| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| "http://www.w3.org/TR/html4/strict.dtd"> |
| <html> |
| <head> |
| <title>LLVM Assembly Language Reference Manual</title> |
| <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| <meta name="author" content="Chris Lattner"> |
| <meta name="description" |
| content="LLVM Assembly Language Reference Manual."> |
| <link rel="stylesheet" href="llvm.css" type="text/css"> |
| </head> |
| |
| <body> |
| |
| <div class="doc_title"> LLVM Language Reference Manual </div> |
| <ol> |
| <li><a href="#abstract">Abstract</a></li> |
| <li><a href="#introduction">Introduction</a></li> |
| <li><a href="#identifiers">Identifiers</a></li> |
| <li><a href="#highlevel">High Level Structure</a> |
| <ol> |
| <li><a href="#modulestructure">Module Structure</a></li> |
| <li><a href="#linkage">Linkage Types</a> |
| <ol> |
| <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li> |
| <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li> |
| <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li> |
| <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li> |
| <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li> |
| <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li> |
| <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li> |
| <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li> |
| <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li> |
| <li><a href="#linkage_linkonce">'<tt>linkonce_odr</tt>' Linkage</a></li> |
| <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li> |
| <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li> |
| <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li> |
| <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li> |
| </ol> |
| </li> |
| <li><a href="#callingconv">Calling Conventions</a></li> |
| <li><a href="#namedtypes">Named Types</a></li> |
| <li><a href="#globalvars">Global Variables</a></li> |
| <li><a href="#functionstructure">Functions</a></li> |
| <li><a href="#aliasstructure">Aliases</a></li> |
| <li><a href="#paramattrs">Parameter Attributes</a></li> |
| <li><a href="#fnattrs">Function Attributes</a></li> |
| <li><a href="#gc">Garbage Collector Names</a></li> |
| <li><a href="#moduleasm">Module-Level Inline Assembly</a></li> |
| <li><a href="#datalayout">Data Layout</a></li> |
| <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li> |
| </ol> |
| </li> |
| <li><a href="#typesystem">Type System</a> |
| <ol> |
| <li><a href="#t_classifications">Type Classifications</a></li> |
| <li><a href="#t_primitive">Primitive Types</a> |
| <ol> |
| <li><a href="#t_floating">Floating Point Types</a></li> |
| <li><a href="#t_void">Void Type</a></li> |
| <li><a href="#t_label">Label Type</a></li> |
| <li><a href="#t_metadata">Metadata Type</a></li> |
| </ol> |
| </li> |
| <li><a href="#t_derived">Derived Types</a> |
| <ol> |
| <li><a href="#t_integer">Integer Type</a></li> |
| <li><a href="#t_array">Array Type</a></li> |
| <li><a href="#t_function">Function Type</a></li> |
| <li><a href="#t_pointer">Pointer Type</a></li> |
| <li><a href="#t_struct">Structure Type</a></li> |
| <li><a href="#t_pstruct">Packed Structure Type</a></li> |
| <li><a href="#t_vector">Vector Type</a></li> |
| <li><a href="#t_opaque">Opaque Type</a></li> |
| </ol> |
| </li> |
| <li><a href="#t_uprefs">Type Up-references</a></li> |
| </ol> |
| </li> |
| <li><a href="#constants">Constants</a> |
| <ol> |
| <li><a href="#simpleconstants">Simple Constants</a></li> |
| <li><a href="#complexconstants">Complex Constants</a></li> |
| <li><a href="#globalconstants">Global Variable and Function Addresses</a></li> |
| <li><a href="#undefvalues">Undefined Values</a></li> |
| <li><a href="#constantexprs">Constant Expressions</a></li> |
| <li><a href="#metadata">Embedded Metadata</a></li> |
| </ol> |
| </li> |
| <li><a href="#othervalues">Other Values</a> |
| <ol> |
| <li><a href="#inlineasm">Inline Assembler Expressions</a></li> |
| </ol> |
| </li> |
| <li><a href="#intrinsic_globals">Intrinsic Global Variables</a> |
| <ol> |
| <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li> |
| <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>' |
| Global Variable</a></li> |
| <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>' |
| Global Variable</a></li> |
| <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>' |
| Global Variable</a></li> |
| </ol> |
| </li> |
| <li><a href="#instref">Instruction Reference</a> |
| <ol> |
| <li><a href="#terminators">Terminator Instructions</a> |
| <ol> |
| <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li> |
| <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li> |
| <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li> |
| <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li> |
| <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li> |
| <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#binaryops">Binary Operations</a> |
| <ol> |
| <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li> |
| <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li> |
| <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li> |
| <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li> |
| <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li> |
| <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li> |
| <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li> |
