blob: e5d3a48babdf48e5cfef485225fb203d9e3590ad [file] [log] [blame]
//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/BasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
static RegisterRegAlloc
localRegAlloc("local", "local register allocator",
createLocalRegisterAllocator);
namespace {
class VISIBILITY_HIDDEN RALocal : public MachineFunctionPass {
public:
static char ID;
RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {}
private:
const TargetMachine *TM;
MachineFunction *MF;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
// StackSlotForVirtReg - Maps virtual regs to the frame index where these
// values are spilled.
IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
// Virt2PhysRegMap - This map contains entries for each virtual register
// that is currently available in a physical register.
IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
return Virt2PhysRegMap[VirtReg];
}
// PhysRegsUsed - This array is effectively a map, containing entries for
// each physical register that currently has a value (ie, it is in
// Virt2PhysRegMap). The value mapped to is the virtual register
// corresponding to the physical register (the inverse of the
// Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
// because it is used by a future instruction, and to -2 if it is not
// allocatable. If the entry for a physical register is -1, then the
// physical register is "not in the map".
//
std::vector<int> PhysRegsUsed;
// PhysRegsUseOrder - This contains a list of the physical registers that
// currently have a virtual register value in them. This list provides an
// ordering of registers, imposing a reallocation order. This list is only
// used if all registers are allocated and we have to spill one, in which
// case we spill the least recently used register. Entries at the front of
// the list are the least recently used registers, entries at the back are
// the most recently used.
//
std::vector<unsigned> PhysRegsUseOrder;
// Virt2LastUseMap - This maps each virtual register to its last use
// (MachineInstr*, operand index pair).
IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor>
Virt2LastUseMap;
std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) {
assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
return Virt2LastUseMap[Reg];
}
// VirtRegModified - This bitset contains information about which virtual
// registers need to be spilled back to memory when their registers are
// scavenged. If a virtual register has simply been rematerialized, there
// is no reason to spill it to memory when we need the register back.
//
BitVector VirtRegModified;
// UsedInMultipleBlocks - Tracks whether a particular register is used in
// more than one block.
BitVector UsedInMultipleBlocks;
void markVirtRegModified(unsigned Reg, bool Val = true) {
assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
Reg -= TargetRegisterInfo::FirstVirtualRegister;
if (Val)
VirtRegModified.set(Reg);
else
VirtRegModified.reset(Reg);
}
bool isVirtRegModified(unsigned Reg) const {
assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
&& "Illegal virtual register!");
return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
}
void AddToPhysRegsUseOrder(unsigned Reg) {
std::vector<unsigned>::iterator It =
std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg);
if (It != PhysRegsUseOrder.end())
PhysRegsUseOrder.erase(It);
PhysRegsUseOrder.push_back(Reg);
}
void MarkPhysRegRecentlyUsed(unsigned Reg) {
if (PhysRegsUseOrder.empty() ||
PhysRegsUseOrder.back() == Reg) return; // Already most recently used
for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle
PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
// Add it to the end of the list
PhysRegsUseOrder.push_back(RegMatch);
if (RegMatch == Reg)
return; // Found an exact match, exit early
}
}
public:
virtual const char *getPassName() const {
return "Local Register Allocator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// runOnMachineFunction - Register allocate the whole function
bool runOnMachineFunction(MachineFunction &Fn);
/// AllocateBasicBlock - Register allocate the specified basic block.
void AllocateBasicBlock(MachineBasicBlock &MBB);
/// areRegsEqual - This method returns true if the specified registers are
/// related to each other. To do this, it checks to see if they are equal
/// or if the first register is in the alias set of the second register.
///
bool areRegsEqual(unsigned R1, unsigned R2) const {
if (R1 == R2) return true;
for (const unsigned *AliasSet = TRI->getAliasSet(R2);
*AliasSet; ++AliasSet) {
if (*AliasSet == R1) return true;
}
return false;
}
/// getStackSpaceFor - This returns the frame index of the specified virtual
/// register on the stack, allocating space if necessary.
int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
/// removePhysReg - This method marks the specified physical register as no
/// longer being in use.
