blob: d53cf0eb042dcfe07e9155f620579259d9bcd704 [file] [log] [blame]
//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
// * Both of a binary operator's parameters are of the same type
// * Verify that the indices of mem access instructions match other operands
// * Verify that arithmetic and other things are only performed on first-class
// types. Verify that shifts & logicals only happen on integrals f.e.
// * All of the constants in a switch statement are of the correct type
// * The code is in valid SSA form
// * It should be illegal to put a label into any other type (like a structure)
// or to return one. [except constant arrays!]
// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
// * PHI nodes must have an entry for each predecessor, with no extras.
// * PHI nodes must be the first thing in a basic block, all grouped together
// * PHI nodes must have at least one entry
// * All basic blocks should only end with terminator insts, not contain them
// * The entry node to a function must not have predecessors
// * All Instructions must be embedded into a basic block
// * Functions cannot take a void-typed parameter
// * Verify that a function's argument list agrees with it's declared type.
// * It is illegal to specify a name for a void value.
// * It is illegal to have a internal global value with no initializer
// * It is illegal to have a ret instruction that returns a value that does not
// agree with the function return value type.
// * Function call argument types match the function prototype
// * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Verifier.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Metadata.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/Streams.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <sstream>
#include <cstdarg>
using namespace llvm;
namespace { // Anonymous namespace for class
struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass {
static char ID; // Pass ID, replacement for typeid
PreVerifier() : FunctionPass(&ID) { }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
// Check that the prerequisites for successful DominatorTree construction
// are satisfied.
bool runOnFunction(Function &F) {
bool Broken = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
if (I->empty() || !I->back().isTerminator()) {
cerr << "Basic Block does not have terminator!\n";
WriteAsOperand(*cerr, I, true);
cerr << "\n";
Broken = true;
}
}
if (Broken)
llvm_report_error("Broken module, no Basic Block terminator!");
return false;
}
};
}
char PreVerifier::ID = 0;
static RegisterPass<PreVerifier>
PreVer("preverify", "Preliminary module verification");
static const PassInfo *const PreVerifyID = &PreVer;
namespace {
struct VISIBILITY_HIDDEN
Verifier : public FunctionPass, InstVisitor<Verifier> {
static char ID; // Pass ID, replacement for typeid
bool Broken; // Is this module found to be broken?
bool RealPass; // Are we not being run by a PassManager?
VerifierFailureAction action;
// What to do if verification fails.
Module *Mod; // Module we are verifying right now
DominatorTree *DT; // Dominator Tree, caution can be null!
std::stringstream msgs; // A stringstream to collect messages
/// InstInThisBlock - when verifying a basic block, keep track of all of the
/// instructions we have seen so far. This allows us to do efficient
/// dominance checks for the case when an instruction has an operand that is
/// an instruction in the same block.
SmallPtrSet<Instruction*, 16> InstsInThisBlock;
Verifier()
: FunctionPass(&ID),
Broken(false), RealPass(true), action(AbortProcessAction),
DT(0), msgs( std::ios::app | std::ios::out ) {}
explicit Verifier(VerifierFailureAction ctn)
: FunctionPass(&ID),
Broken(false), RealPass(true), action(ctn), DT(0),
msgs( std::ios::app | std::ios::out ) {}
explicit Verifier(bool AB)
: FunctionPass(&ID),
Broken(false), RealPass(true),
action( AB ? AbortProcessAction : PrintMessageAction), DT(0),
msgs( std::ios::app | std::ios::out ) {}
explicit Verifier(DominatorTree &dt)
: FunctionPass(&ID),
Broken(false), RealPass(false), action(PrintMessageAction),
DT(&dt), msgs( std::ios::app | std::ios::out ) {}
bool doInitialization(Module &M) {
Mod = &M;
verifyTypeSymbolTable(M.getTypeSymbolTable());
// If this is a real pass, in a pass manager, we must abort before
// returning back to the pass manager, or else the pass manager may try to
// run other passes on the broken module.
if (RealPass)
return abortIfBroken();
return false;
}
bool runOnFunction(Function &F) {
// Get dominator information if we are being run by PassManager
if (RealPass) DT = &getAnalysis<DominatorTree>();
Mod = F.getParent();
visit(F);
InstsInThisBlock.clear();
// If this is a real pass, in a pass manager, we must abort before
// returning back to the pass manager, or else the pass manager may try to
// run other passes on the broken module.
if (RealPass)
return abortIfBroken();
return false;
}
bool doFinalization(Module &M) {
// Scan through, checking all of the external function's linkage now...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
visitGlobalValue(*I);
// Check to make sure function prototypes are okay.
if (I->isDeclaration()) visitFunction(*I);
}
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
visitGlobalVariable(*I);
for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I)
visitGlobalAlias(*I);
// If the module is broken, abort at this time.
return abortIfBroken();
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredID(PreVerifyID);
if (RealPass)
AU.addRequired<DominatorTree>();
}
/// abortIfBroken - If the module is broken and we are supposed to abort on
/// this condition, do so.
