blob: 13e1454fa5f33013aa658ac136be2e33829586de [file] [log] [blame]
//===- SjLjEHPass.cpp - Eliminate Invoke & Unwind instructions -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation is designed for use by code generators which use SjLj
// based exception handling.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sjljehprepare"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <set>
using namespace llvm;
STATISTIC(NumInvokes, "Number of invokes replaced");
STATISTIC(NumUnwinds, "Number of unwinds replaced");
STATISTIC(NumSpilled, "Number of registers live across unwind edges");
namespace {
class SjLjEHPass : public FunctionPass {
const TargetLowering *TLI;
const Type *FunctionContextTy;
Constant *RegisterFn;
Constant *UnregisterFn;
Constant *BuiltinSetjmpFn;
Constant *FrameAddrFn;
Constant *StackAddrFn;
Constant *StackRestoreFn;
Constant *LSDAAddrFn;
Value *PersonalityFn;
Constant *SelectorFn;
Constant *ExceptionFn;
Constant *CallSiteFn;
Constant *DispatchSetupFn;
Value *CallSite;
public:
static char ID; // Pass identification, replacement for typeid
explicit SjLjEHPass(const TargetLowering *tli = NULL)
: FunctionPass(ID), TLI(tli) { }
bool doInitialization(Module &M);
bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const { }
const char *getPassName() const {
return "SJLJ Exception Handling preparation";
}
private:
void insertCallSiteStore(Instruction *I, int Number, Value *CallSite);
void markInvokeCallSite(InvokeInst *II, int InvokeNo, Value *CallSite,
SwitchInst *CatchSwitch);
void splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes);
bool insertSjLjEHSupport(Function &F);
};
} // end anonymous namespace
char SjLjEHPass::ID = 0;
// Public Interface To the SjLjEHPass pass.
FunctionPass *llvm::createSjLjEHPass(const TargetLowering *TLI) {
return new SjLjEHPass(TLI);
}
// doInitialization - Set up decalarations and types needed to process
// exceptions.
bool SjLjEHPass::doInitialization(Module &M) {
// Build the function context structure.
// builtin_setjmp uses a five word jbuf
const Type *VoidPtrTy =
Type::getInt8PtrTy(M.getContext());
const Type *Int32Ty = Type::getInt32Ty(M.getContext());
FunctionContextTy =
StructType::get(M.getContext(),
VoidPtrTy, // __prev
Int32Ty, // call_site
ArrayType::get(Int32Ty, 4), // __data
VoidPtrTy, // __personality
VoidPtrTy, // __lsda
ArrayType::get(VoidPtrTy, 5), // __jbuf
NULL);
RegisterFn = M.getOrInsertFunction("_Unwind_SjLj_Register",
Type::getVoidTy(M.getContext()),
PointerType::getUnqual(FunctionContextTy),
(Type *)0);
UnregisterFn =
M.getOrInsertFunction("_Unwind_SjLj_Unregister",
Type::getVoidTy(M.getContext()),
PointerType::getUnqual(FunctionContextTy),
(Type *)0);
FrameAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::frameaddress);
StackAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
BuiltinSetjmpFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_setjmp);
LSDAAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_lsda);
SelectorFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_selector);
ExceptionFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_exception);
CallSiteFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_callsite);
DispatchSetupFn
= Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_dispatch_setup);
PersonalityFn = 0;
return true;
}
/// insertCallSiteStore - Insert a store of the call-site value to the
/// function context
void SjLjEHPass::insertCallSiteStore(Instruction *I, int Number,
Value *CallSite) {
ConstantInt *CallSiteNoC = ConstantInt::get(Type::getInt32Ty(I->getContext()),
Number);
// Insert a store of the call-site number
new StoreInst(CallSiteNoC, CallSite, true, I); // volatile
}
/// markInvokeCallSite - Insert code to mark the call_site for this invoke
void SjLjEHPass::markInvokeCallSite(InvokeInst *II, int InvokeNo,
Value *CallSite,
SwitchInst *CatchSwitch) {
ConstantInt *CallSiteNoC= ConstantInt::get(Type::getInt32Ty(II->getContext()),
InvokeNo);
// The runtime comes back to the dispatcher with the call_site - 1 in
// the context. Odd, but there it is.