///
void removePhysReg(unsigned PhysReg);
/// spillVirtReg - This method spills the value specified by PhysReg into
/// the virtual register slot specified by VirtReg. It then updates the RA
/// data structures to indicate the fact that PhysReg is now available.
///
void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
unsigned VirtReg, unsigned PhysReg);
/// spillPhysReg - This method spills the specified physical register into
/// the virtual register slot associated with it. If OnlyVirtRegs is set to
/// true, then the request is ignored if the physical register does not
/// contain a virtual register.
///
void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
unsigned PhysReg, bool OnlyVirtRegs = false);
/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now. The physical
/// register must not be used for anything else when this is called.
///
void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
/// isPhysRegAvailable - Return true if the specified physical register is
/// free and available for use. This also includes checking to see if
/// aliased registers are all free...
///
bool isPhysRegAvailable(unsigned PhysReg) const;
/// getFreeReg - Look to see if there is a free register available in the
/// specified register class. If not, return 0.
///
unsigned getFreeReg(const TargetRegisterClass *RC);
/// getReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method
/// spills the last used virtual register to the stack, and uses that
/// register. If NoFree is true, that means the caller knows there isn't
/// a free register, do not call getFreeReg().
unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned VirtReg, bool NoFree = false);
/// reloadVirtReg - This method transforms the specified virtual
/// register use to refer to a physical register. This method may do this
/// in one of several ways: if the register is available in a physical
/// register already, it uses that physical register. If the value is not
/// in a physical register, and if there are physical registers available,
/// it loads it into a register. If register pressure is high, and it is
/// possible, it tries to fold the load of the virtual register into the
/// instruction itself. It avoids doing this if register pressure is low to
/// improve the chance that subsequent instructions can use the reloaded
/// value. This method returns the modified instruction.
///
MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned OpNum, SmallSet<unsigned, 4> &RRegs);
/// ComputeLocalLiveness - Computes liveness of registers within a basic
/// block, setting the killed/dead flags as appropriate.
void ComputeLocalLiveness(MachineBasicBlock& MBB);
void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned PhysReg);
};
char RALocal::ID = 0;
}
/// getStackSpaceFor - This allocates space for the specified virtual register
/// to be held on the stack.
int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
// Find the location Reg would belong...
int SS = StackSlotForVirtReg[VirtReg];
if (SS != -1)
return SS; // Already has space allocated?
// Allocate a new stack object for this spill location...
int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
RC->getAlignment());
// Assign the slot...
StackSlotForVirtReg[VirtReg] = FrameIdx;
return FrameIdx;
}
/// removePhysReg - This method marks the specified physical register as no
/// longer being in use.
///
void RALocal::removePhysReg(unsigned PhysReg) {
PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
std::vector<unsigned>::iterator It =
std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
if (It != PhysRegsUseOrder.end())
PhysRegsUseOrder.erase(It);
}
/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg. It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
///
void RALocal::spillVirtReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned VirtReg, unsigned PhysReg) {
assert(VirtReg && "Spilling a physical register is illegal!"
" Must not have appropriate kill for the register or use exists beyond"
" the intended one.");
DOUT << " Spilling register " << TRI->getName(PhysReg)
<< " containing %reg" << VirtReg;
if (!isVirtRegModified(VirtReg)) {
DOUT << " which has not been modified, so no store necessary!";
std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
if (LastUse.first)
LastUse.first->getOperand(LastUse.second).setIsKill();
} else {
// Otherwise, there is a virtual register corresponding to this physical
// register. We only need to spill it into its stack slot if it has been
// modified.
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
DOUT << " to stack slot #" << FrameIndex;
// If the instruction reads the register that's spilled, (e.g. this can
// happen if it is a move to a physical register), then the spill
// instruction is not a kill.
bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg));
TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC);
++NumStores; // Update statistics
}
getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
DOUT << "\n";
removePhysReg(PhysReg);
}
/// spillPhysReg - This method spills the specified physical register into the
/// virtual register slot associated with it. If OnlyVirtRegs is set to true,
/// then the request is ignored if the physical register does not contain a
/// virtual register.
///
void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
unsigned PhysReg, bool OnlyVirtRegs) {
if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
} else {
// If the selected register aliases any other registers, we must make
// sure that one of the aliases isn't alive.
for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
*AliasSet; ++AliasSet)
if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register.