///
bool abortIfBroken() {
if (!Broken) return false;
msgs << "Broken module found, ";
switch (action) {
default: llvm_unreachable("Unknown action");
case AbortProcessAction:
msgs << "compilation aborted!\n";
cerr << msgs.str();
// Client should choose different reaction if abort is not desired
abort();
case PrintMessageAction:
msgs << "verification continues.\n";
cerr << msgs.str();
return false;
case ReturnStatusAction:
msgs << "compilation terminated.\n";
return true;
}
}
// Verification methods...
void verifyTypeSymbolTable(TypeSymbolTable &ST);
void visitGlobalValue(GlobalValue &GV);
void visitGlobalVariable(GlobalVariable &GV);
void visitGlobalAlias(GlobalAlias &GA);
void visitFunction(Function &F);
void visitBasicBlock(BasicBlock &BB);
using InstVisitor<Verifier>::visit;
void visit(Instruction &I);
void visitTruncInst(TruncInst &I);
void visitZExtInst(ZExtInst &I);
void visitSExtInst(SExtInst &I);
void visitFPTruncInst(FPTruncInst &I);
void visitFPExtInst(FPExtInst &I);
void visitFPToUIInst(FPToUIInst &I);
void visitFPToSIInst(FPToSIInst &I);
void visitUIToFPInst(UIToFPInst &I);
void visitSIToFPInst(SIToFPInst &I);
void visitIntToPtrInst(IntToPtrInst &I);
void visitPtrToIntInst(PtrToIntInst &I);
void visitBitCastInst(BitCastInst &I);
void visitPHINode(PHINode &PN);
void visitBinaryOperator(BinaryOperator &B);
void visitICmpInst(ICmpInst &IC);
void visitFCmpInst(FCmpInst &FC);
void visitExtractElementInst(ExtractElementInst &EI);
void visitInsertElementInst(InsertElementInst &EI);
void visitShuffleVectorInst(ShuffleVectorInst &EI);
void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
void visitCallInst(CallInst &CI);
void visitInvokeInst(InvokeInst &II);
void visitGetElementPtrInst(GetElementPtrInst &GEP);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void visitInstruction(Instruction &I);
void visitTerminatorInst(TerminatorInst &I);
void visitReturnInst(ReturnInst &RI);
void visitSwitchInst(SwitchInst &SI);
void visitSelectInst(SelectInst &SI);
void visitUserOp1(Instruction &I);
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
void visitAllocationInst(AllocationInst &AI);
void visitExtractValueInst(ExtractValueInst &EVI);
void visitInsertValueInst(InsertValueInst &IVI);
void VerifyCallSite(CallSite CS);
bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
int VT, unsigned ArgNo, std::string &Suffix);
void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
unsigned RetNum, unsigned ParamNum, ...);
void VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
bool isReturnValue, const Value *V);
void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
const Value *V);
void WriteValue(const Value *V) {
if (!V) return;
if (isa<Instruction>(V)) {
msgs << *V;
} else {
WriteAsOperand(msgs, V, true, Mod);
msgs << "\n";
}
}
void WriteType(const Type *T) {
if (!T) return;
raw_os_ostream RO(msgs);
RO << ' ';
WriteTypeSymbolic(RO, T, Mod);
}
// CheckFailed - A check failed, so print out the condition and the message
// that failed. This provides a nice place to put a breakpoint if you want
// to see why something is not correct.
void CheckFailed(const Twine &Message,
const Value *V1 = 0, const Value *V2 = 0,
const Value *V3 = 0, const Value *V4 = 0) {
msgs << Message.str() << "\n";
WriteValue(V1);
WriteValue(V2);
WriteValue(V3);
WriteValue(V4);
Broken = true;
}
void CheckFailed(const Twine &Message, const Value* V1,
const Type* T2, const Value* V3 = 0) {
msgs << Message.str() << "\n";
WriteValue(V1);
WriteType(T2);
WriteValue(V3);
Broken = true;
}
};
} // End anonymous namespace
char Verifier::ID = 0;
static RegisterPass<Verifier> X("verify", "Module Verifier");
// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
void Verifier::visit(Instruction &I) {
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
Assert1(I.getOperand(i) != 0, "Operand is null", &I);
InstVisitor<Verifier>::visit(I);
}
void Verifier::visitGlobalValue(GlobalValue &GV) {
Assert1(!GV.isDeclaration() ||
GV.hasExternalLinkage() ||
GV.hasDLLImportLinkage() ||
GV.hasExternalWeakLinkage() ||
GV.hasGhostLinkage() ||
(isa<GlobalAlias>(GV) &&
(GV.hasLocalLinkage() || GV.hasWeakLinkage())),
"Global is external, but doesn't have external or dllimport or weak linkage!",
&GV);
Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
"Global is marked as dllimport, but not external", &GV);
Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
"Only global variables can have appending linkage!", &GV);
if (GV.hasAppendingLinkage()) {
GlobalVariable &GVar = cast<GlobalVariable>(GV);
Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
"Only global arrays can have appending linkage!", &GV);
}
}
void Verifier::visitGlobalVariable(GlobalVariable &GV) {
if (GV.hasInitializer()) {
Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
"Global variable initializer type does not match global "
"variable type!", &GV);
// If the global has common linkage, it must have a zero initializer and
// cannot be constant.
if (GV.hasCommonLinkage()) {
Assert1(GV.getInitializer()->isNullValue(),
"'common' global must have a zero initializer!", &GV);
Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
&GV);
}
// Verify that any metadata used in a global initializer points only to
// other globals.
