]);
if (FoldedLoad)
MIB.addReg(Reg);
for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
MIB.addOperand(AfterOps[i]);
for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
MachineOperand &MO = ImpOps[i];
MIB.addReg(MO.getReg(),
getDefRegState(MO.isDef()) |
RegState::Implicit |
getKillRegState(MO.isKill()) |
getDeadRegState(MO.isDead()) |
getUndefRegState(MO.isUndef()));
}
// Change CMP32ri r, 0 back to TEST32rr r, r, etc.
unsigned NewOpc = 0;
switch (DataMI->getOpcode()) {
default: break;
case X86::CMP64ri32:
case X86::CMP64ri8:
case X86::CMP32ri:
case X86::CMP32ri8:
case X86::CMP16ri:
case X86::CMP16ri8:
case X86::CMP8ri: {
MachineOperand &MO0 = DataMI->getOperand(0);
MachineOperand &MO1 = DataMI->getOperand(1);
if (MO1.getImm() == 0) {
switch (DataMI->getOpcode()) {
default: break;
case X86::CMP64ri8:
case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
case X86::CMP32ri8:
case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
case X86::CMP16ri8:
case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
}
DataMI->setDesc(get(NewOpc));
MO1.ChangeToRegister(MO0.getReg(), false);
}
}
}
NewMIs.push_back(DataMI);
// Emit the store instruction.
if (UnfoldStore) {
const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
std::pair<MachineInstr::mmo_iterator,
MachineInstr::mmo_iterator> MMOs =
MF.extractStoreMemRefs(MI->memoperands_begin(),
MI->memoperands_end());
storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
}
return true;
}
bool
X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const {
if (!N->isMachineOpcode())
return false;
DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
MemOp2RegOpTable.find(N->getMachineOpcode());
if (I == MemOp2RegOpTable.end())
return false;
unsigned Opc = I->second.first;
unsigned Index = I->second.second & 0xf;
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
const TargetInstrDesc &TID = get(Opc);
const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
unsigned NumDefs = TID.NumDefs;
std::vector<SDValue> AddrOps;
std::vector<SDValue> BeforeOps;
std::vector<SDValue> AfterOps;
DebugLoc dl = N->getDebugLoc();
unsigned NumOps = N->getNumOperands();
for (unsigned i = 0; i != NumOps-1; ++i) {
SDValue Op = N->getOperand(i);
if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
AddrOps.push_back(Op);
else if (i < Index-NumDefs)
BeforeOps.push_back(Op);
else if (i > Index-NumDefs)
AfterOps.push_back(Op);
}
SDValue Chain = N->getOperand(NumOps-1);
AddrOps.push_back(Chain);
// Emit the load instruction.
SDNode *Load = 0;
MachineFunction &MF = DAG.getMachineFunction();
if (FoldedLoad) {
EVT VT = *RC->vt_begin();
std::pair<MachineInstr::mmo_iterator,
MachineInstr::mmo_iterator> MMOs =
MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
cast<MachineSDNode>(N)->memoperands_end());
if (!(*MMOs.first) &&
RC == &X86::VR128RegClass &&
!TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
// Do not introduce a slow unaligned load.
return false;
bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
VT, MVT::Other, &AddrOps[0], AddrOps.size());
NewNodes.push_back(Load);
// Preserve memory reference information.
cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
}
// Emit the data processing instruction.
std::vector<EVT> VTs;
const TargetRegisterClass *DstRC = 0;
if (TID.getNumDefs() > 0) {
DstRC = TID.OpInfo[0].getRegClass(&RI);
VTs.push_back(*DstRC->vt_begin());
}
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
EVT VT = N->getValueType(i);
if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
VTs.push_back(VT);
}
if (Load)
BeforeOps.push_back(SDValue(Load, 0));
std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
BeforeOps.size());
NewNodes.push_back(NewNode);
// Emit the store instruction.
if (FoldedStore) {
AddrOps.pop_back();
AddrOps.push_back(SDValue(NewNode, 0));
AddrOps.push_back(Chain);
std::pair<MachineInstr::mmo_iterator,
MachineInstr::mmo_iterator> MMOs =
MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
cast<MachineSDNode>(N)->memoperands_end());
if (!(*MMOs.first) &&
RC == &X86::VR128RegClass &&
!TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
// Do not introduce a slow unaligned store.
return false;
bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
isAligned, TM),
dl, MVT::Other,
&AddrOps[0], AddrOps.size());
NewNodes.push_back(Store);
// Preserve memory reference information.
cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
}
return true;
}
unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore,
unsigned *LoadRegIndex) const {
DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
MemOp2RegOpTable.find(Opc);
if (I == MemOp2RegOpTable.end())
return 0;
bool FoldedLoad = I->second.second & (1 << 4);
bool FoldedStore = I->second.second & (1 << 5);
if (UnfoldLoad && !FoldedLoad)
return 0;
if (UnfoldStore && !FoldedStore)
return 0;
if (LoadRegIndex)
*LoadRegIndex = I->second.second & 0xf;
return I->second.first;
}
bool
X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
int64_t &Offset1, int64_t &Offset2) const {
if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
return false;
unsigned Opc1 = Load1->getMachineOpcode();
unsigned Opc2 = Load2->getMachineOpcode();
switch (Opc1) {
default: return false;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp32m:
case X86::LD_Fp64m:
case X86::LD_Fp80m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::FsMOVAPSrm:
case X86::FsMOVAPDrm:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVUPSrm_Int:
case X86::MOVAPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
case X86::MOVDQUrm_Int:
break;
}
switch (Opc2) {
default: return false;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV32rm:
case X86::MOV64rm:
case X86::LD_Fp32m:
case X86::LD_Fp64m:
case X86::LD_Fp80m:
case X86::MOVSSrm:
case X86::MOVSDrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
case X86::FsMOVAPSrm:
case X86::FsMOVAPDrm:
case X86::MOVAPSrm:
case X86::MOVUPSrm:
case X86::MOVUPSrm_Int:
case X86::MOVAPDrm:
case X86::MOVDQArm:
case X86::MOVDQUrm:
case X86::MOVDQUrm_Int:
break;
}
// Check if chain operands and base addresses match.
if (Load1->getOperand(0) != Load2->getOperand(0) ||
Load1->getOperand(5) != Load2->getOperand(5))
return false;
// Segment operands should match as well.
if (Load1->getOperand(4) != Load2->getOperand(4))
return false;
// Scale should be 1, Index should be Reg0.
if (Load1->getOperand(1) == Load2->getOperand(1) &&
Load1->getOperand(2) == Load2->getOperand(2)) {
if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
return false;
// Now let's examine the displacements.
if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
isa<ConstantSDNode>(Load2->getOperand(3))) {
Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
return true;
}
}
return false;
}
bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
int64_t Offset1, int64_t Offset2,
unsigned NumLoads) const {
assert(Offset2 > Offset1);
if ((Offset2 - Offset1) / 8 > 64)
return false;
unsigned Opc1 = Load1->getMachineOpcode();
unsigned Opc2 = Load2->getMachineOpcode();
if (Opc1 != Opc2)
return false; // FIXME: overly conservative?
switch (Opc1) {
default: break;
case X86::LD_Fp32m:
case X86::LD_Fp64m:
case X86::LD_Fp80m:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
return false;
}
EVT VT = Load1->getValueType(0);
switch (VT.getSimpleVT().SimpleTy) {
default:
// XMM registers. In 64-bit mode we can be a bit more aggressive since we
// have 16 of them to play with.
if (TM.getSubtargetImpl()->is64Bit()) {
if (NumLoads >= 3)
return false;
} else if (NumLoads) {
return false;
}
break;
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
case MVT::f32:
case MVT::f64:
if (NumLoads)
return false;
break;
}
return true;
}
bool X86InstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
assert(Cond.size() == 1 && "Invalid X86 branch condition!");
X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
return true;
Cond[0].setImm(GetOppositeBranchCondition(CC));
return false;
}
bool X86InstrInfo::
isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
// FIXME: Return false for x87 stack register classes for now. We can't
// allow any loads of these registers before FpGet_ST0_80.
return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
}
/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
/// register? e.g. r8, xmm8, xmm13, etc.
bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
switch (RegNo) {
default: break;
case X86::R8: case X86::R9: case X86::R10: case X86::R11:
case X86::R12: case X86::R13: case X86::R14: case X86::R15:
case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11:
case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
return true;
}
return false;
}
/// getGlobalBaseReg - Return a virtual register initialized with the
/// the global base register value. Output instructions required to
/// initialize the register in the function entry block, if necessary.
///
/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
///
unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
"X86-64 PIC uses RIP relative addressing");
X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
if (GlobalBaseReg != 0)
return GlobalBaseReg;
// Create the register. The code to initialize it is inserted
// later, by the CGBR pass (below).