| <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li> |
| <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li> |
| <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li> |
| <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li> |
| <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#bitwiseops">Bitwise Binary Operations</a> |
| <ol> |
| <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li> |
| <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li> |
| <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li> |
| <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li> |
| <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li> |
| <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#vectorops">Vector Operations</a> |
| <ol> |
| <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li> |
| <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li> |
| <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#aggregateops">Aggregate Operations</a> |
| <ol> |
| <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li> |
| <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#memoryops">Memory Access and Addressing Operations</a> |
| <ol> |
| <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li> |
| <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li> |
| <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li> |
| <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li> |
| <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li> |
| <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#convertops">Conversion Operations</a> |
| <ol> |
| <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li> |
| <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li> |
| <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li> |
| <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li> |
| <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li> |
| <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li> |
| <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li> |
| <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li> |
| <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li> |
| <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li> |
| <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li> |
| <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#otherops">Other Operations</a> |
| <ol> |
| <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li> |
| <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li> |
| <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li> |
| <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li> |
| <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li> |
| <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| </ol> |
| </li> |
| <li><a href="#intrinsics">Intrinsic Functions</a> |
| <ol> |
| <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a> |
| <ol> |
| <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li> |
| <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li> |
| <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a> |
| <ol> |
| <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li> |
| <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li> |
| <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| <li><a href="#int_codegen">Code Generator Intrinsics</a> |
| <ol> |
| <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li> |
| <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li> |
| <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li> |
| <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li> |
| <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li> |
| <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li> |
| <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| <li><a href="#int_libc">Standard C Library Intrinsics</a> |
| <ol> |
| <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| <li><a href="#int_manip">Bit Manipulation Intrinsics</a> |
| <ol> |
| <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li> |
| <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li> |
| <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li> |
| <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li> |
| </ol> |
| </li> |
| <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a> |
| <ol> |
| <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li> |
| <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li> |
| <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li> |
| <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li> |
| <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li> |
| <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li> |
| </ol> |
| </li> |
| <li><a href="#int_debugger">Debugger intrinsics</a></li> |
| <li><a href="#int_eh">Exception Handling intrinsics</a></li> |
| <li><a href="#int_trampoline">Trampoline Intrinsic</a> |
| <ol> |
| <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| <li><a href="#int_atomics">Atomic intrinsics</a> |
| <ol> |
| <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li> |
| <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li> |
| <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li> |
| <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li> |
| <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li> |
| <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li> |
| <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li> |