PhysRegsUsed[*AliasSet] != -2) // If allocatable.
if (PhysRegsUsed[*AliasSet])
spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
}
}
/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now. The physical
/// register must not be used for anything else when this is called.
///
void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
// Update information to note the fact that this register was just used, and
// it holds VirtReg.
PhysRegsUsed[PhysReg] = VirtReg;
getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
AddToPhysRegsUseOrder(PhysReg); // New use of PhysReg
}
/// isPhysRegAvailable - Return true if the specified physical register is free
/// and available for use. This also includes checking to see if aliased
/// registers are all free...
///
bool RALocal::isPhysRegAvailable(unsigned PhysReg) const {
if (PhysRegsUsed[PhysReg] != -1) return false;
// If the selected register aliases any other allocated registers, it is
// not free!
for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
*AliasSet; ++AliasSet)
if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
return false; // Can't use this reg then.
return true;
}
/// getFreeReg - Look to see if there is a free register available in the
/// specified register class. If not, return 0.
///
unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) {
// Get iterators defining the range of registers that are valid to allocate in
// this class, which also specifies the preferred allocation order.
TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
for (; RI != RE; ++RI)
if (isPhysRegAvailable(*RI)) { // Is reg unused?
assert(*RI != 0 && "Cannot use register!");
return *RI; // Found an unused register!
}
return 0;
}
/// getReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method spills
/// the last used virtual register to the stack, and uses that register.
///
unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I,
unsigned VirtReg, bool NoFree) {
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
// First check to see if we have a free register of the requested type...
unsigned PhysReg = NoFree ? 0 : getFreeReg(RC);
// If we didn't find an unused register, scavenge one now!
if (PhysReg == 0) {
assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
// Loop over all of the preallocated registers from the least recently used
// to the most recently used. When we find one that is capable of holding
// our register, use it.
for (unsigned i = 0; PhysReg == 0; ++i) {
assert(i != PhysRegsUseOrder.size() &&
"Couldn't find a register of the appropriate class!");
unsigned R = PhysRegsUseOrder[i];
// We can only use this register if it holds a virtual register (ie, it
// can be spilled). Do not use it if it is an explicitly allocated
// physical register!
assert(PhysRegsUsed[R] != -1 &&
"PhysReg in PhysRegsUseOrder, but is not allocated?");
if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) {
// If the current register is compatible, use it.
if (RC->contains(R)) {
PhysReg = R;
break;
} else {
// If one of the registers aliased to the current register is
// compatible, use it.
for (const unsigned *AliasIt = TRI->getAliasSet(R);
*AliasIt; ++AliasIt) {
if (RC->contains(*AliasIt) &&
// If this is pinned down for some reason, don't use it. For
// example, if CL is pinned, and we run across CH, don't use
// CH as justification for using scavenging ECX (which will
// fail).
PhysRegsUsed[*AliasIt] != 0 &&
// Make sure the register is allocatable. Don't allocate SIL on
// x86-32.
PhysRegsUsed[*AliasIt] != -2) {
PhysReg = *AliasIt; // Take an aliased register
break;
}
}
}
}
}
assert(PhysReg && "Physical register not assigned!?!?");
// At this point PhysRegsUseOrder[i] is the least recently used register of
// compatible register class. Spill it to memory and reap its remains.
spillPhysReg(MBB, I, PhysReg);
}
// Now that we know which register we need to assign this to, do it now!
assignVirtToPhysReg(VirtReg, PhysReg);
return PhysReg;
}
/// reloadVirtReg - This method transforms the specified virtual
/// register use to refer to a physical register. This method may do this in
/// one of several ways: if the register is available in a physical register
/// already, it uses that physical register. If the value is not in a physical
/// register, and if there are physical registers available, it loads it into a
/// register. If register pressure is high, and it is possible, it tries to
/// fold the load of the virtual register into the instruction itself. It
/// avoids doing this if register pressure is low to improve the chance that
/// subsequent instructions can use the reloaded value. This method returns the
/// modified instruction.
///
MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
unsigned OpNum,
SmallSet<unsigned, 4> &ReloadedRegs) {
unsigned VirtReg = MI->getOperand(OpNum).getReg();
// If the virtual register is already available, just update the instruction
// and return.
if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
MarkPhysRegRecentlyUsed(PR); // Already have this value available!
