blob: 6f06705243e9080c794ebf1f992869b7d89f9335 [file] [log] [blame]
//===- RegisterInfoEmitter.cpp - Generate a Register File Desc. -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting a description of a target
// register file for a code generator. It uses instances of the Register,
// RegisterAliases, and RegisterClass classes to gather this information.
//
//===----------------------------------------------------------------------===//
#include "RegisterInfoEmitter.h"
#include "CodeGenTarget.h"
#include "CodeGenRegisters.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <set>
using namespace llvm;
// runEnums - Print out enum values for all of the registers.
void RegisterInfoEmitter::runEnums(raw_ostream &OS) {
CodeGenTarget Target;
const std::vector<CodeGenRegister> &Registers = Target.getRegisters();
std::string Namespace = Registers[0].TheDef->getValueAsString("Namespace");
EmitSourceFileHeader("Target Register Enum Values", OS);
OS << "namespace llvm {\n\n";
if (!Namespace.empty())
OS << "namespace " << Namespace << " {\n";
OS << "enum {\n NoRegister,\n";
for (unsigned i = 0, e = Registers.size(); i != e; ++i)
OS << " " << Registers[i].getName() << ", \t// " << i+1 << "\n";
OS << " NUM_TARGET_REGS \t// " << Registers.size()+1 << "\n";
OS << "};\n";
if (!Namespace.empty())
OS << "}\n";
const std::vector<Record*> SubRegIndices = Target.getSubRegIndices();
if (!SubRegIndices.empty()) {
OS << "\n// Subregister indices\n";
Namespace = SubRegIndices[0]->getValueAsString("Namespace");
if (!Namespace.empty())
OS << "namespace " << Namespace << " {\n";
OS << "enum {\n NoSubRegister,\n";
for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
OS << " " << SubRegIndices[i]->getName() << ",\t// " << i+1 << "\n";
OS << " NUM_TARGET_SUBREGS = " << SubRegIndices.size()+1 << "\n";
OS << "};\n";
if (!Namespace.empty())
OS << "}\n";
}
OS << "} // End llvm namespace \n";
}
void RegisterInfoEmitter::runHeader(raw_ostream &OS) {
EmitSourceFileHeader("Register Information Header Fragment", OS);
CodeGenTarget Target;
const std::string &TargetName = Target.getName();
std::string ClassName = TargetName + "GenRegisterInfo";
OS << "#include \"llvm/Target/TargetRegisterInfo.h\"\n";
OS << "#include <string>\n\n";
OS << "namespace llvm {\n\n";
OS << "struct " << ClassName << " : public TargetRegisterInfo {\n"
<< " explicit " << ClassName
<< "(int CallFrameSetupOpcode = -1, int CallFrameDestroyOpcode = -1);\n"
<< " virtual int getDwarfRegNumFull(unsigned RegNum, "
<< "unsigned Flavour) const;\n"
<< " virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;\n"
<< " virtual bool needsStackRealignment(const MachineFunction &) const\n"
<< " { return false; }\n"
<< " unsigned getSubReg(unsigned RegNo, unsigned Index) const;\n"
<< " unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const;\n"
<< " unsigned composeSubRegIndices(unsigned, unsigned) const;\n"
<< "};\n\n";
const std::vector<CodeGenRegisterClass> &RegisterClasses =
Target.getRegisterClasses();
if (!RegisterClasses.empty()) {
OS << "namespace " << RegisterClasses[0].Namespace
<< " { // Register classes\n";
OS << " enum {\n";
for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) {
if (i) OS << ",\n";
OS << " " << RegisterClasses[i].getName() << "RegClassID";
OS << " = " << i;
}
OS << "\n };\n\n";
for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) {
const std::string &Name = RegisterClasses[i].getName();
// Output the register class definition.
OS << " struct " << Name << "Class : public TargetRegisterClass {\n"
<< " " << Name << "Class();\n"
<< RegisterClasses[i].MethodProtos << " };\n";
// Output the extern for the instance.
OS << " extern " << Name << "Class\t" << Name << "RegClass;\n";
// Output the extern for the pointer to the instance (should remove).