if (MDNode *FirstNode = dyn_cast<MDNode>(GV.getInitializer())) {
SmallVector<const MDNode *, 4> NodesToAnalyze;
NodesToAnalyze.push_back(FirstNode);
while (!NodesToAnalyze.empty()) {
const MDNode *N = NodesToAnalyze.back();
NodesToAnalyze.pop_back();
for (MDNode::const_elem_iterator I = N->elem_begin(),
E = N->elem_end(); I != E; ++I)
if (const Value *V = *I) {
if (const MDNode *Next = dyn_cast<MDNode>(V))
NodesToAnalyze.push_back(Next);
else
Assert3(isa<Constant>(V),
"reference to instruction from global metadata node",
&GV, N, V);
}
}
}
} else {
Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
GV.hasExternalWeakLinkage(),
"invalid linkage type for global declaration", &GV);
}
visitGlobalValue(GV);
}
void Verifier::visitGlobalAlias(GlobalAlias &GA) {
Assert1(!GA.getName().empty(),
"Alias name cannot be empty!", &GA);
Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
GA.hasWeakLinkage(),
"Alias should have external or external weak linkage!", &GA);
Assert1(GA.getAliasee(),
"Aliasee cannot be NULL!", &GA);
Assert1(GA.getType() == GA.getAliasee()->getType(),
"Alias and aliasee types should match!", &GA);
if (!isa<GlobalValue>(GA.getAliasee())) {
const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
Assert1(CE &&
(CE->getOpcode() == Instruction::BitCast ||
CE->getOpcode() == Instruction::GetElementPtr) &&
isa<GlobalValue>(CE->getOperand(0)),
"Aliasee should be either GlobalValue or bitcast of GlobalValue",
&GA);
}
const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
Assert1(Aliasee,
"Aliasing chain should end with function or global variable", &GA);
visitGlobalValue(GA);
}
void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
}
// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type. The value V is printed in error messages.
void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
bool isReturnValue, const Value *V) {
if (Attrs == Attribute::None)
return;
Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
" only applies to the function!", V);
if (isReturnValue) {
Attributes RetI = Attrs & Attribute::ParameterOnly;
Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
" does not apply to return values!", V);
}
for (unsigned i = 0;
i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
Assert1(!(MutI & (MutI - 1)), "Attributes " +
Attribute::getAsString(MutI) + " are incompatible!", V);
}
Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
Assert1(!TypeI, "Wrong type for attribute " +
Attribute::getAsString(TypeI), V);
Attributes ByValI = Attrs & Attribute::ByVal;
if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
Assert1(!ByValI || PTy->getElementType()->isSized(),
"Attribute " + Attribute::getAsString(ByValI) +
" does not support unsized types!", V);
} else {
Assert1(!ByValI,
"Attribute " + Attribute::getAsString(ByValI) +
" only applies to parameters with pointer type!", V);
}
}
// VerifyFunctionAttrs - Check parameter attributes against a function type.
// The value V is printed in error messages.
void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
const AttrListPtr &Attrs,
const Value *V) {
if (Attrs.isEmpty())
return;
bool SawNest = false;
for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
const AttributeWithIndex &Attr = Attrs.getSlot(i);
const Type *Ty;
if (Attr.Index == 0)
Ty = FT->getReturnType();
else if (Attr.Index-1 < FT->getNumParams())
Ty = FT->getParamType(Attr.Index-1);
else
break; // VarArgs attributes, verified elsewhere.
VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
if (Attr.Attrs & Attribute::Nest) {
Assert1(!SawNest, "More than one parameter has attribute nest!", V);
SawNest = true;
}
if (Attr.Attrs & Attribute::StructRet)
Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
}
Attributes FAttrs = Attrs.getFnAttributes();
Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
" does not apply to the function!", V);
for (unsigned i = 0;
i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
Assert1(!(MutI & (MutI - 1)), "Attributes " +
Attribute::getAsString(MutI) + " are incompatible!", V);
}
}
static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
if (Attrs.isEmpty())
return true;
unsigned LastSlot = Attrs.getNumSlots() - 1;
unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
if (LastIndex <= Params
|| (LastIndex == (unsigned)~0
&& (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
return true;
return false;
}
// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function &F) {
// Check function arguments.
const FunctionType *FT = F.getFunctionType();
unsigned NumArgs = F.arg_size();
Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
Assert2(FT->getNumParams() == NumArgs,
"# formal arguments must match # of arguments for function type!",
&F, FT);
Assert1(F.getReturnType()->isFirstClassType() ||
F.getReturnType() == Type::getVoidTy(F.getContext()) ||
isa<StructType>(F.getReturnType()),
"Functions cannot return aggregate values!", &F);
Assert1(!F.hasStructRetAttr() ||
F.getReturnType() == Type::getVoidTy(F.getContext()),
"Invalid struct return type!", &F);
const AttrListPtr &Attrs = F.getAttributes();
Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
"Attributes after last parameter!", &F);
// Check function attributes.
VerifyFunctionAttrs(FT, Attrs, &F);
// Check that this function meets the restrictions on this calling convention.
switch (F.getCallingConv()) {
default:
break;
case CallingConv::C:
break;
case CallingConv::Fast:
case CallingConv::Cold:
case CallingConv::X86_FastCall:
Assert1(!F.isVarArg(),
"Varargs functions must have C calling conventions!", &F);
break;
}
bool isLLVMdotName = F.getName().size() >= 5 &&
F.getName().substr(0, 5) == "llvm.";
if (!isLLVMdotName)
Assert1(F.getReturnType() != Type::getMetadataTy(F.getContext()),
"Function may not return metadata unless it's an intrinsic", &F);
// Check that the argument values match the function type for this function...
unsigned i = 0;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
I != E; ++I, ++i) {
Assert2(I->getType() == FT->getParamType(i),
"Argument value does not match function argument type!",
I, FT->getParamType(i));
Assert1(I->getType()->isFirstClassType(),
"Function arguments must have first-class types!", I);
if (!isLLVMdotName)
Assert2(I->getType() != Type::getMetadataTy(F.getContext()),
"Function takes metadata but isn't an intrinsic", I, &F);
}
if (F.isDeclaration()) {
Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
F.hasExternalWeakLinkage() || F.hasGhostLinkage(),
"invalid linkage type for function declaration", &F);
} else {
// Verify that this function (which has a body) is not named "llvm.*". It
// is not legal to define intrinsics.
Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
// Check the entry node
BasicBlock *Entry = &F.getEntryBlock();
Assert1(pred_begin(Entry) == pred_end(Entry),
"Entry block to function must not have predecessors!", Entry);
}
}
// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
InstsInThisBlock.clear();
// Ensure that basic blocks have terminators!
Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
// Check constraints that this basic block imposes on all of the PHI nodes in
// it.
if (isa<PHINode>(BB.front())) {
SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
std::sort(Preds.begin(), Preds.end());
PHINode *PN;
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
// Ensure that PHI nodes have at least one entry!
Assert1(PN->getNumIncomingValues() != 0,
"PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN);
Assert1(PN->getNumIncomingValues() == Preds.size(),
"PHINode should have one entry for each predecessor of its "
"parent basic block!", PN);
// Get and sort all incoming values in the PHI node...
Values.clear();
Values.reserve(PN->getNumIncomingValues());
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Values.push_back(std::make_pair(PN->getIncomingBlock(i),
PN->getIncomingValue(i)));
std::sort(Values.begin(), Values.end());
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
// Check to make sure that if there is more than one entry for a
// particular basic block in this PHI node, that the incoming values are
// all identical.
//
Assert4(i == 0 || Values[i].first != Values[i-1].first ||
Values[i].second == Values[i-1].second,
"PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first,
Values[i].second, Values[i-1].second);
// Check to make sure that the predecessors and PHI node entries are
// matched up.
Assert3(Values[i].first == Preds[i],
"PHI node entries do not match predecessors!", PN,
Values[i].first, Preds[i]);
}
}
}
}
void Verifier::visitTerminatorInst(TerminatorInst &I) {
// Ensure that terminators only exist at the end of the basic block.
Assert1(&I == I.getParent()->getTerminator(),
"Terminator found in the middle of a basic block!", I.getParent());
visitInstruction(I);
}
void Verifier::visitReturnInst(ReturnInst &RI) {
Function *F = RI.getParent()->getParent();
unsigned N = RI.getNumOperands();
if (F->getReturnType() == Type::getVoidTy(RI.getContext()))
Assert2(N == 0,
"Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType());
else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) {
// Exactly one return value and it matches the return type. Good.
} else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
// The return type is a struct; check for multiple return values.
Assert2(STy->getNumElements() == N,
"Incorrect number of return values in ret instruction!",
&RI, F->getReturnType());
for (unsigned i = 0; i != N; ++i)
Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(),
"Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType());
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) {
// The return type is an array; check for multiple return values.
Assert2(ATy->getNumElements() == N,
"Incorrect number of return values in ret instruction!",
&RI, F->getReturnType());
for (unsigned i = 0; i != N; ++i)
Assert2(ATy->getElementType() == RI.getOperand(i)->getType(),
"Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType());
} else {
CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType());
}
// Check to make sure that the return value has necessary properties for
// terminators...
visitTerminatorInst(RI);
}
void Verifier::visitSwitchInst(SwitchInst &SI) {
// Check to make sure that all of the constants in the switch instruction
// have the same type as the switched-on value.
const Type *SwitchTy = SI.getCondition()->getType();
for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
"Switch constants must all be same type as switch value!", &SI);
visitTerminatorInst(SI);
}
void Verifier::visitSelectInst(SelectInst &SI) {
Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
SI.getOperand(2)),
"Invalid operands for select instruction!", &SI);
Assert1(SI.getTrueValue()->getType() == SI.getType(),
"Select values must have same type as select instruction!", &SI);
visitInstruction(SI);
}
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
Assert1(0, "User-defined operators should not live outside of a pass!", &I);
}
void Verifier::visitTruncInst(TruncInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I);
Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I);
Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
"trunc source and destination must both be a vector or neither", &I);
Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
visitInstruction(I);
}
void Verifier::visitZExtInst(ZExtInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I);
Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I);
Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
"zext source and destination must both be a vector or neither", &I);
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
visitInstruction(I);
}
void Verifier::visitSExtInst(SExtInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I);
Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I);
Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
"sext source and destination must both be a vector or neither", &I);
Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
visitInstruction(I);
}
void Verifier::visitFPTruncInst(FPTruncInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I);
Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I);
Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
"fptrunc source and destination must both be a vector or neither",&I);
Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
visitInstruction(I);
}
void Verifier::visitFPExtInst(FPExtInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I);
Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I);
Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
"fpext source and destination must both be a vector or neither", &I);
Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
visitInstruction(I);
}
void Verifier::visitUIToFPInst(UIToFPInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
bool SrcVec = isa<VectorType>(SrcTy);
bool DstVec = isa<VectorType>(DestTy);
Assert1(SrcVec == DstVec,
"UIToFP source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isIntOrIntVector(),
"UIToFP source must be integer or integer vector", &I);
Assert1(DestTy->isFPOrFPVector(),
"UIToFP result must be FP or FP vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"UIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitSIToFPInst(SIToFPInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
bool DstVec = DestTy->getTypeID() == Type::VectorTyID;
Assert1(SrcVec == DstVec,
"SIToFP source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isIntOrIntVector(),
"SIToFP source must be integer or integer vector", &I);
Assert1(DestTy->isFPOrFPVector(),
"SIToFP result must be FP or FP vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"SIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitFPToUIInst(FPToUIInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
bool SrcVec = isa<VectorType>(SrcTy);
bool DstVec = isa<VectorType>(DestTy);
Assert1(SrcVec == DstVec,
"FPToUI source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I);
Assert1(DestTy->isIntOrIntVector(),
"FPToUI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"FPToUI source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitFPToSIInst(FPToSIInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
bool SrcVec = isa<VectorType>(SrcTy);
bool DstVec = isa<VectorType>(DestTy);
Assert1(SrcVec == DstVec,
"FPToSI source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isFPOrFPVector(),
"FPToSI source must be FP or FP vector", &I);
Assert1(DestTy->isIntOrIntVector(),
"FPToSI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"FPToSI source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);
visitInstruction(I);
}
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
visitInstruction(I);
}
void Verifier::visitBitCastInst(BitCastInst &I) {
// Get the source and destination types
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
// BitCast implies a no-op cast of type only. No bits change.