ConstantInt *SwitchValC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
InvokeNo - 1);
// If the unwind edge has phi nodes, split the edge.
if (isa<PHINode>(II->getUnwindDest()->begin())) {
SplitCriticalEdge(II, 1, this);
// If there are any phi nodes left, they must have a single predecessor.
while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
PN->replaceAllUsesWith(PN->getIncomingValue(0));
PN->eraseFromParent();
}
}
// Insert the store of the call site value
insertCallSiteStore(II, InvokeNo, CallSite);
// Record the call site value for the back end so it stays associated with
// the invoke.
CallInst::Create(CallSiteFn, CallSiteNoC, "", II);
// Add a switch case to our unwind block.
CatchSwitch->addCase(SwitchValC, II->getUnwindDest());
// We still want this to look like an invoke so we emit the LSDA properly,
// so we don't transform the invoke into a call here.
}
/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
/// we reach blocks we've already seen.
static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
if (!LiveBBs.insert(BB).second) return; // already been here.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
MarkBlocksLiveIn(*PI, LiveBBs);
}
/// splitLiveRangesAcrossInvokes - Each value that is live across an unwind edge
/// we spill into a stack location, guaranteeing that there is nothing live
/// across the unwind edge. This process also splits all critical edges
/// coming out of invoke's.
/// FIXME: Move this function to a common utility file (Local.cpp?) so
/// both SjLj and LowerInvoke can use it.
void SjLjEHPass::
splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes) {
// First step, split all critical edges from invoke instructions.
for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
InvokeInst *II = Invokes[i];
SplitCriticalEdge(II, 0, this);
SplitCriticalEdge(II, 1, this);
assert(!isa<PHINode>(II->getNormalDest()) &&
!isa<PHINode>(II->getUnwindDest()) &&
"critical edge splitting left single entry phi nodes?");
}
Function *F = Invokes.back()->getParent()->getParent();
// To avoid having to handle incoming arguments specially, we lower each arg
// to a copy instruction in the entry block. This ensures that the argument
// value itself cannot be live across the entry block.
BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
while (isa<AllocaInst>(AfterAllocaInsertPt) &&
isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
++AfterAllocaInsertPt;
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI) {
const Type *Ty = AI->getType();
// Aggregate types can't be cast, but are legal argument types, so we have
// to handle them differently. We use an extract/insert pair as a
// lightweight method to achieve the same goal.
if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
Instruction *NI = InsertValueInst::Create(AI, EI, 0);
NI->insertAfter(EI);
AI->replaceAllUsesWith(NI);
// Set the operand of the instructions back to the AllocaInst.
EI->setOperand(0, AI);
NI->setOperand(0, AI);
} else {
// This is always a no-op cast because we're casting AI to AI->getType()
// so src and destination types are identical. BitCast is the only
// possibility.
CastInst *NC = new BitCastInst(
AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
AI->replaceAllUsesWith(NC);
// Set the operand of the cast instruction back to the AllocaInst.
// Normally it's forbidden to replace a CastInst's operand because it
// could cause the opcode to reflect an illegal conversion. However,
// we're replacing it here with the same value it was constructed with.
// We do this because the above replaceAllUsesWith() clobbered the
// operand, but we want this one to remain.
NC->setOperand(0, AI);
}
}
// Finally, scan the code looking for instructions with bad live ranges.
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
// Ignore obvious cases we don't have to handle. In particular, most
// instructions either have no uses or only have a single use inside the
// current block. Ignore them quickly.
Instruction *Inst = II;
if (Inst->use_empty()) continue;
if (Inst->hasOneUse() &&
cast<Instruction>(Inst->use_back())->getParent() == BB &&
!isa<PHINode>(Inst->use_back())) continue;
// If this is an alloca in the entry block, it's not a real register
// value.
if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
continue;
// Avoid iterator invalidation by copying users to a temporary vector.
SmallVector<Instruction*,16> Users;
for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
UI != E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
if (User->getParent() != BB || isa<PHINode>(User))
Users.push_back(User);
}
// Find all of the blocks that this value is live in.
std::set<BasicBlock*> LiveBBs;
LiveBBs.insert(Inst->getParent());
while (!Users.empty()) {
Instruction *U = Users.back();
Users.pop_back();
if (!isa<PHINode>(U)) {
MarkBlocksLiveIn(U->getParent(), LiveBBs);
} else {
// Uses for a PHI node occur in their predecessor block.