OS << " static TargetRegisterClass * const "<< Name <<"RegisterClass = &"
<< Name << "RegClass;\n";
}
OS << "} // end of namespace " << TargetName << "\n\n";
}
OS << "} // End llvm namespace \n";
}
static void addSuperReg(Record *R, Record *S,
std::map<Record*, std::set<Record*>, LessRecord> &SubRegs,
std::map<Record*, std::set<Record*>, LessRecord> &SuperRegs,
std::map<Record*, std::set<Record*>, LessRecord> &Aliases) {
if (R == S) {
errs() << "Error: recursive sub-register relationship between"
<< " register " << getQualifiedName(R)
<< " and its sub-registers?\n";
abort();
}
if (!SuperRegs[R].insert(S).second)
return;
SubRegs[S].insert(R);
Aliases[R].insert(S);
Aliases[S].insert(R);
if (SuperRegs.count(S))
for (std::set<Record*>::iterator I = SuperRegs[S].begin(),
E = SuperRegs[S].end(); I != E; ++I)
addSuperReg(R, *I, SubRegs, SuperRegs, Aliases);
}
static void addSubSuperReg(Record *R, Record *S,
std::map<Record*, std::set<Record*>, LessRecord> &SubRegs,
std::map<Record*, std::set<Record*>, LessRecord> &SuperRegs,
std::map<Record*, std::set<Record*>, LessRecord> &Aliases) {
if (R == S) {
errs() << "Error: recursive sub-register relationship between"
<< " register " << getQualifiedName(R)
<< " and its sub-registers?\n";
abort();
}
if (!SubRegs[R].insert(S).second)
return;
addSuperReg(S, R, SubRegs, SuperRegs, Aliases);
Aliases[R].insert(S);
Aliases[S].insert(R);
if (SubRegs.count(S))
for (std::set<Record*>::iterator I = SubRegs[S].begin(),
E = SubRegs[S].end(); I != E; ++I)
addSubSuperReg(R, *I, SubRegs, SuperRegs, Aliases);
}
struct RegisterMaps {
// Map SubRegIndex -> Register
typedef std::map<Record*, Record*, LessRecord> SubRegMap;
// Map Register -> SubRegMap
typedef std::map<Record*, SubRegMap> SubRegMaps;
SubRegMaps SubReg;
SubRegMap &inferSubRegIndices(Record *Reg);
// Composite SubRegIndex instances.
// Map (SubRegIndex,SubRegIndex) -> SubRegIndex
typedef DenseMap<std::pair<Record*,Record*>,Record*> CompositeMap;
CompositeMap Composite;
// Compute SubRegIndex compositions after inferSubRegIndices has run on all
// registers.
void computeComposites();
};
// Calculate all subregindices for Reg. Loopy subregs cause infinite recursion.
RegisterMaps::SubRegMap &RegisterMaps::inferSubRegIndices(Record *Reg) {
SubRegMap &SRM = SubReg[Reg];
if (!SRM.empty())
return SRM;
std::vector<Record*> SubRegs = Reg->getValueAsListOfDefs("SubRegs");
std::vector<Record*> Indices = Reg->getValueAsListOfDefs("SubRegIndices");
if (SubRegs.size() != Indices.size())
throw "Register " + Reg->getName() + " SubRegIndices doesn't match SubRegs";
// First insert the direct subregs and make sure they are fully indexed.
for (unsigned i = 0, e = SubRegs.size(); i != e; ++i) {
if (!SRM.insert(std::make_pair(Indices[i], SubRegs[i])).second)
throw "SubRegIndex " + Indices[i]->getName()
+ " appears twice in Register " + Reg->getName();
inferSubRegIndices(SubRegs[i]);
}
// Keep track of inherited subregs and how they can be reached.
// Register -> (SubRegIndex, SubRegIndex)
typedef std::map<Record*, std::pair<Record*,Record*>, LessRecord> OrphanMap;
OrphanMap Orphans;
// Clone inherited subregs. Here the order is important - earlier subregs take
// precedence.
for (unsigned i = 0, e = SubRegs.size(); i != e; ++i) {
SubRegMap &M = SubReg[SubRegs[i]];
for (SubRegMap::iterator si = M.begin(), se = M.end(); si != se; ++si)
if (!SRM.insert(*si).second)
Orphans[si->second] = std::make_pair(Indices[i], si->first);
}
// Finally process the composites.
ListInit *Comps = Reg->getValueAsListInit("CompositeIndices");
for (unsigned i = 0, e = Comps->size(); i != e; ++i) {
DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i));
if (!Pat)
throw "Invalid dag '" + Comps->getElement(i)->getAsString()
+ "' in CompositeIndices";
DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator());
if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex"))
throw "Invalid SubClassIndex in " + Pat->getAsString();
// Resolve list of subreg indices into R2.
Record *R2 = Reg;
for (DagInit::const_arg_iterator di = Pat->arg_begin(),
de = Pat->arg_end(); di != de; ++di) {
DefInit *IdxInit = dynamic_cast<DefInit*>(*di);
if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex"))
throw "Invalid SubClassIndex in " + Pat->getAsString();
SubRegMap::const_iterator ni = SubReg[R2].find(IdxInit->getDef());
if (ni == SubReg[R2].end())
throw "Composite " + Pat->getAsString() + " refers to bad index in "
+ R2->getName();
R2 = ni->second;
}
// Insert composite index. Allow overriding inherited indices etc.
SRM[BaseIdxInit->getDef()] = R2;
// R2 is now directly addressable, no longer an orphan.