MI->getOperand(OpNum).setReg(PR); // Assign the input register
getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
return MI;
}
// Otherwise, we need to fold it into the current instruction, or reload it.
// If we have registers available to hold the value, use them.
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
unsigned PhysReg = getFreeReg(RC);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
if (PhysReg) { // Register is available, allocate it!
assignVirtToPhysReg(VirtReg, PhysReg);
} else { // No registers available.
// Force some poor hapless value out of the register file to
// make room for the new register, and reload it.
PhysReg = getReg(MBB, MI, VirtReg, true);
}
markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
DOUT << " Reloading %reg" << VirtReg << " into "
<< TRI->getName(PhysReg) << "\n";
// Add move instruction(s)
TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
++NumLoads; // Update statistics
MF->getRegInfo().setPhysRegUsed(PhysReg);
MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
if (!ReloadedRegs.insert(PhysReg)) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Ran out of registers during register allocation!";
if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
Msg << "\nPlease check your inline asm statement for invalid "
<< "constraints:\n";
MI->print(Msg, TM);
}
llvm_report_error(Msg.str());
}
for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
*SubRegs; ++SubRegs) {
if (!ReloadedRegs.insert(*SubRegs)) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Ran out of registers during register allocation!";
if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
Msg << "\nPlease check your inline asm statement for invalid "
<< "constraints:\n";
MI->print(Msg, TM);
}
llvm_report_error(Msg.str());
}
}
return MI;
}
/// isReadModWriteImplicitKill - True if this is an implicit kill for a
/// read/mod/write register, i.e. update partial register.
static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
MO.isDef() && !MO.isDead())
return true;
}
return false;
}
/// isReadModWriteImplicitDef - True if this is an implicit def for a
/// read/mod/write register, i.e. update partial register.
static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() &&
!MO.isDef() && MO.isKill())
return true;
}
return false;
}
// precedes - Helper function to determine with MachineInstr A
// precedes MachineInstr B within the same MBB.
static bool precedes(MachineBasicBlock::iterator A,
MachineBasicBlock::iterator B) {
if (A == B)
return false;
MachineBasicBlock::iterator I = A->getParent()->begin();
while (I != A->getParent()->end()) {
if (I == A)
return true;
else if (I == B)
return false;
++I;
}
return false;
}
/// ComputeLocalLiveness - Computes liveness of registers within a basic
/// block, setting the killed/dead flags as appropriate.
void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) {
MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo();
// Keep track of the most recently seen previous use or def of each reg,
// so that we can update them with dead/kill markers.
DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
I != E; ++I) {
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
MachineOperand& MO = I->getOperand(i);
// Uses don't trigger any flags, but we need to save
// them for later. Also, we have to process these
// _before_ processing the defs, since an instr
// uses regs before it defs them.
if (MO.isReg() && MO.getReg() && MO.isUse()) {
LastUseDef[MO.getReg()] = std::make_pair(I, i);
if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue;
const unsigned* Aliases = TRI->getAliasSet(MO.getReg());
if (Aliases) {
while (*Aliases) {
DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
alias = LastUseDef.find(*Aliases);
if (alias != LastUseDef.end() && alias->second.first != I)
LastUseDef[*Aliases] = std::make_pair(I, i);
++Aliases;
}
}
}
}
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
MachineOperand& MO = I->getOperand(i);
// Defs others than 2-addr redefs _do_ trigger flag changes:
// - A def followed by a def is dead
// - A use followed by a def is a kill
if (MO.isReg() && MO.getReg() && MO.isDef()) {
DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
last = LastUseDef.find(MO.getReg());
if (last != LastUseDef.end()) {
// Check if this is a two address instruction. If so, then
// the def does not kill the use.
if (last->second.first == I &&
I->isRegTiedToUseOperand(i))
continue;
MachineOperand& lastUD =
last->second.first->getOperand(last->second.second);
if (lastUD.isDef())
lastUD.setIsDead(true);
else
lastUD.setIsKill(true);
}
LastUseDef[MO.getReg()] = std::make_pair(I, i);
}
}
}
// Live-out (of the function) registers contain return values of the function,
// so we need to make sure they are alive at return time.