// However, you can't cast pointers to anything but pointers.
Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
"Bitcast requires both operands to be pointer or neither", &I);
Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
// Disallow aggregates.
Assert1(!SrcTy->isAggregateType(),
"Bitcast operand must not be aggregate", &I);
Assert1(!DestTy->isAggregateType(),
"Bitcast type must not be aggregate", &I);
visitInstruction(I);
}
/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
// Ensure that the PHI nodes are all grouped together at the top of the block.
// This can be tested by checking whether the instruction before this is
// either nonexistent (because this is begin()) or is a PHI node. If not,
// then there is some other instruction before a PHI.
Assert2(&PN == &PN.getParent()->front() ||
isa<PHINode>(--BasicBlock::iterator(&PN)),
"PHI nodes not grouped at top of basic block!",
&PN, PN.getParent());
// Check that all of the operands of the PHI node have the same type as the
// result.
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
"PHI node operands are not the same type as the result!", &PN);
// All other PHI node constraints are checked in the visitBasicBlock method.
visitInstruction(PN);
}
void Verifier::VerifyCallSite(CallSite CS) {
Instruction *I = CS.getInstruction();
Assert1(isa<PointerType>(CS.getCalledValue()->getType()),
"Called function must be a pointer!", I);
const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
Assert1(isa<FunctionType>(FPTy->getElementType()),
"Called function is not pointer to function type!", I);
const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
// Verify that the correct number of arguments are being passed
if (FTy->isVarArg())
Assert1(CS.arg_size() >= FTy->getNumParams(),
"Called function requires more parameters than were provided!",I);
else
Assert1(CS.arg_size() == FTy->getNumParams(),
"Incorrect number of arguments passed to called function!", I);
// Verify that all arguments to the call match the function type...
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
"Call parameter type does not match function signature!",
CS.getArgument(i), FTy->getParamType(i), I);
const AttrListPtr &Attrs = CS.getAttributes();
Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
"Attributes after last parameter!", I);
// Verify call attributes.
VerifyFunctionAttrs(FTy, Attrs, I);
if (FTy->isVarArg())
// Check attributes on the varargs part.
for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
Attributes Attr = Attrs.getParamAttributes(Idx);
VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
" cannot be used for vararg call arguments!", I);
}
// Verify that there's no metadata unless it's a direct call to an intrinsic.
if (!CS.getCalledFunction() || CS.getCalledFunction()->getName().size() < 5 ||
CS.getCalledFunction()->getName().substr(0, 5) != "llvm.") {
Assert1(FTy->getReturnType() != Type::getMetadataTy(I->getContext()),
"Only intrinsics may return metadata", I);
for (FunctionType::param_iterator PI = FTy->param_begin(),
PE = FTy->param_end(); PI != PE; ++PI)
Assert1(PI->get() != Type::getMetadataTy(I->getContext()),
"Function has metadata parameter but isn't an intrinsic", I);
}
visitInstruction(*I);
}
void Verifier::visitCallInst(CallInst &CI) {
VerifyCallSite(&CI);
if (Function *F = CI.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
visitIntrinsicFunctionCall(ID, CI);
}
void Verifier::visitInvokeInst(InvokeInst &II) {
VerifyCallSite(&II);
}
/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
"Both operands to a binary operator are not of the same type!", &B);
switch (B.getOpcode()) {
// Check that integer arithmetic operators are only used with
// integral operands.
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
Assert1(B.getType()->isIntOrIntVector(),
"Integer arithmetic operators only work with integral types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Integer arithmetic operators must have same type "
"for operands and result!", &B);
break;
// Check that floating-point arithmetic operators are only used with
// floating-point operands.
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
Assert1(B.getType()->isFPOrFPVector(),
"Floating-point arithmetic operators only work with "
"floating-point types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Floating-point arithmetic operators must have same type "
"for operands and result!", &B);
break;
// Check that logical operators are only used with integral operands.
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
Assert1(B.getType()->isIntOrIntVector(),
"Logical operators only work with integral types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Logical operators must have same type for operands and result!",
&B);
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Assert1(B.getType()->isIntOrIntVector(),
"Shifts only work with integral types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Shift return type must be same as operands!", &B);
break;
default:
llvm_unreachable("Unknown BinaryOperator opcode!");
}
visitInstruction(B);
}
void Verifier::visitICmpInst(ICmpInst& IC) {
// Check that the operands are the same type
const Type* Op0Ty = IC.getOperand(0)->getType();
const Type* Op1Ty = IC.getOperand(1)->getType();
Assert1(Op0Ty == Op1Ty,
"Both operands to ICmp instruction are not of the same type!", &IC);
// Check that the operands are the right type
Assert1(Op0Ty->isIntOrIntVector() || isa<PointerType>(Op0Ty),
"Invalid operand types for ICmp instruction", &IC);
visitInstruction(IC);
}
void Verifier::visitFCmpInst(FCmpInst& FC) {
// Check that the operands are the same type
const Type* Op0Ty = FC.getOperand(0)->getType();
const Type* Op1Ty = FC.getOperand(1)->getType();
Assert1(Op0Ty == Op1Ty,
"Both operands to FCmp instruction are not of the same type!", &FC);
// Check that the operands are the right type
Assert1(Op0Ty->isFPOrFPVector(),
"Invalid operand types for FCmp instruction", &FC);
visitInstruction(FC);
}
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
EI.getOperand(1)),
"Invalid extractelement operands!", &EI);
visitInstruction(EI);
}
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
IE.getOperand(1),
IE.getOperand(2)),
"Invalid insertelement operands!", &IE);
visitInstruction(IE);
}
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
SV.getOperand(2)),
"Invalid shufflevector operands!", &SV);
const VectorType *VTy = dyn_cast<VectorType>(SV.getOperand(0)->getType());
Assert1(VTy, "Operands are not a vector type", &SV);
// Check to see if Mask is valid.