Orphans.erase(R2);
}
// Now, Orphans contains the inherited subregisters without a direct index.
if (!Orphans.empty()) {
errs() << "Error: Register " << getQualifiedName(Reg)
<< " inherited subregisters without an index:\n";
for (OrphanMap::iterator i = Orphans.begin(), e = Orphans.end(); i != e;
++i) {
errs() << " " << getQualifiedName(i->first)
<< " = " << i->second.first->getName()
<< ", " << i->second.second->getName() << "\n";
}
abort();
}
return SRM;
}
void RegisterMaps::computeComposites() {
for (SubRegMaps::const_iterator sri = SubReg.begin(), sre = SubReg.end();
sri != sre; ++sri) {
Record *Reg1 = sri->first;
const SubRegMap &SRM1 = sri->second;
for (SubRegMap::const_iterator i1 = SRM1.begin(), e1 = SRM1.end();
i1 != e1; ++i1) {
Record *Idx1 = i1->first;
Record *Reg2 = i1->second;
// Ignore identity compositions.
if (Reg1 == Reg2)
continue;
// If Reg2 has no subregs, Idx1 doesn't compose.
if (!SubReg.count(Reg2))
continue;
const SubRegMap &SRM2 = SubReg[Reg2];
// Try composing Idx1 with another SubRegIndex.
for (SubRegMap::const_iterator i2 = SRM2.begin(), e2 = SRM2.end();
i2 != e2; ++i2) {
std::pair<Record*,Record*> IdxPair(Idx1, i2->first);
Record *Reg3 = i2->second;
// OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
for (SubRegMap::const_iterator i1d = SRM1.begin(), e1d = SRM1.end();
i1d != e1d; ++i1d) {
// Ignore identity compositions.
if (Reg2 == Reg3)
continue;
if (i1d->second == Reg3) {
std::pair<CompositeMap::iterator,bool> Ins =
Composite.insert(std::make_pair(IdxPair, i1d->first));
// Conflicting composition?
if (!Ins.second && Ins.first->second != i1d->first) {
errs() << "Error: SubRegIndex " << getQualifiedName(Idx1)
<< " and " << getQualifiedName(IdxPair.second)
<< " compose ambiguously as "
<< getQualifiedName(Ins.first->second) << " or "
<< getQualifiedName(i1d->first) << "\n";
abort();
}
}
}
}
}
}
// We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid
// compositions, so remove any mappings of that form.
for (CompositeMap::iterator i = Composite.begin(), e = Composite.end();
i != e;) {
CompositeMap::iterator j = i;
++i;
if (j->first.second == j->second)
Composite.erase(j);
}
}
class RegisterSorter {
private:
std::map<Record*, std::set<Record*>, LessRecord> &RegisterSubRegs;
public:
RegisterSorter(std::map<Record*, std::set<Record*>, LessRecord> &RS)
: RegisterSubRegs(RS) {}
bool operator()(Record *RegA, Record *RegB) {
// B is sub-register of A.
return RegisterSubRegs.count(RegA) && RegisterSubRegs[RegA].count(RegB);
}
};
// RegisterInfoEmitter::run - Main register file description emitter.
//
void RegisterInfoEmitter::run(raw_ostream &OS) {
CodeGenTarget Target;
EmitSourceFileHeader("Register Information Source Fragment", OS);
OS << "namespace llvm {\n\n";
// Start out by emitting each of the register classes... to do this, we build
// a set of registers which belong to a register class, this is to ensure that
// each register is only in a single register class.
//
const std::vector<CodeGenRegisterClass> &RegisterClasses =
Target.getRegisterClasses();
// Loop over all of the register classes... emitting each one.
OS << "namespace { // Register classes...\n";
// RegClassesBelongedTo - Keep track of which register classes each reg
// belongs to.
std::multimap<Record*, const CodeGenRegisterClass*> RegClassesBelongedTo;
// Emit the register enum value arrays for each RegisterClass
for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
const CodeGenRegisterClass &RC = RegisterClasses[rc];
// Give the register class a legal C name if it's anonymous.
std::string Name = RC.TheDef->getName();
// Emit the register list now.
OS << " // " << Name << " Register Class...\n"
<< " static const unsigned " << Name
<< "[] = {\n ";
for (unsigned i = 0, e = RC.Elements.size(); i != e; ++i) {
Record *Reg = RC.Elements[i];
OS << getQualifiedName(Reg) << ", ";
// Keep track of which regclasses this register is in.
RegClassesBelongedTo.insert(std::make_pair(Reg, &RC));
}
OS << "\n };\n\n";
}
// Emit the ValueType arrays for each RegisterClass
for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
const CodeGenRegisterClass &RC = RegisterClasses[rc];
// Give the register class a legal C name if it's anonymous.
std::string Name = RC.TheDef->getName() + "VTs";
// Emit the register list now.