| <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li> |
| <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li> |
| <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li> |
| <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li> |
| <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li> |
| <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li> |
| </ol> |
| </li> |
| <li><a href="#int_general">General intrinsics</a> |
| <ol> |
| <li><a href="#int_var_annotation"> |
| '<tt>llvm.var.annotation</tt>' Intrinsic</a></li> |
| <li><a href="#int_annotation"> |
| '<tt>llvm.annotation.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_trap"> |
| '<tt>llvm.trap</tt>' Intrinsic</a></li> |
| <li><a href="#int_stackprotector"> |
| '<tt>llvm.stackprotector</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| </ol> |
| </li> |
| </ol> |
| |
| <div class="doc_author"> |
| <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> |
| and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="abstract">Abstract </a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>This document is a reference manual for the LLVM assembly language. LLVM is |
| a Static Single Assignment (SSA) based representation that provides type |
| safety, low-level operations, flexibility, and the capability of representing |
| 'all' high-level languages cleanly. It is the common code representation |
| used throughout all phases of the LLVM compilation strategy.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="introduction">Introduction</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>The LLVM code representation is designed to be used in three different forms: |
| as an in-memory compiler IR, as an on-disk bitcode representation (suitable |
| for fast loading by a Just-In-Time compiler), and as a human readable |
| assembly language representation. This allows LLVM to provide a powerful |
| intermediate representation for efficient compiler transformations and |
| analysis, while providing a natural means to debug and visualize the |
| transformations. The three different forms of LLVM are all equivalent. This |
| document describes the human readable representation and notation.</p> |
| |
| <p>The LLVM representation aims to be light-weight and low-level while being |
| expressive, typed, and extensible at the same time. It aims to be a |
| "universal IR" of sorts, by being at a low enough level that high-level ideas |
| may be cleanly mapped to it (similar to how microprocessors are "universal |
| IR's", allowing many source languages to be mapped to them). By providing |
| type information, LLVM can be used as the target of optimizations: for |
| example, through pointer analysis, it can be proven that a C automatic |
| variable is never accessed outside of the current function... allowing it to |
| be promoted to a simple SSA value instead of a memory location.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div> |
| |
| <div class="doc_text"> |
| |
| <p>It is important to note that this document describes 'well formed' LLVM |
| assembly language. There is a difference between what the parser accepts and |
| what is considered 'well formed'. For example, the following instruction is |
| syntactically okay, but not well formed:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| %x = <a href="#i_add">add</a> i32 1, %x |
| </pre> |
| </div> |
| |
| <p>...because the definition of <tt>%x</tt> does not dominate all of its |
| uses. The LLVM infrastructure provides a verification pass that may be used |
| to verify that an LLVM module is well formed. This pass is automatically run |
| by the parser after parsing input assembly and by the optimizer before it |
| outputs bitcode. The violations pointed out by the verifier pass indicate |
| bugs in transformation passes or input to the parser.</p> |
| |
| </div> |
| |
| <!-- Describe the typesetting conventions here. --> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="identifiers">Identifiers</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM identifiers come in two basic types: global and local. Global |
| identifiers (functions, global variables) begin with the <tt>'@'</tt> |
| character. Local identifiers (register names, types) begin with |
| the <tt>'%'</tt> character. Additionally, there are three different formats |
| for identifiers, for different purposes:</p> |
| |
| <ol> |
| <li>Named values are represented as a string of characters with their prefix. |
| For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>, |
| <tt>%a.really.long.identifier</tt>. The actual regular expression used is |
| '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require |
| other characters in their names can be surrounded with quotes. Special |
| characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the |
| ASCII code for the character in hexadecimal. In this way, any character |
| can be used in a name value, even quotes themselves.</li> |
| |
| <li>Unnamed values are represented as an unsigned numeric value with their |
| prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li> |
| |
| <li>Constants, which are described in a <a href="#constants">section about |
| constants</a>, below.</li> |
| </ol> |
| |
| <p>LLVM requires that values start with a prefix for two reasons: Compilers |
| don't need to worry about name clashes with reserved words, and the set of |