if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) {
for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
Assert1(!CI->uge(VTy->getNumElements()*2),
"Invalid shufflevector shuffle mask!", &SV);
} else {
Assert1(isa<UndefValue>(MV->getOperand(i)),
"Invalid shufflevector shuffle mask!", &SV);
}
}
} else {
Assert1(isa<UndefValue>(SV.getOperand(2)) ||
isa<ConstantAggregateZero>(SV.getOperand(2)),
"Invalid shufflevector shuffle mask!", &SV);
}
visitInstruction(SV);
}
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
const Type *ElTy =
GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
Idxs.begin(), Idxs.end());
Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
Assert2(isa<PointerType>(GEP.getType()) &&
cast<PointerType>(GEP.getType())->getElementType() == ElTy,
"GEP is not of right type for indices!", &GEP, ElTy);
visitInstruction(GEP);
}
void Verifier::visitLoadInst(LoadInst &LI) {
const Type *ElTy =
cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
Assert2(ElTy == LI.getType(),
"Load result type does not match pointer operand type!", &LI, ElTy);
Assert1(ElTy != Type::getMetadataTy(LI.getContext()),
"Can't load metadata!", &LI);
visitInstruction(LI);
}
void Verifier::visitStoreInst(StoreInst &SI) {
const Type *ElTy =
cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
Assert2(ElTy == SI.getOperand(0)->getType(),
"Stored value type does not match pointer operand type!", &SI, ElTy);
Assert1(ElTy != Type::getMetadataTy(SI.getContext()),
"Can't store metadata!", &SI);
visitInstruction(SI);
}
void Verifier::visitAllocationInst(AllocationInst &AI) {
const PointerType *PTy = AI.getType();
Assert1(PTy->getAddressSpace() == 0,
"Allocation instruction pointer not in the generic address space!",
&AI);
Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
&AI);
visitInstruction(AI);
}
void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
EVI.idx_begin(), EVI.idx_end()) ==
EVI.getType(),
"Invalid ExtractValueInst operands!", &EVI);
visitInstruction(EVI);
}
void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
IVI.idx_begin(), IVI.idx_end()) ==
IVI.getOperand(1)->getType(),
"Invalid InsertValueInst operands!", &IVI);
visitInstruction(IVI);
}
/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
BasicBlock *BB = I.getParent();
Assert1(BB, "Instruction not embedded in basic block!", &I);
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI)
Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
"Only PHI nodes may reference their own value!", &I);
}
// Verify that if this is a terminator that it is at the end of the block.
if (isa<TerminatorInst>(I))
Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I);
// Check that void typed values don't have names
Assert1(I.getType() != Type::getVoidTy(I.getContext()) || !I.hasName(),
"Instruction has a name, but provides a void value!", &I);
// Check that the return value of the instruction is either void or a legal
// value type.
Assert1(I.getType() == Type::getVoidTy(I.getContext()) ||
I.getType()->isFirstClassType()
|| ((isa<CallInst>(I) || isa<InvokeInst>(I))
&& isa<StructType>(I.getType())),
"Instruction returns a non-scalar type!", &I);
// Check that the instruction doesn't produce metadata or metadata*. Calls
// all already checked against the callee type.
Assert1(I.getType() != Type::getMetadataTy(I.getContext()) ||
isa<CallInst>(I) || isa<InvokeInst>(I),
"Invalid use of metadata!", &I);
if (const PointerType *PTy = dyn_cast<PointerType>(I.getType()))
Assert1(PTy->getElementType() != Type::getMetadataTy(I.getContext()),
"Instructions may not produce pointer to metadata.", &I);
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks. If the use is not an
// instruction, it is an error!
for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI) {
Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
*UI);
Instruction *Used = cast<Instruction>(*UI);
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
" embedded in a basic block!", &I, Used);
}
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
// Check to make sure that only first-class-values are operands to
// instructions.
if (!I.getOperand(i)->getType()->isFirstClassType()) {
Assert1(0, "Instruction operands must be first-class values!", &I);
}
if (const PointerType *PTy =
dyn_cast<PointerType>(I.getOperand(i)->getType()))
Assert1(PTy->getElementType() != Type::getMetadataTy(I.getContext()),
"Invalid use of metadata pointer.", &I);
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
// Check to make sure that the "address of" an intrinsic function is never
// taken.
Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
"Cannot take the address of an intrinsic!", &I);
Assert1(F->getParent() == Mod, "Referencing function in another module!",
&I);
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
Assert1(OpBB->getParent() == BB->getParent(),
"Referring to a basic block in another function!", &I);
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
Assert1(OpArg->getParent() == BB->getParent(),
"Referring to an argument in another function!", &I);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
Assert1(GV->getParent() == Mod, "Referencing global in another module!",
&I);
} else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
BasicBlock *OpBlock = Op->getParent();
// Check that a definition dominates all of its uses.
if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
// Invoke results are only usable in the normal destination, not in the
// exceptional destination.
BasicBlock *NormalDest = II->getNormalDest();
Assert2(NormalDest != II->getUnwindDest(),
"No uses of invoke possible due to dominance structure!",
Op, &I);
// PHI nodes differ from other nodes because they actually "use" the
// value in the predecessor basic blocks they correspond to.
BasicBlock *UseBlock = BB;
if (isa<PHINode>(I))
UseBlock = cast<BasicBlock>(I.getOperand(i+1));
if (isa<PHINode>(I) && UseBlock == OpBlock) {
// Special case of a phi node in the normal destination or the unwind
// destination.
Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
"Invoke result not available in the unwind destination!",
Op, &I);
} else {
Assert2(DT->dominates(NormalDest, UseBlock) ||
!DT->isReachableFromEntry(UseBlock),
"Invoke result does not dominate all uses!", Op, &I);
// If the normal successor of an invoke instruction has multiple
// predecessors, then the normal edge from the invoke is critical,
// so the invoke value can only be live if the destination block
// dominates all of it's predecessors (other than the invoke).
if (!NormalDest->getSinglePredecessor() &&
DT->isReachableFromEntry(UseBlock))
// If it is used by something non-phi, then the other case is that
// 'NormalDest' dominates all of its predecessors other than the
// invoke. In this case, the invoke value can still be used.
for (pred_iterator PI = pred_begin(NormalDest),
E = pred_end(NormalDest); PI != E; ++PI)
if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) &&
DT->isReachableFromEntry(*PI)) {
CheckFailed("Invoke result does not dominate all uses!", Op,&I);
return;
}
}
} else if (isa<PHINode>(I)) {
// PHI nodes are more difficult than other nodes because they actually
// "use" the value in the predecessor basic blocks they correspond to.
BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
Assert2(DT->dominates(OpBlock, PredBB) ||
!DT->isReachableFromEntry(PredBB),
"Instruction does not dominate all uses!", Op, &I);
} else {
if (OpBlock == BB) {
// If they are in the same basic block, make sure that the definition
// comes before the use.
Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB),
"Instruction does not dominate all uses!", Op, &I);
}
// Definition must dominate use unless use is unreachable!
Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
!DT->isReachableFromEntry(BB),
"Instruction does not dominate all uses!", Op, &I);
}
} else if (isa<InlineAsm>(I.getOperand(i))) {
Assert1(i == 0 && (isa<CallInst>(I) || isa<InvokeInst>(I)),
"Cannot take the address of an inline asm!", &I);
}
}
InstsInThisBlock.insert(&I);
}
// Flags used by TableGen to mark intrinsic parameters with the
// LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
static const unsigned ExtendedElementVectorType = 0x40000000;
static const unsigned TruncatedElementVectorType = 0x20000000;
/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
///
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
Function *IF = CI.getCalledFunction();
Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
IF);
#define GET_INTRINSIC_VERIFIER
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_VERIFIER
switch (ID) {
default:
break;
case Intrinsic::dbg_declare: // llvm.dbg.declare
if (Constant *C = dyn_cast<Constant>(CI.getOperand(1)))
Assert1(C && !isa<ConstantPointerNull>(C),
"invalid llvm.dbg.declare intrinsic call", &CI);
break;
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
Assert1(isa<ConstantInt>(CI.getOperand(4)),
"alignment argument of memory intrinsics must be a constant int",
&CI);
break;
case Intrinsic::gcroot:
case Intrinsic::gcwrite:
case Intrinsic::gcread:
if (ID == Intrinsic::gcroot) {
AllocaInst *AI =
dyn_cast<AllocaInst>(CI.getOperand(1)->stripPointerCasts());
Assert1(AI && isa<PointerType>(AI->getType()->getElementType()),
"llvm.gcroot parameter #1 must be a pointer alloca.", &CI);
Assert1(isa<Constant>(CI.getOperand(2)),
"llvm.gcroot parameter #2 must be a constant.", &CI);
}
Assert1(CI.getParent()->getParent()->hasGC(),
"Enclosing function does not use GC.", &CI);
break;
case Intrinsic::init_trampoline:
Assert1(isa<Function>(CI.getOperand(2)->stripPointerCasts()),
"llvm.init_trampoline parameter #2 must resolve to a function.",
&CI);
break;
case Intrinsic::prefetch:
Assert1(isa<ConstantInt>(CI.getOperand(2)) &&
isa<ConstantInt>(CI.getOperand(3)) &&
cast<ConstantInt>(CI.getOperand(2))->getZExtValue() < 2 &&
cast<ConstantInt>(CI.getOperand(3))->getZExtValue() < 4,
"invalid arguments to llvm.prefetch",
&CI);
break;
case Intrinsic::stackprotector:
Assert1(isa<AllocaInst>(CI.getOperand(2)->stripPointerCasts()),
"llvm.stackprotector parameter #2 must resolve to an alloca.",
&CI);
break;
}
}
/// Produce a string to identify an intrinsic parameter or return value.
/// The ArgNo value numbers the return values from 0 to NumRets-1 and the
/// parameters beginning with NumRets.
///
static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
if (ArgNo < NumRets) {
if (NumRets == 1)
return "Intrinsic result type";
else
return "Intrinsic result type #" + utostr(ArgNo);
} else
return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
}
bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
int VT, unsigned ArgNo, std::string &Suffix) {
const FunctionType *FTy = F->getFunctionType();
unsigned NumElts = 0;
const Type *EltTy = Ty;
const VectorType *VTy = dyn_cast<VectorType>(Ty);
if (VTy) {
EltTy = VTy->getElementType();
NumElts = VTy->getNumElements();
}
const Type *RetTy = FTy->getReturnType();
const StructType *ST = dyn_cast<StructType>(RetTy);
unsigned NumRets = 1;
if (ST)
NumRets = ST->getNumElements();
if (VT < 0) {
int Match = ~VT;
// Check flags that indicate a type that is an integral vector type with
// elements that are larger or smaller than the elements of the matched
// type.
if ((Match & (ExtendedElementVectorType |
TruncatedElementVectorType)) != 0) {
const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
if (!VTy || !IEltTy) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
"an integral vector type.", F);
return false;
}
// Adjust the current Ty (in the opposite direction) rather than
// the type being matched against.