OS << " // " << Name
<< " Register Class Value Types...\n"
<< " static const EVT " << Name
<< "[] = {\n ";
for (unsigned i = 0, e = RC.VTs.size(); i != e; ++i)
OS << getEnumName(RC.VTs[i]) << ", ";
OS << "MVT::Other\n };\n\n";
}
OS << "} // end anonymous namespace\n\n";
// Now that all of the structs have been emitted, emit the instances.
if (!RegisterClasses.empty()) {
OS << "namespace " << RegisterClasses[0].Namespace
<< " { // Register class instances\n";
for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i)
OS << " " << RegisterClasses[i].getName() << "Class\t"
<< RegisterClasses[i].getName() << "RegClass;\n";
std::map<unsigned, std::set<unsigned> > SuperClassMap;
std::map<unsigned, std::set<unsigned> > SuperRegClassMap;
OS << "\n";
unsigned NumSubRegIndices = Target.getSubRegIndices().size();
if (NumSubRegIndices) {
// Emit the sub-register classes for each RegisterClass
for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
const CodeGenRegisterClass &RC = RegisterClasses[rc];
std::vector<Record*> SRC(NumSubRegIndices);
for (DenseMap<Record*,Record*>::const_iterator
i = RC.SubRegClasses.begin(),
e = RC.SubRegClasses.end(); i != e; ++i) {
// Build SRC array.
unsigned idx = Target.getSubRegIndexNo(i->first);
SRC.at(idx-1) = i->second;
// Find the register class number of i->second for SuperRegClassMap.
for (unsigned rc2 = 0, e2 = RegisterClasses.size(); rc2 != e2; ++rc2) {
const CodeGenRegisterClass &RC2 = RegisterClasses[rc2];
if (RC2.TheDef == i->second) {
SuperRegClassMap[rc2].insert(rc);
break;
}
}
}
// Give the register class a legal C name if it's anonymous.
std::string Name = RC.TheDef->getName();
OS << " // " << Name
<< " Sub-register Classes...\n"
<< " static const TargetRegisterClass* const "
<< Name << "SubRegClasses[] = {\n ";
for (unsigned idx = 0; idx != NumSubRegIndices; ++idx) {
if (idx)
OS << ", ";
if (SRC[idx])
OS << "&" << getQualifiedName(SRC[idx]) << "RegClass";
else
OS << "0";
}
OS << "\n };\n\n";
}
// Emit the super-register classes for each RegisterClass
for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
const CodeGenRegisterClass &RC = RegisterClasses[rc];
// Give the register class a legal C name if it's anonymous.
std::string Name = RC.TheDef->getName();
OS << " // " << Name
<< " Super-register Classes...\n"
<< " static const TargetRegisterClass* const "
<< Name << "SuperRegClasses[] = {\n ";
bool Empty = true;
std::map<unsigned, std::set<unsigned> >::iterator I =
SuperRegClassMap.find(rc);
if (I != SuperRegClassMap.end()) {
for (std::set<unsigned>::iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II) {
const CodeGenRegisterClass &RC2 = RegisterClasses[*II];
if (!Empty)
OS << ", ";
OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass";
Empty = false;
}
}
OS << (!Empty ? ", " : "") << "NULL";
OS << "\n };\n\n";
}
} else {
// No subregindices in this target
OS << " static const TargetRegisterClass* const "
<< "NullRegClasses[] = { NULL };\n\n";
}
// Emit the sub-classes array for each RegisterClass
for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
const CodeGenRegisterClass &RC = RegisterClasses[rc];
// Give the register class a legal C name if it's anonymous.
std::string Name = RC.TheDef->getName();
OS << " // " << Name
<< " Register Class sub-classes...\n"
<< " static const TargetRegisterClass* const "
<< Name << "Subclasses[] = {\n ";
bool Empty = true;
for (unsigned rc2 = 0, e2 = RegisterClasses.size(); rc2 != e2; ++rc2) {
const CodeGenRegisterClass &RC2 = RegisterClasses[rc2];
// Sub-classes are used to determine if a virtual register can be used
// as an instruction operand, or if it must be copied first.
if (rc == rc2 || !RC.hasSubClass(&RC2)) continue;
if (!Empty) OS << ", ";
OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass";
Empty = false;
std::map<unsigned, std::set<unsigned> >::iterator SCMI =
SuperClassMap.find(rc2);
if (SCMI == SuperClassMap.end()) {
SuperClassMap.insert(std::make_pair(rc2, std::set<unsigned>()));
SCMI = SuperClassMap.find(rc2);
}
SCMI->second.insert(rc);
}
OS << (!Empty ? ", " : "") << "NULL";
OS << "\n };\n\n";
}
for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
const CodeGenRegisterClass &RC = RegisterClasses[rc];
// Give the register class a legal C name if it's anonymous.