MachineRegisterInfo &RegInfo = MF->getRegInfo();
GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
X86FI->setGlobalBaseReg(GlobalBaseReg);
return GlobalBaseReg;
}
// These are the replaceable SSE instructions. Some of these have Int variants
// that we don't include here. We don't want to replace instructions selected
// by intrinsics.
static const unsigned ReplaceableInstrs[][3] = {
//PackedSingle PackedDouble PackedInt
{ X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
{ X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
{ X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
{ X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
{ X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
{ X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
{ X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
{ X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
{ X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
{ X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
{ X86::ORPSrm, X86::ORPDrm, X86::PORrm },
{ X86::ORPSrr, X86::ORPDrr, X86::PORrr },
{ X86::V_SET0PS, X86::V_SET0PD, X86::V_SET0PI },
{ X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
{ X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
// AVX 128-bit support
{ X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
{ X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
{ X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
{ X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
{ X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
{ X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
{ X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
{ X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
{ X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
{ X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
{ X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
{ X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
{ X86::AVX_SET0PS, X86::AVX_SET0PD, X86::AVX_SET0PI },
{ X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
{ X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
};
// FIXME: Some shuffle and unpack instructions have equivalents in different
// domains, but they require a bit more work than just switching opcodes.
static const unsigned *lookup(unsigned opcode, unsigned domain) {
for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
if (ReplaceableInstrs[i][domain-1] == opcode)
return ReplaceableInstrs[i];
return 0;
}
std::pair<uint16_t, uint16_t>
X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
return std::make_pair(domain,
domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
}
void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
assert(Domain>0 && Domain<4 && "Invalid execution domain");
uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
assert(dom && "Not an SSE instruction");
const unsigned *table = lookup(MI->getOpcode(), dom);
assert(table && "Cannot change domain");
MI->setDesc(get(table[Domain-1]));
}
/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
NopInst.setOpcode(X86::NOOP);
}
bool X86InstrInfo::isHighLatencyDef(int opc) const {
switch (opc) {
default: return false;
case X86::DIVSDrm:
case X86::DIVSDrm_Int:
case X86::DIVSDrr:
case X86::DIVSDrr_Int:
case X86::DIVSSrm:
case X86::DIVSSrm_Int:
case X86::DIVSSrr:
case X86::DIVSSrr_Int:
case X86::SQRTPDm:
case X86::SQRTPDm_Int:
case X86::SQRTPDr:
case X86::SQRTPDr_Int:
case X86::SQRTPSm:
case X86::SQRTPSm_Int:
case X86::SQRTPSr:
case X86::SQRTPSr_Int:
case X86::SQRTSDm:
case X86::SQRTSDm_Int:
case X86::SQRTSDr:
case X86::SQRTSDr_Int:
case X86::SQRTSSm:
case X86::SQRTSSm_Int:
case X86::SQRTSSr:
case X86::SQRTSSr_Int:
return true;
}
}
bool X86InstrInfo::
hasHighOperandLatency(const InstrItineraryData *ItinData,
const MachineRegisterInfo *MRI,
const MachineInstr *DefMI, unsigned DefIdx,
const MachineInstr *UseMI, unsigned UseIdx) const {
return isHighLatencyDef(DefMI->getOpcode());
}
namespace {
/// CGBR - Create Global Base Reg pass. This initializes the PIC
/// global base register for x86-32.
struct CGBR : public MachineFunctionPass {
static char ID;
CGBR() : MachineFunctionPass(ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF) {
const X86TargetMachine *TM =
static_cast<const X86TargetMachine *>(&MF.getTarget());
assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
"X86-64 PIC uses RIP relative addressing");
// Only emit a global base reg in PIC mode.
if (TM->getRelocationModel() != Reloc::PIC_)
return false;
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
// If we didn't need a GlobalBaseReg, don't insert code.
if (GlobalBaseReg == 0)
return false;
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = MF.front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
MachineRegisterInfo &RegInfo = MF.getRegInfo();
const X86InstrInfo *TII = TM->getInstrInfo();
unsigned PC;
if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
else
PC = GlobalBaseReg;
// Operand of MovePCtoStack is completely ignored by asm printer. It's
// only used in JIT code emission as displacement to pc.
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
// If we're using vanilla 'GOT' PIC style, we should use relative addressing
// not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
// Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
.addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
X86II::MO_GOT_ABSOLUTE_ADDRESS);
}
return true;
}
virtual const char *getPassName() const {
return "X86 PIC Global Base Reg Initialization";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
}
char CGBR::ID = 0;
FunctionPass*
llvm::createGlobalBaseRegPass() { return new CGBR(); }