PHINode *PN = cast<PHINode>(U);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == Inst)
MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
}
}
// Now that we know all of the blocks that this thing is live in, see if
// it includes any of the unwind locations.
bool NeedsSpill = false;
for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
NeedsSpill = true;
}
}
// If we decided we need a spill, do it.
// FIXME: Spilling this way is overkill, as it forces all uses of
// the value to be reloaded from the stack slot, even those that aren't
// in the unwind blocks. We should be more selective.
if (NeedsSpill) {
++NumSpilled;
DemoteRegToStack(*Inst, true);
}
}
}
bool SjLjEHPass::insertSjLjEHSupport(Function &F) {
SmallVector<ReturnInst*,16> Returns;
SmallVector<UnwindInst*,16> Unwinds;
SmallVector<InvokeInst*,16> Invokes;
// Look through the terminators of the basic blocks to find invokes, returns
// and unwinds.
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
// Remember all return instructions in case we insert an invoke into this
// function.
Returns.push_back(RI);
} else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
Invokes.push_back(II);
} else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
Unwinds.push_back(UI);
}
}
NumInvokes += Invokes.size();
NumUnwinds += Unwinds.size();
// If we don't have any invokes, there's nothing to do.
if (Invokes.empty()) return false;
// Find the eh.selector.*, eh.exception and alloca calls.
//
// Remember any allocas() that aren't in the entry block, as the
// jmpbuf saved SP will need to be updated for them.
//
// We'll use the first eh.selector to determine the right personality
// function to use. For SJLJ, we always use the same personality for the
// whole function, not on a per-selector basis.
// FIXME: That's a bit ugly. Better way?
SmallVector<CallInst*,16> EH_Selectors;
SmallVector<CallInst*,16> EH_Exceptions;
SmallVector<Instruction*,16> JmpbufUpdatePoints;
// Note: Skip the entry block since there's nothing there that interests
// us. eh.selector and eh.exception shouldn't ever be there, and we
// want to disregard any allocas that are there.
for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
if (CallInst *CI = dyn_cast<CallInst>(I)) {
if (CI->getCalledFunction() == SelectorFn) {
if (!PersonalityFn) PersonalityFn = CI->getArgOperand(1);
EH_Selectors.push_back(CI);
} else if (CI->getCalledFunction() == ExceptionFn) {
EH_Exceptions.push_back(CI);
} else if (CI->getCalledFunction() == StackRestoreFn) {
JmpbufUpdatePoints.push_back(CI);
}
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
JmpbufUpdatePoints.push_back(AI);
}
}
}
// If we don't have any eh.selector calls, we can't determine the personality
// function. Without a personality function, we can't process exceptions.
if (!PersonalityFn) return false;
// We have invokes, so we need to add register/unregister calls to get this
// function onto the global unwind stack.
//
// First thing we need to do is scan the whole function for values that are
// live across unwind edges. Each value that is live across an unwind edge we
// spill into a stack location, guaranteeing that there is nothing live across
// the unwind edge. This process also splits all critical edges coming out of
// invoke's.
splitLiveRangesAcrossInvokes(Invokes);
BasicBlock *EntryBB = F.begin();
// Create an alloca for the incoming jump buffer ptr and the new jump buffer
// that needs to be restored on all exits from the function. This is an
// alloca because the value needs to be added to the global context list.
unsigned Align = 4; // FIXME: Should be a TLI check?