std::string Name = RC.TheDef->getName();
OS << " // " << Name
<< " Register Class super-classes...\n"
<< " static const TargetRegisterClass* const "
<< Name << "Superclasses[] = {\n ";
bool Empty = true;
std::map<unsigned, std::set<unsigned> >::iterator I =
SuperClassMap.find(rc);
if (I != SuperClassMap.end()) {
for (std::set<unsigned>::iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II) {
const CodeGenRegisterClass &RC2 = RegisterClasses[*II];
if (!Empty) OS << ", ";
OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass";
Empty = false;
}
}
OS << (!Empty ? ", " : "") << "NULL";
OS << "\n };\n\n";
}
for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) {
const CodeGenRegisterClass &RC = RegisterClasses[i];
OS << RC.MethodBodies << "\n";
OS << RC.getName() << "Class::" << RC.getName()
<< "Class() : TargetRegisterClass("
<< RC.getName() + "RegClassID" << ", "
<< '\"' << RC.getName() << "\", "
<< RC.getName() + "VTs" << ", "
<< RC.getName() + "Subclasses" << ", "
<< RC.getName() + "Superclasses" << ", "
<< (NumSubRegIndices ? RC.getName() + "Sub" : std::string("Null"))
<< "RegClasses, "
<< (NumSubRegIndices ? RC.getName() + "Super" : std::string("Null"))
<< "RegClasses, "
<< RC.SpillSize/8 << ", "
<< RC.SpillAlignment/8 << ", "
<< RC.CopyCost << ", "
<< RC.getName() << ", " << RC.getName() << " + " << RC.Elements.size()
<< ") {}\n";
}
OS << "}\n";
}
OS << "\nnamespace {\n";
OS << " const TargetRegisterClass* const RegisterClasses[] = {\n";
for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i)
OS << " &" << getQualifiedName(RegisterClasses[i].TheDef)
<< "RegClass,\n";
OS << " };\n";
// Emit register sub-registers / super-registers, aliases...
std::map<Record*, std::set<Record*>, LessRecord> RegisterSubRegs;
std::map<Record*, std::set<Record*>, LessRecord> RegisterSuperRegs;
std::map<Record*, std::set<Record*>, LessRecord> RegisterAliases;
typedef std::map<Record*, std::vector<int64_t>, LessRecord> DwarfRegNumsMapTy;
DwarfRegNumsMapTy DwarfRegNums;
const std::vector<CodeGenRegister> &Regs = Target.getRegisters();
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
Record *R = Regs[i].TheDef;
std::vector<Record*> LI = Regs[i].TheDef->getValueAsListOfDefs("Aliases");
// Add information that R aliases all of the elements in the list... and
// that everything in the list aliases R.
for (unsigned j = 0, e = LI.size(); j != e; ++j) {
Record *Reg = LI[j];
if (RegisterAliases[R].count(Reg))
errs() << "Warning: register alias between " << getQualifiedName(R)
<< " and " << getQualifiedName(Reg)
<< " specified multiple times!\n";
RegisterAliases[R].insert(Reg);
if (RegisterAliases[Reg].count(R))
errs() << "Warning: register alias between " << getQualifiedName(R)
<< " and " << getQualifiedName(Reg)
<< " specified multiple times!\n";
RegisterAliases[Reg].insert(R);
}
}
// Process sub-register sets.
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
Record *R = Regs[i].TheDef;
std::vector<Record*> LI = Regs[i].TheDef->getValueAsListOfDefs("SubRegs");
// Process sub-register set and add aliases information.
for (unsigned j = 0, e = LI.size(); j != e; ++j) {
Record *SubReg = LI[j];
if (RegisterSubRegs[R].count(SubReg))
errs() << "Warning: register " << getQualifiedName(SubReg)
<< " specified as a sub-register of " << getQualifiedName(R)
<< " multiple times!\n";
addSubSuperReg(R, SubReg, RegisterSubRegs, RegisterSuperRegs,
RegisterAliases);
}
}
// Print the SubregHashTable, a simple quadratically probed
// hash table for determining if a register is a subregister
// of another register.
unsigned NumSubRegs = 0;
std::map<Record*, unsigned> RegNo;
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
RegNo[Regs[i].TheDef] = i;
NumSubRegs += RegisterSubRegs[Regs[i].TheDef].size();
}
unsigned SubregHashTableSize = 2 * NextPowerOf2(2 * NumSubRegs);
unsigned* SubregHashTable = new unsigned[2 * SubregHashTableSize];
std::fill(SubregHashTable, SubregHashTable + 2 * SubregHashTableSize, ~0U);
unsigned hashMisses = 0;
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
Record* R = Regs[i].TheDef;
for (std::set<Record*>::iterator I = RegisterSubRegs[R].begin(),
E = RegisterSubRegs[R].end(); I != E; ++I) {
Record* RJ = *I;
// We have to increase the indices of both registers by one when
// computing the hash because, in the generated code, there
// will be an extra empty slot at register 0.