| reserved words may be expanded in the future without penalty. Additionally, |
| unnamed identifiers allow a compiler to quickly come up with a temporary |
| variable without having to avoid symbol table conflicts.</p> |
| |
| <p>Reserved words in LLVM are very similar to reserved words in other |
| languages. There are keywords for different opcodes |
| ('<tt><a href="#i_add">add</a></tt>', |
| '<tt><a href="#i_bitcast">bitcast</a></tt>', |
| '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names |
| ('<tt><a href="#t_void">void</a></tt>', |
| '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These |
| reserved words cannot conflict with variable names, because none of them |
| start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p> |
| |
| <p>Here is an example of LLVM code to multiply the integer variable |
| '<tt>%X</tt>' by 8:</p> |
| |
| <p>The easy way:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| %result = <a href="#i_mul">mul</a> i32 %X, 8 |
| </pre> |
| </div> |
| |
| <p>After strength reduction:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| %result = <a href="#i_shl">shl</a> i32 %X, i8 3 |
| </pre> |
| </div> |
| |
| <p>And the hard way:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i> |
| <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i> |
| %result = <a href="#i_add">add</a> i32 %1, %1 |
| </pre> |
| </div> |
| |
| <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important |
| lexical features of LLVM:</p> |
| |
| <ol> |
| <li>Comments are delimited with a '<tt>;</tt>' and go until the end of |
| line.</li> |
| |
| <li>Unnamed temporaries are created when the result of a computation is not |
| assigned to a named value.</li> |
| |
| <li>Unnamed temporaries are numbered sequentially</li> |
| </ol> |
| |
| <p>...and it also shows a convention that we follow in this document. When |
| demonstrating instructions, we will follow an instruction with a comment that |
| defines the type and name of value produced. Comments are shown in italic |
| text.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="modulestructure">Module Structure</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM programs are composed of "Module"s, each of which is a translation unit |
| of the input programs. Each module consists of functions, global variables, |
| and symbol table entries. Modules may be combined together with the LLVM |
| linker, which merges function (and global variable) definitions, resolves |
| forward declarations, and merges symbol table entries. Here is an example of |
| the "hello world" module:</p> |
| |
| <div class="doc_code"> |
| <pre><i>; Declare the string constant as a global constant...</i> |
| <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a |
| href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i> |
| |
| <i>; External declaration of the puts function</i> |
| <a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i> |
| |
| <i>; Definition of main function</i> |
| define i32 @main() { <i>; i32()* </i> |
| <i>; Convert [13 x i8]* to i8 *...</i> |
| %cast210 = <a |
| href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i> |
| |
| <i>; Call puts function to write out the string to stdout...</i> |
| <a |
| href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i> |
| <a |
| href="#i_ret">ret</a> i32 0<br>}<br> |
| </pre> |
| </div> |
| |
| <p>This example is made up of a <a href="#globalvars">global variable</a> named |
| "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and |
| a <a href="#functionstructure">function definition</a> for |
| "<tt>main</tt>".</p> |
| |
| <p>In general, a module is made up of a list of global values, where both |
| functions and global variables are global values. Global values are |
| represented by a pointer to a memory location (in this case, a pointer to an |
| array of char, and a pointer to a function), and have one of the |
| following <a href="#linkage">linkage types</a>.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="linkage">Linkage Types</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>All Global Variables and Functions have one of the following types of |
| linkage:</p> |
| |
| <dl> |
| <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt> |
| <dd>Global values with private linkage are only directly accessible by objects |
| in the current module. In particular, linking code into a module with an |
| private global value may cause the private to be renamed as necessary to |
| avoid collisions. Because the symbol is private to the module, all |
| references can be updated. This doesn't show up in any symbol table in the |
| object file.</dd> |
| |
| <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt>: </dt> |
| <dd>Similar to private, but the symbol is passed through the assembler and |
| removed by the linker after evaluation.</dd> |
| |
| <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt> |
| <dd>Similar to private, but the value shows as a local symbol |
| (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This |
| corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd> |
| |
| <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt>: </dt> |
| <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted |
| into the object file corresponding to the LLVM module. They exist to |