if ((Match & ExtendedElementVectorType) != 0) {
if ((IEltTy->getBitWidth() & 1) != 0) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " vector "
"element bit-width is odd.", F);
return false;
}
Ty = VectorType::getTruncatedElementVectorType(VTy);
} else
Ty = VectorType::getExtendedElementVectorType(VTy);
Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
}
if (Match <= static_cast<int>(NumRets - 1)) {
if (ST)
RetTy = ST->getElementType(Match);
if (Ty != RetTy) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not "
"match return type.", F);
return false;
}
} else {
if (Ty != FTy->getParamType(Match - NumRets)) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not "
"match parameter %" + utostr(Match - NumRets) + ".", F);
return false;
}
}
} else if (VT == MVT::iAny) {
if (!EltTy->isInteger()) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
"an integer type.", F);
return false;
}
unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
Suffix += ".";
if (EltTy != Ty)
Suffix += "v" + utostr(NumElts);
Suffix += "i" + utostr(GotBits);
// Check some constraints on various intrinsics.
switch (ID) {
default: break; // Not everything needs to be checked.
case Intrinsic::bswap:
if (GotBits < 16 || GotBits % 16 != 0) {
CheckFailed("Intrinsic requires even byte width argument", F);
return false;
}
break;
}
} else if (VT == MVT::fAny) {
if (!EltTy->isFloatingPoint()) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
"a floating-point type.", F);
return false;
}
Suffix += ".";
if (EltTy != Ty)
Suffix += "v" + utostr(NumElts);
Suffix += EVT::getEVT(EltTy).getEVTString();
} else if (VT == MVT::vAny) {
if (!VTy) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a vector type.", F);
return false;
}
Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString();
} else if (VT == MVT::iPTR) {
if (!isa<PointerType>(Ty)) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a "
"pointer and a pointer is required.", F);
return false;
}
} else if (VT == MVT::iPTRAny) {
// Outside of TableGen, we don't distinguish iPTRAny (to any address space)
// and iPTR. In the verifier, we can not distinguish which case we have so
// allow either case to be legal.
if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
EVT::getEVT(PTyp->getElementType()).getEVTString();
} else {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a "
"pointer and a pointer is required.", F);
return false;
}
} else if (EVT((MVT::SimpleValueType)VT).isVector()) {
EVT VVT = EVT((MVT::SimpleValueType)VT);
// If this is a vector argument, verify the number and type of elements.
if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) {
CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
return false;
}
if (VVT.getVectorNumElements() != NumElts) {
CheckFailed("Intrinsic prototype has incorrect number of "
"vector elements!", F);
return false;
}
} else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) !=
EltTy) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F);
return false;
} else if (EltTy != Ty) {
CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is a vector "
"and a scalar is required.", F);
return false;
}
return true;
}
/// VerifyIntrinsicPrototype - TableGen emits calls to this function into
/// Intrinsics.gen. This implements a little state machine that verifies the
/// prototype of intrinsics.
void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
unsigned RetNum,
unsigned ParamNum, ...) {
va_list VA;
va_start(VA, ParamNum);
const FunctionType *FTy = F->getFunctionType();
// For overloaded intrinsics, the Suffix of the function name must match the
// types of the arguments. This variable keeps track of the expected
// suffix, to be checked at the end.
std::string Suffix;
if (FTy->getNumParams() + FTy->isVarArg() != ParamNum) {
CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
return;
}
const Type *Ty = FTy->getReturnType();
const StructType *ST = dyn_cast<StructType>(Ty);
// Verify the return types.
if (ST && ST->getNumElements() != RetNum) {
CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
return;
}
for (unsigned ArgNo = 0; ArgNo < RetNum; ++ArgNo) {
int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
if (ST) Ty = ST->getElementType(ArgNo);
if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
break;
}
// Verify the parameter types.
for (unsigned ArgNo = 0; ArgNo < ParamNum; ++ArgNo) {
int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
if (VT == MVT::isVoid && ArgNo > 0) {
if (!FTy->isVarArg())
CheckFailed("Intrinsic prototype has no '...'!", F);
break;
}
if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + RetNum,
Suffix))
break;
}
va_end(VA);
// For intrinsics without pointer arguments, if we computed a Suffix then the
// intrinsic is overloaded and we need to make sure that the name of the
// function is correct. We add the suffix to the name of the intrinsic and
// compare against the given function name. If they are not the same, the
// function name is invalid. This ensures that overloading of intrinsics
// uses a sane and consistent naming convention. Note that intrinsics with
// pointer argument may or may not be overloaded so we will check assuming it
// has a suffix and not.
if (!Suffix.empty()) {
std::string Name(Intrinsic::getName(ID));
if (Name + Suffix != F->getName()) {
CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
F->getName().substr(Name.length()) + "'. It should be '" +
Suffix + "'", F);
}
}
// Check parameter attributes.
Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
"Intrinsic has wrong parameter attributes!", F);
}
//===----------------------------------------------------------------------===//
// Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
return new Verifier(action);
}
// verifyFunction - Create
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
Function &F = const_cast<Function&>(f);
assert(!F.isDeclaration() && "Cannot verify external functions");
ExistingModuleProvider MP(F.getParent());
FunctionPassManager FPM(&MP);
Verifier *V = new Verifier(action);
FPM.add(V);
FPM.run(F);
MP.releaseModule();
return V->Broken;
}
/// verifyModule - Check a module for errors, printing messages on stderr.
/// Return true if the module is corrupt.
///
bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
std::string *ErrorInfo) {
PassManager PM;
Verifier *V = new Verifier(action);
PM.add(V);
PM.run(const_cast<Module&>(M));
if (ErrorInfo && V->Broken)
*ErrorInfo = V->msgs.str();
return V->Broken;
}
// vim: sw=2