size_t index = ((i+1) + (RegNo[RJ]+1) * 37) & (SubregHashTableSize-1);
unsigned ProbeAmt = 2;
while (SubregHashTable[index*2] != ~0U &&
SubregHashTable[index*2+1] != ~0U) {
index = (index + ProbeAmt) & (SubregHashTableSize-1);
ProbeAmt += 2;
hashMisses++;
}
SubregHashTable[index*2] = i;
SubregHashTable[index*2+1] = RegNo[RJ];
}
}
OS << "\n\n // Number of hash collisions: " << hashMisses << "\n";
if (SubregHashTableSize) {
std::string Namespace = Regs[0].TheDef->getValueAsString("Namespace");
OS << " const unsigned SubregHashTable[] = { ";
for (unsigned i = 0; i < SubregHashTableSize - 1; ++i) {
if (i != 0)
// Insert spaces for nice formatting.
OS << " ";
if (SubregHashTable[2*i] != ~0U) {
OS << getQualifiedName(Regs[SubregHashTable[2*i]].TheDef) << ", "
<< getQualifiedName(Regs[SubregHashTable[2*i+1]].TheDef) << ", \n";
} else {
OS << Namespace << "::NoRegister, " << Namespace << "::NoRegister, \n";
}
}
unsigned Idx = SubregHashTableSize*2-2;
if (SubregHashTable[Idx] != ~0U) {
OS << " "
<< getQualifiedName(Regs[SubregHashTable[Idx]].TheDef) << ", "
<< getQualifiedName(Regs[SubregHashTable[Idx+1]].TheDef) << " };\n";
} else {
OS << Namespace << "::NoRegister, " << Namespace << "::NoRegister };\n";
}
OS << " const unsigned SubregHashTableSize = "
<< SubregHashTableSize << ";\n";
} else {
OS << " const unsigned SubregHashTable[] = { ~0U, ~0U };\n"
<< " const unsigned SubregHashTableSize = 1;\n";
}
delete [] SubregHashTable;
// Print the AliasHashTable, a simple quadratically probed
// hash table for determining if a register aliases another register.
unsigned NumAliases = 0;
RegNo.clear();
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
RegNo[Regs[i].TheDef] = i;
NumAliases += RegisterAliases[Regs[i].TheDef].size();
}
unsigned AliasesHashTableSize = 2 * NextPowerOf2(2 * NumAliases);
unsigned* AliasesHashTable = new unsigned[2 * AliasesHashTableSize];
std::fill(AliasesHashTable, AliasesHashTable + 2 * AliasesHashTableSize, ~0U);
hashMisses = 0;
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
Record* R = Regs[i].TheDef;
for (std::set<Record*>::iterator I = RegisterAliases[R].begin(),
E = RegisterAliases[R].end(); I != E; ++I) {
Record* RJ = *I;
// We have to increase the indices of both registers by one when
// computing the hash because, in the generated code, there
// will be an extra empty slot at register 0.
size_t index = ((i+1) + (RegNo[RJ]+1) * 37) & (AliasesHashTableSize-1);
unsigned ProbeAmt = 2;
while (AliasesHashTable[index*2] != ~0U &&
AliasesHashTable[index*2+1] != ~0U) {
index = (index + ProbeAmt) & (AliasesHashTableSize-1);
ProbeAmt += 2;
hashMisses++;
}
AliasesHashTable[index*2] = i;
AliasesHashTable[index*2+1] = RegNo[RJ];
}
}
OS << "\n\n // Number of hash collisions: " << hashMisses << "\n";
if (AliasesHashTableSize) {
std::string Namespace = Regs[0].TheDef->getValueAsString("Namespace");
OS << " const unsigned AliasesHashTable[] = { ";
for (unsigned i = 0; i < AliasesHashTableSize - 1; ++i) {
if (i != 0)
// Insert spaces for nice formatting.
OS << " ";
if (AliasesHashTable[2*i] != ~0U) {
OS << getQualifiedName(Regs[AliasesHashTable[2*i]].TheDef) << ", "
<< getQualifiedName(Regs[AliasesHashTable[2*i+1]].TheDef) << ", \n";
} else {
OS << Namespace << "::NoRegister, " << Namespace << "::NoRegister, \n";
}
}
unsigned Idx = AliasesHashTableSize*2-2;
if (AliasesHashTable[Idx] != ~0U) {
OS << " "
<< getQualifiedName(Regs[AliasesHashTable[Idx]].TheDef) << ", "
<< getQualifiedName(Regs[AliasesHashTable[Idx+1]].TheDef) << " };\n";
} else {
OS << Namespace << "::NoRegister, " << Namespace << "::NoRegister };\n";
}
OS << " const unsigned AliasesHashTableSize = "
<< AliasesHashTableSize << ";\n";
} else {
OS << " const unsigned AliasesHashTable[] = { ~0U, ~0U };\n"
<< " const unsigned AliasesHashTableSize = 1;\n";
}
delete [] AliasesHashTable;
if (!RegisterAliases.empty())
OS << "\n\n // Register Alias Sets...\n";
// Emit the empty alias list
OS << " const unsigned Empty_AliasSet[] = { 0 };\n";
// Loop over all of the registers which have aliases, emitting the alias list
// to memory.