| allow inlining and other optimizations to take place given knowledge of |
| the definition of the global, which is known to be somewhere outside the |
| module. Globals with <tt>available_externally</tt> linkage are allowed to |
| be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>. |
| This linkage type is only allowed on definitions, not declarations.</dd> |
| |
| <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt> |
| <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of |
| the same name when linkage occurs. This is typically used to implement |
| inline functions, templates, or other code which must be generated in each |
| translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are |
| allowed to be discarded.</dd> |
| |
| <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt> |
| <dd>"<tt>weak</tt>" linkage has the same merging semantics as |
| <tt>linkonce</tt> linkage, except that unreferenced globals with |
| <tt>weak</tt> linkage may not be discarded. This is used for globals that |
| are declared "weak" in C source code.</dd> |
| |
| <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt> |
| <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but |
| they are used for tentative definitions in C, such as "<tt>int X;</tt>" at |
| global scope. |
| Symbols with "<tt>common</tt>" linkage are merged in the same way as |
| <tt>weak symbols</tt>, and they may not be deleted if unreferenced. |
| <tt>common</tt> symbols may not have an explicit section, |
| must have a zero initializer, and may not be marked '<a |
| href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not |
| have common linkage.</dd> |
| |
| |
| <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt> |
| <dd>"<tt>appending</tt>" linkage may only be applied to global variables of |
| pointer to array type. When two global variables with appending linkage |
| are linked together, the two global arrays are appended together. This is |
| the LLVM, typesafe, equivalent of having the system linker append together |
| "sections" with identical names when .o files are linked.</dd> |
| |
| <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt> |
| <dd>The semantics of this linkage follow the ELF object file model: the symbol |
| is weak until linked, if not linked, the symbol becomes null instead of |
| being an undefined reference.</dd> |
| |
| <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt> |
| <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt> |
| <dd>Some languages allow differing globals to be merged, such as two functions |
| with different semantics. Other languages, such as <tt>C++</tt>, ensure |
| that only equivalent globals are ever merged (the "one definition rule" - |
| "ODR"). Such languages can use the <tt>linkonce_odr</tt> |
| and <tt>weak_odr</tt> linkage types to indicate that the global will only |
| be merged with equivalent globals. These linkage types are otherwise the |
| same as their non-<tt>odr</tt> versions.</dd> |
| |
| <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt> |
| <dd>If none of the above identifiers are used, the global is externally |
| visible, meaning that it participates in linkage and can be used to |
| resolve external symbol references.</dd> |
| </dl> |
| |
| <p>The next two types of linkage are targeted for Microsoft Windows platform |
| only. They are designed to support importing (exporting) symbols from (to) |
| DLLs (Dynamic Link Libraries).</p> |
| |
| <dl> |
| <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt> |
| <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function |
| or variable via a global pointer to a pointer that is set up by the DLL |
| exporting the symbol. On Microsoft Windows targets, the pointer name is |
| formed by combining <code>__imp_</code> and the function or variable |
| name.</dd> |
| |
| <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt> |
| <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global |
| pointer to a pointer in a DLL, so that it can be referenced with the |
| <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer |
| name is formed by combining <code>__imp_</code> and the function or |
| variable name.</dd> |
| </dl> |
| |
| <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if |
| another module defined a "<tt>.LC0</tt>" variable and was linked with this |
| one, one of the two would be renamed, preventing a collision. Since |
| "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage |
| declarations), they are accessible outside of the current module.</p> |
| |
| <p>It is illegal for a function <i>declaration</i> to have any linkage type |
| other than "externally visible", <tt>dllimport</tt> |
| or <tt>extern_weak</tt>.</p> |
| |
| <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt> |
| or <tt>weak_odr</tt> linkages.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="callingconv">Calling Conventions</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a> |
| and <a href="#i_invoke">invokes</a> can all have an optional calling |
| convention specified for the call. The calling convention of any pair of |
| dynamic caller/callee must match, or the behavior of the program is |
| undefined. The following calling conventions are supported by LLVM, and more |
| may be added in the future:</p> |
| |
| <dl> |
| <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt> |