if (!MBB.empty() && MBB.back().getDesc().isReturn()) {
MachineInstr* Ret = &MBB.back();
for (MachineRegisterInfo::liveout_iterator
I = MF->getRegInfo().liveout_begin(),
E = MF->getRegInfo().liveout_end(); I != E; ++I)
if (!Ret->readsRegister(*I)) {
Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1);
}
}
// Finally, loop over the final use/def of each reg
// in the block and determine if it is dead.
for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) {
MachineInstr* MI = I->second.first;
unsigned idx = I->second.second;
MachineOperand& MO = MI->getOperand(idx);
bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg());
// A crude approximation of "live-out" calculation
bool usedOutsideBlock = isPhysReg ? false :
UsedInMultipleBlocks.test(MO.getReg() -
TargetRegisterInfo::FirstVirtualRegister);
if (!isPhysReg && !usedOutsideBlock)
for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
UE = MRI.reg_end(); UI != UE; ++UI)
// Two cases:
// - used in another block
// - used in the same block before it is defined (loop)
if (UI->getParent() != &MBB ||
(MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) {
UsedInMultipleBlocks.set(MO.getReg() -
TargetRegisterInfo::FirstVirtualRegister);
usedOutsideBlock = true;
break;
}
// Physical registers and those that are not live-out of the block
// are killed/dead at their last use/def within this block.
if (isPhysReg || !usedOutsideBlock) {
if (MO.isUse()) {
// Don't mark uses that are tied to defs as kills.
if (!MI->isRegTiedToDefOperand(idx))
MO.setIsKill(true);
} else
MO.setIsDead(true);
}
}
}
void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
// loop over each instruction
MachineBasicBlock::iterator MII = MBB.begin();
DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
if (LBB) errs() << "\nStarting RegAlloc of BB: " << LBB->getName());
// Add live-in registers as active.
for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
E = MBB.livein_end(); I != E; ++I) {
unsigned Reg = *I;
MF->getRegInfo().setPhysRegUsed(Reg);
PhysRegsUsed[Reg] = 0; // It is free and reserved now
AddToPhysRegsUseOrder(Reg);
for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
*SubRegs; ++SubRegs) {
if (PhysRegsUsed[*SubRegs] != -2) {
AddToPhysRegsUseOrder(*SubRegs);
PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
MF->getRegInfo().setPhysRegUsed(*SubRegs);
}
}
}
ComputeLocalLiveness(MBB);
// Otherwise, sequentially allocate each instruction in the MBB.
while (MII != MBB.end()) {
MachineInstr *MI = MII++;
const TargetInstrDesc &TID = MI->getDesc();
DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI;
DOUT << " Regs have values: ";
for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
DOUT << "[" << TRI->getName(i)
<< ",%reg" << PhysRegsUsed[i] << "] ";
DOUT << "\n");
// Loop over the implicit uses, making sure that they are at the head of the
// use order list, so they don't get reallocated.
if (TID.ImplicitUses) {
for (const unsigned *ImplicitUses = TID.ImplicitUses;
*ImplicitUses; ++ImplicitUses)
MarkPhysRegRecentlyUsed(*ImplicitUses);
}
SmallVector<unsigned, 8> Kills;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.isKill()) {
if (!MO.isImplicit())
Kills.push_back(MO.getReg());
else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
// These are extra physical register kills when a sub-register
// is defined (def of a sub-register is a read/mod/write of the
// larger registers). Ignore.
Kills.push_back(MO.getReg());
}
}
// If any physical regs are earlyclobber, spill any value they might
// have in them, then mark them unallocatable.