AllocaInst *FunctionContext =
new AllocaInst(FunctionContextTy, 0, Align,
"fcn_context", F.begin()->begin());
Value *Idxs[2];
const Type *Int32Ty = Type::getInt32Ty(F.getContext());
Value *Zero = ConstantInt::get(Int32Ty, 0);
// We need to also keep around a reference to the call_site field
Idxs[0] = Zero;
Idxs[1] = ConstantInt::get(Int32Ty, 1);
CallSite = GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2,
"call_site",
EntryBB->getTerminator());
// The exception selector comes back in context->data[1]
Idxs[1] = ConstantInt::get(Int32Ty, 2);
Value *FCData = GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2,
"fc_data",
EntryBB->getTerminator());
Idxs[1] = ConstantInt::get(Int32Ty, 1);
Value *SelectorAddr = GetElementPtrInst::Create(FCData, Idxs, Idxs+2,
"exc_selector_gep",
EntryBB->getTerminator());
// The exception value comes back in context->data[0]
Idxs[1] = Zero;
Value *ExceptionAddr = GetElementPtrInst::Create(FCData, Idxs, Idxs+2,
"exception_gep",
EntryBB->getTerminator());
// The result of the eh.selector call will be replaced with a a reference to
// the selector value returned in the function context. We leave the selector
// itself so the EH analysis later can use it.
for (int i = 0, e = EH_Selectors.size(); i < e; ++i) {
CallInst *I = EH_Selectors[i];
Value *SelectorVal = new LoadInst(SelectorAddr, "select_val", true, I);
I->replaceAllUsesWith(SelectorVal);
}
// eh.exception calls are replaced with references to the proper location in
// the context. Unlike eh.selector, the eh.exception calls are removed
// entirely.
for (int i = 0, e = EH_Exceptions.size(); i < e; ++i) {
CallInst *I = EH_Exceptions[i];
// Possible for there to be duplicates, so check to make sure the
// instruction hasn't already been removed.
if (!I->getParent()) continue;
Value *Val = new LoadInst(ExceptionAddr, "exception", true, I);
const Type *Ty = Type::getInt8PtrTy(F.getContext());
Val = CastInst::Create(Instruction::IntToPtr, Val, Ty, "", I);
I->replaceAllUsesWith(Val);
I->eraseFromParent();
}
// The entry block changes to have the eh.sjlj.setjmp, with a conditional
// branch to a dispatch block for non-zero returns. If we return normally,
// we're not handling an exception and just register the function context and
// continue.
// Create the dispatch block. The dispatch block is basically a big switch
// statement that goes to all of the invoke landing pads.
BasicBlock *DispatchBlock =
BasicBlock::Create(F.getContext(), "eh.sjlj.setjmp.catch", &F);
// Add a call to dispatch_setup at the start of the dispatch block. This is
// expanded to any target-specific setup that needs to be done.
Value *SetupArg =
CastInst::Create(Instruction::BitCast, FunctionContext,
Type::getInt8PtrTy(F.getContext()), "",
DispatchBlock);
CallInst::Create(DispatchSetupFn, SetupArg, "", DispatchBlock);
// Insert a load of the callsite in the dispatch block, and a switch on its
// value. By default, we go to a block that just does an unwind (which is the
// correct action for a standard call).
BasicBlock *UnwindBlock =
BasicBlock::Create(F.getContext(), "unwindbb", &F);
Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBlock));
Value *DispatchLoad = new LoadInst(CallSite, "invoke.num", true,
DispatchBlock);
SwitchInst *DispatchSwitch =
SwitchInst::Create(DispatchLoad, UnwindBlock, Invokes.size(),
DispatchBlock);
// Split the entry block to insert the conditional branch for the setjmp.
BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
"eh.sjlj.setjmp.cont");
// Populate the Function Context
// 1. LSDA address
// 2. Personality function address
// 3. jmpbuf (save SP, FP and call eh.sjlj.setjmp)
// LSDA address
Idxs[0] = Zero;
Idxs[1] = ConstantInt::get(Int32Ty, 4);
Value *LSDAFieldPtr =
GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2,
"lsda_gep",
EntryBB->getTerminator());
Value *LSDA = CallInst::Create(LSDAAddrFn, "lsda_addr",
EntryBB->getTerminator());
new StoreInst(LSDA, LSDAFieldPtr, true, EntryBB->getTerminator());
Idxs[1] = ConstantInt::get(Int32Ty, 3);
Value *PersonalityFieldPtr =
GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2,
"lsda_gep",
EntryBB->getTerminator());
new StoreInst(PersonalityFn, PersonalityFieldPtr, true,
EntryBB->getTerminator());
// Save the frame pointer.