for (std::map<Record*, std::set<Record*>, LessRecord >::iterator
I = RegisterAliases.begin(), E = RegisterAliases.end(); I != E; ++I) {
if (I->second.empty())
continue;
OS << " const unsigned " << I->first->getName() << "_AliasSet[] = { ";
for (std::set<Record*>::iterator ASI = I->second.begin(),
E = I->second.end(); ASI != E; ++ASI)
OS << getQualifiedName(*ASI) << ", ";
OS << "0 };\n";
}
if (!RegisterSubRegs.empty())
OS << "\n\n // Register Sub-registers Sets...\n";
// Emit the empty sub-registers list
OS << " const unsigned Empty_SubRegsSet[] = { 0 };\n";
// Loop over all of the registers which have sub-registers, emitting the
// sub-registers list to memory.
for (std::map<Record*, std::set<Record*>, LessRecord>::iterator
I = RegisterSubRegs.begin(), E = RegisterSubRegs.end(); I != E; ++I) {
if (I->second.empty())
continue;
OS << " const unsigned " << I->first->getName() << "_SubRegsSet[] = { ";
std::vector<Record*> SubRegsVector;
for (std::set<Record*>::iterator ASI = I->second.begin(),
E = I->second.end(); ASI != E; ++ASI)
SubRegsVector.push_back(*ASI);
RegisterSorter RS(RegisterSubRegs);
std::stable_sort(SubRegsVector.begin(), SubRegsVector.end(), RS);
for (unsigned i = 0, e = SubRegsVector.size(); i != e; ++i)
OS << getQualifiedName(SubRegsVector[i]) << ", ";
OS << "0 };\n";
}
if (!RegisterSuperRegs.empty())
OS << "\n\n // Register Super-registers Sets...\n";
// Emit the empty super-registers list
OS << " const unsigned Empty_SuperRegsSet[] = { 0 };\n";
// Loop over all of the registers which have super-registers, emitting the
// super-registers list to memory.
for (std::map<Record*, std::set<Record*>, LessRecord >::iterator
I = RegisterSuperRegs.begin(), E = RegisterSuperRegs.end(); I != E; ++I) {
if (I->second.empty())
continue;
OS << " const unsigned " << I->first->getName() << "_SuperRegsSet[] = { ";
std::vector<Record*> SuperRegsVector;
for (std::set<Record*>::iterator ASI = I->second.begin(),
E = I->second.end(); ASI != E; ++ASI)
SuperRegsVector.push_back(*ASI);
RegisterSorter RS(RegisterSubRegs);
std::stable_sort(SuperRegsVector.begin(), SuperRegsVector.end(), RS);
for (unsigned i = 0, e = SuperRegsVector.size(); i != e; ++i)
OS << getQualifiedName(SuperRegsVector[i]) << ", ";
OS << "0 };\n";
}
OS<<"\n const TargetRegisterDesc RegisterDescriptors[] = { // Descriptors\n";
OS << " { \"NOREG\",\t0,\t0,\t0 },\n";
// Now that register alias and sub-registers sets have been emitted, emit the
// register descriptors now.
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
const CodeGenRegister &Reg = Regs[i];
OS << " { \"";
OS << Reg.getName() << "\",\t";
if (!RegisterAliases[Reg.TheDef].empty())
OS << Reg.getName() << "_AliasSet,\t";
else
OS << "Empty_AliasSet,\t";
if (!RegisterSubRegs[Reg.TheDef].empty())
OS << Reg.getName() << "_SubRegsSet,\t";
else
OS << "Empty_SubRegsSet,\t";
if (!RegisterSuperRegs[Reg.TheDef].empty())
OS << Reg.getName() << "_SuperRegsSet },\n";
else
OS << "Empty_SuperRegsSet },\n";
}
OS << " };\n"; // End of register descriptors...
// Emit SubRegIndex names, skipping 0
const std::vector<Record*> SubRegIndices = Target.getSubRegIndices();
OS << "\n const char *const SubRegIndexTable[] = { \"";
for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
OS << SubRegIndices[i]->getName();
if (i+1 != e)
OS << "\", \"";
}
OS << "\" };\n\n";
OS << "}\n\n"; // End of anonymous namespace...
std::string ClassName = Target.getName() + "GenRegisterInfo";
// Calculate the mapping of subregister+index pairs to physical registers.
RegisterMaps RegMaps;
// Emit the subregister + index mapping function based on the information
// calculated above.