// If any virtual regs are earlyclobber, allocate them now (before
// freeing inputs that are killed).
if (MI->getOpcode()==TargetInstrInfo::INLINEASM) {
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() && MO.isEarlyClobber() &&
MO.getReg()) {
if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
unsigned DestVirtReg = MO.getReg();
unsigned DestPhysReg;
// If DestVirtReg already has a value, use it.
if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
DestPhysReg = getReg(MBB, MI, DestVirtReg);
MF->getRegInfo().setPhysRegUsed(DestPhysReg);
markVirtRegModified(DestVirtReg);
getVirtRegLastUse(DestVirtReg) =
std::make_pair((MachineInstr*)0, 0);
DOUT << " Assigning " << TRI->getName(DestPhysReg)
<< " to %reg" << DestVirtReg << "\n";
MO.setReg(DestPhysReg); // Assign the earlyclobber register
} else {
unsigned Reg = MO.getReg();
if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
// These are extra physical register defs when a sub-register
// is defined (def of a sub-register is a read/mod/write of the
// larger registers). Ignore.
if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
MF->getRegInfo().setPhysRegUsed(Reg);
spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
PhysRegsUsed[Reg] = 0; // It is free and reserved now
AddToPhysRegsUseOrder(Reg);
for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
*SubRegs; ++SubRegs) {
if (PhysRegsUsed[*SubRegs] != -2) {
MF->getRegInfo().setPhysRegUsed(*SubRegs);
PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
AddToPhysRegsUseOrder(*SubRegs);
}
}
}
}
}
}
// Get the used operands into registers. This has the potential to spill
// incoming values if we are out of registers. Note that we completely
// ignore physical register uses here. We assume that if an explicit
// physical register is referenced by the instruction, that it is guaranteed
// to be live-in, or the input is badly hosed.
//
SmallSet<unsigned, 4> ReloadedRegs;
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
MachineOperand& MO = MI->getOperand(i);
// here we are looking for only used operands (never def&use)
if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
TargetRegisterInfo::isVirtualRegister(MO.getReg()))
MI = reloadVirtReg(MBB, MI, i, ReloadedRegs);
}
// If this instruction is the last user of this register, kill the
// value, freeing the register being used, so it doesn't need to be
// spilled to memory.
//
for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
unsigned VirtReg = Kills[i];
unsigned PhysReg = VirtReg;
if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
// If the virtual register was never materialized into a register, it
// might not be in the map, but it won't hurt to zero it out anyway.
unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
PhysReg = PhysRegSlot;
PhysRegSlot = 0;
} else if (PhysRegsUsed[PhysReg] == -2) {
// Unallocatable register dead, ignore.
continue;
} else {
assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
"Silently clearing a virtual register?");
}
if (PhysReg) {
DOUT << " Last use of " << TRI->getName(PhysReg)
<< "[%reg" << VirtReg <<"], removing it from live set\n";
removePhysReg(PhysReg);
for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg);
*SubRegs; ++SubRegs) {
if (PhysRegsUsed[*SubRegs] != -2) {
DOUT << " Last use of "
<< TRI->getName(*SubRegs)
<< "[%reg" << VirtReg <<"], removing it from live set\n";
removePhysReg(*SubRegs);
}
}
}
}
// Loop over all of the operands of the instruction, spilling registers that
// are defined, and marking explicit destinations in the PhysRegsUsed map.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
!MO.isEarlyClobber() &&
TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
unsigned Reg = MO.getReg();
if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
// These are extra physical register defs when a sub-register
// is defined (def of a sub-register is a read/mod/write of the
// larger registers). Ignore.
if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
MF->getRegInfo().setPhysRegUsed(Reg);
spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
PhysRegsUsed[Reg] = 0; // It is free and reserved now
AddToPhysRegsUseOrder(Reg);
for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
*SubRegs; ++SubRegs) {
if (PhysRegsUsed[*SubRegs] != -2) {
MF->getRegInfo().setPhysRegUsed(*SubRegs);
PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
AddToPhysRegsUseOrder(*SubRegs);
}
}
}
}
// Loop over the implicit defs, spilling them as well.
if (TID.ImplicitDefs) {
for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
*ImplicitDefs; ++ImplicitDefs) {
unsigned Reg = *ImplicitDefs;
if (PhysRegsUsed[Reg] != -2) {
spillPhysReg(MBB, MI, Reg, true);
AddToPhysRegsUseOrder(Reg);
PhysRegsUsed[Reg] = 0; // It is free and reserved now
}
MF->getRegInfo().setPhysRegUsed(Reg);
for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
*SubRegs; ++SubRegs) {
if (PhysRegsUsed[*SubRegs] != -2) {
AddToPhysRegsUseOrder(*SubRegs);
PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now
MF->getRegInfo().setPhysRegUsed(*SubRegs);
}
}
}
}
SmallVector<unsigned, 8> DeadDefs;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.isDead())
DeadDefs.push_back(MO.getReg());
}
// Okay, we have allocated all of the source operands and spilled any values
// that would be destroyed by defs of this instruction. Loop over the
// explicit defs and assign them to a register, spilling incoming values if
// we need to scavenge a register.