Idxs[1] = ConstantInt::get(Int32Ty, 5);
Value *JBufPtr
= GetElementPtrInst::Create(FunctionContext, Idxs, Idxs+2,
"jbuf_gep",
EntryBB->getTerminator());
Idxs[1] = ConstantInt::get(Int32Ty, 0);
Value *FramePtr =
GetElementPtrInst::Create(JBufPtr, Idxs, Idxs+2, "jbuf_fp_gep",
EntryBB->getTerminator());
Value *Val = CallInst::Create(FrameAddrFn,
ConstantInt::get(Int32Ty, 0),
"fp",
EntryBB->getTerminator());
new StoreInst(Val, FramePtr, true, EntryBB->getTerminator());
// Save the stack pointer.
Idxs[1] = ConstantInt::get(Int32Ty, 2);
Value *StackPtr =
GetElementPtrInst::Create(JBufPtr, Idxs, Idxs+2, "jbuf_sp_gep",
EntryBB->getTerminator());
Val = CallInst::Create(StackAddrFn, "sp", EntryBB->getTerminator());
new StoreInst(Val, StackPtr, true, EntryBB->getTerminator());
// Call the setjmp instrinsic. It fills in the rest of the jmpbuf.
Value *SetjmpArg =
CastInst::Create(Instruction::BitCast, JBufPtr,
Type::getInt8PtrTy(F.getContext()), "",
EntryBB->getTerminator());
Value *DispatchVal = CallInst::Create(BuiltinSetjmpFn, SetjmpArg,
"dispatch",
EntryBB->getTerminator());
// check the return value of the setjmp. non-zero goes to dispatcher.
Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
ICmpInst::ICMP_EQ, DispatchVal, Zero,
"notunwind");
// Nuke the uncond branch.
EntryBB->getTerminator()->eraseFromParent();
// Put in a new condbranch in its place.
BranchInst::Create(ContBlock, DispatchBlock, IsNormal, EntryBB);
// Register the function context and make sure it's known to not throw
CallInst *Register =
CallInst::Create(RegisterFn, FunctionContext, "",
ContBlock->getTerminator());
Register->setDoesNotThrow();
// At this point, we are all set up, update the invoke instructions to mark
// their call_site values, and fill in the dispatch switch accordingly.
for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
markInvokeCallSite(Invokes[i], i+1, CallSite, DispatchSwitch);
// Mark call instructions that aren't nounwind as no-action (call_site ==
// -1). Skip the entry block, as prior to then, no function context has been
// created for this function and any unexpected exceptions thrown will go
// directly to the caller's context, which is what we want anyway, so no need
// to do anything here.
for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;) {
for (BasicBlock::iterator I = BB->begin(), end = BB->end(); I != end; ++I)
if (CallInst *CI = dyn_cast<CallInst>(I)) {
// Ignore calls to the EH builtins (eh.selector, eh.exception)
Constant *Callee = CI->getCalledFunction();
if (Callee != SelectorFn && Callee != ExceptionFn
&& !CI->doesNotThrow())
insertCallSiteStore(CI, -1, CallSite);
}
}
// Replace all unwinds with a branch to the unwind handler.
// ??? Should this ever happen with sjlj exceptions?
for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
BranchInst::Create(UnwindBlock, Unwinds[i]);
Unwinds[i]->eraseFromParent();
}
// Following any allocas not in the entry block, update the saved SP in the
// jmpbuf to the new value.
for (unsigned i = 0, e = JmpbufUpdatePoints.size(); i != e; ++i) {
Instruction *AI = JmpbufUpdatePoints[i];
Instruction *StackAddr = CallInst::Create(StackAddrFn, "sp");
StackAddr->insertAfter(AI);
Instruction *StoreStackAddr = new StoreInst(StackAddr, StackPtr, true);
StoreStackAddr->insertAfter(StackAddr);
}
// Finally, for any returns from this function, if this function contains an
// invoke, add a call to unregister the function context.
for (unsigned i = 0, e = Returns.size(); i != e; ++i)
CallInst::Create(UnregisterFn, FunctionContext, "", Returns[i]);
return true;
}
bool SjLjEHPass::runOnFunction(Function &F) {
bool Res = insertSjLjEHSupport(F);
return Res;
}