OS << "unsigned " << ClassName
<< "::getSubReg(unsigned RegNo, unsigned Index) const {\n"
<< " switch (RegNo) {\n"
<< " default:\n return 0;\n";
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
RegisterMaps::SubRegMap &SRM = RegMaps.inferSubRegIndices(Regs[i].TheDef);
if (SRM.empty())
continue;
OS << " case " << getQualifiedName(Regs[i].TheDef) << ":\n";
OS << " switch (Index) {\n";
OS << " default: return 0;\n";
for (RegisterMaps::SubRegMap::const_iterator ii = SRM.begin(),
ie = SRM.end(); ii != ie; ++ii)
OS << " case " << getQualifiedName(ii->first)
<< ": return " << getQualifiedName(ii->second) << ";\n";
OS << " };\n" << " break;\n";
}
OS << " };\n";
OS << " return 0;\n";
OS << "}\n\n";
OS << "unsigned " << ClassName
<< "::getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const {\n"
<< " switch (RegNo) {\n"
<< " default:\n return 0;\n";
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
RegisterMaps::SubRegMap &SRM = RegMaps.SubReg[Regs[i].TheDef];
if (SRM.empty())
continue;
OS << " case " << getQualifiedName(Regs[i].TheDef) << ":\n";
for (RegisterMaps::SubRegMap::const_iterator ii = SRM.begin(),
ie = SRM.end(); ii != ie; ++ii)
OS << " if (SubRegNo == " << getQualifiedName(ii->second)
<< ") return " << getQualifiedName(ii->first) << ";\n";
OS << " return 0;\n";
}
OS << " };\n";
OS << " return 0;\n";
OS << "}\n\n";
// Emit composeSubRegIndices
RegMaps.computeComposites();
OS << "unsigned " << ClassName
<< "::composeSubRegIndices(unsigned IdxA, unsigned IdxB) const {\n"
<< " switch (IdxA) {\n"
<< " default:\n return IdxB;\n";
for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
bool Open = false;
for (unsigned j = 0; j != e; ++j) {
if (Record *Comp = RegMaps.Composite.lookup(
std::make_pair(SubRegIndices[i], SubRegIndices[j]))) {
if (!Open) {
OS << " case " << getQualifiedName(SubRegIndices[i])
<< ": switch(IdxB) {\n default: return IdxB;\n";
Open = true;
}
OS << " case " << getQualifiedName(SubRegIndices[j])
<< ": return " << getQualifiedName(Comp) << ";\n";
}
}
if (Open)
OS << " }\n";
}
OS << " }\n}\n\n";
// Emit the constructor of the class...
OS << ClassName << "::" << ClassName
<< "(int CallFrameSetupOpcode, int CallFrameDestroyOpcode)\n"
<< " : TargetRegisterInfo(RegisterDescriptors, " << Regs.size()+1
<< ", RegisterClasses, RegisterClasses+" << RegisterClasses.size() <<",\n"
<< " SubRegIndexTable,\n"
<< " CallFrameSetupOpcode, CallFrameDestroyOpcode,\n"
<< " SubregHashTable, SubregHashTableSize,\n"
<< " AliasesHashTable, AliasesHashTableSize) {\n"
<< "}\n\n";
// Collect all information about dwarf register numbers
// First, just pull all provided information to the map
unsigned maxLength = 0;
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
Record *Reg = Regs[i].TheDef;
std::vector<int64_t> RegNums = Reg->getValueAsListOfInts("DwarfNumbers");
maxLength = std::max((size_t)maxLength, RegNums.size());
if (DwarfRegNums.count(Reg))
errs() << "Warning: DWARF numbers for register " << getQualifiedName(Reg)
<< "specified multiple times\n";
DwarfRegNums[Reg] = RegNums;
}
// Now we know maximal length of number list. Append -1's, where needed
for (DwarfRegNumsMapTy::iterator
I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I)
for (unsigned i = I->second.size(), e = maxLength; i != e; ++i)
I->second.push_back(-1);
// Emit information about the dwarf register numbers.
OS << "int " << ClassName << "::getDwarfRegNumFull(unsigned RegNum, "
<< "unsigned Flavour) const {\n"
<< " switch (Flavour) {\n"
<< " default:\n"
<< " assert(0 && \"Unknown DWARF flavour\");\n"
<< " return -1;\n";
for (unsigned i = 0, e = maxLength; i != e; ++i) {
OS << " case " << i << ":\n"
<< " switch (RegNum) {\n"
<< " default:\n"
<< " assert(0 && \"Invalid RegNum\");\n"
<< " return -1;\n";
// Sort by name to get a stable order.
for (DwarfRegNumsMapTy::iterator
I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) {
int RegNo = I->second[i];
if (RegNo != -2)
OS << " case " << getQualifiedName(I->first) << ":\n"
<< " return " << RegNo << ";\n";
else
OS << " case " << getQualifiedName(I->first) << ":\n"
<< " assert(0 && \"Invalid register for this mode\");\n"
<< " return -1;\n";
}
OS << " };\n";
}
OS << " };\n}\n\n";
OS << "} // End llvm namespace \n";
}