//
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() && MO.getReg() &&
!MO.isEarlyClobber() &&
TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
unsigned DestVirtReg = MO.getReg();
unsigned DestPhysReg;
// If DestVirtReg already has a value, use it.
if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
DestPhysReg = getReg(MBB, MI, DestVirtReg);
MF->getRegInfo().setPhysRegUsed(DestPhysReg);
markVirtRegModified(DestVirtReg);
getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
DOUT << " Assigning " << TRI->getName(DestPhysReg)
<< " to %reg" << DestVirtReg << "\n";
MO.setReg(DestPhysReg); // Assign the output register
}
}
// If this instruction defines any registers that are immediately dead,
// kill them now.
//
for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
unsigned VirtReg = DeadDefs[i];
unsigned PhysReg = VirtReg;
if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
PhysReg = PhysRegSlot;
assert(PhysReg != 0);
PhysRegSlot = 0;
} else if (PhysRegsUsed[PhysReg] == -2) {
// Unallocatable register dead, ignore.
continue;
}
if (PhysReg) {
DOUT << " Register " << TRI->getName(PhysReg)
<< " [%reg" << VirtReg
<< "] is never used, removing it from live set\n";
removePhysReg(PhysReg);
for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
*AliasSet; ++AliasSet) {
if (PhysRegsUsed[*AliasSet] != -2) {
DOUT << " Register " << TRI->getName(*AliasSet)
<< " [%reg" << *AliasSet
<< "] is never used, removing it from live set\n";
removePhysReg(*AliasSet);
}
}
}
}
// Finally, if this is a noop copy instruction, zap it. (Except that if
// the copy is dead, it must be kept to avoid messing up liveness info for
// the register scavenger. See pr4100.)
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
SrcReg == DstReg && DeadDefs.empty())
MBB.erase(MI);
}
MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
// Spill all physical registers holding virtual registers now.
for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
if (unsigned VirtReg = PhysRegsUsed[i])
spillVirtReg(MBB, MI, VirtReg, i);
else
removePhysReg(i);
}
#if 0
// This checking code is very expensive.
bool AllOk = true;
for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i)
if (unsigned PR = Virt2PhysRegMap[i]) {
cerr << "Register still mapped: " << i << " -> " << PR << "\n";
AllOk = false;
}
assert(AllOk && "Virtual registers still in phys regs?");
#endif
// Clear any physical register which appear live at the end of the basic
// block, but which do not hold any virtual registers. e.g., the stack
// pointer.
PhysRegsUseOrder.clear();
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
DOUT << "Machine Function " << "\n";
MF = &Fn;
TM = &Fn.getTarget();
TRI = TM->getRegisterInfo();
TII = TM->getInstrInfo();
PhysRegsUsed.assign(TRI->getNumRegs(), -1);
// At various places we want to efficiently check to see whether a register
// is allocatable. To handle this, we mark all unallocatable registers as
// being pinned down, permanently.
{
BitVector Allocable = TRI->getAllocatableSet(Fn);
for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
if (!Allocable[i])
PhysRegsUsed[i] = -2; // Mark the reg unallocable.
}
// initialize the virtual->physical register map to have a 'null'
// mapping for all virtual registers
unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
StackSlotForVirtReg.grow(LastVirtReg);
Virt2PhysRegMap.grow(LastVirtReg);
Virt2LastUseMap.grow(LastVirtReg);
VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
UsedInMultipleBlocks.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
AllocateBasicBlock(*MBB);
StackSlotForVirtReg.clear();
PhysRegsUsed.clear();
VirtRegModified.clear();
UsedInMultipleBlocks.clear();
Virt2PhysRegMap.clear();
Virt2LastUseMap.clear();
return true;
}
FunctionPass *llvm::createLocalRegisterAllocator() {
return new RALocal();
}