| <dd>This calling convention (the default if no other calling convention is |
| specified) matches the target C calling conventions. This calling |
| convention supports varargs function calls and tolerates some mismatch in |
| the declared prototype and implemented declaration of the function (as |
| does normal C).</dd> |
| |
| <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt> |
| <dd>This calling convention attempts to make calls as fast as possible |
| (e.g. by passing things in registers). This calling convention allows the |
| target to use whatever tricks it wants to produce fast code for the |
| target, without having to conform to an externally specified ABI |
| (Application Binary Interface). Implementations of this convention should |
| allow arbitrary <a href="CodeGenerator.html#tailcallopt">tail call |
| optimization</a> to be supported. This calling convention does not |
| support varargs and requires the prototype of all callees to exactly match |
| the prototype of the function definition.</dd> |
| |
| <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt> |
| <dd>This calling convention attempts to make code in the caller as efficient |
| as possible under the assumption that the call is not commonly executed. |
| As such, these calls often preserve all registers so that the call does |
| not break any live ranges in the caller side. This calling convention |
| does not support varargs and requires the prototype of all callees to |
| exactly match the prototype of the function definition.</dd> |
| |
| <dt><b>"<tt>cc <<em>n</em>></tt>" - Numbered convention</b>:</dt> |
| <dd>Any calling convention may be specified by number, allowing |
| target-specific calling conventions to be used. Target specific calling |
| conventions start at 64.</dd> |
| </dl> |
| |
| <p>More calling conventions can be added/defined on an as-needed basis, to |
| support Pascal conventions or any other well-known target-independent |
| convention.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="visibility">Visibility Styles</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>All Global Variables and Functions have one of the following visibility |
| styles:</p> |
| |
| <dl> |
| <dt><b>"<tt>default</tt>" - Default style</b>:</dt> |
| <dd>On targets that use the ELF object file format, default visibility means |
| that the declaration is visible to other modules and, in shared libraries, |
| means that the declared entity may be overridden. On Darwin, default |
| visibility means that the declaration is visible to other modules. Default |
| visibility corresponds to "external linkage" in the language.</dd> |
| |
| <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt> |
| <dd>Two declarations of an object with hidden visibility refer to the same |
| object if they are in the same shared object. Usually, hidden visibility |
| indicates that the symbol will not be placed into the dynamic symbol |
| table, so no other module (executable or shared library) can reference it |
| directly.</dd> |
| |
| <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt> |
| <dd>On ELF, protected visibility indicates that the symbol will be placed in |
| the dynamic symbol table, but that references within the defining module |
| will bind to the local symbol. That is, the symbol cannot be overridden by |
| another module.</dd> |
| </dl> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="namedtypes">Named Types</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM IR allows you to specify name aliases for certain types. This can make |
| it easier to read the IR and make the IR more condensed (particularly when |
| recursive types are involved). An example of a name specification is:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| %mytype = type { %mytype*, i32 } |
| </pre> |
| </div> |
| |
| <p>You may give a name to any <a href="#typesystem">type</a> except |
| "<a href="t_void">void</a>". Type name aliases may be used anywhere a type |
| is expected with the syntax "%mytype".</p> |
| |
| <p>Note that type names are aliases for the structural type that they indicate, |
| and that you can therefore specify multiple names for the same type. This |
| often leads to confusing behavior when dumping out a .ll file. Since LLVM IR |
| uses structural typing, the name is not part of the type. When printing out |
| LLVM IR, the printer will pick <em>one name</em> to render all types of a |
| particular shape. This means that if you have code where two different |
| source types end up having the same LLVM type, that the dumper will sometimes |
| print the "wrong" or unexpected type. This is an important design point and |
| isn't going to change.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="globalvars">Global Variables</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Global variables define regions of memory allocated at compilation time |
| instead of run-time. Global variables may optionally be initialized, may |
| have an explicit section to be placed in, and may have an optional explicit |
| alignment specified. A variable may be defined as "thread_local", which |
| means that it will not be shared by threads (each thread will have a |
| separated copy of the variable). A variable may be defined as a global |
| "constant," which indicates that the contents of the variable |
| will <b>never</b> be modified (enabling better optimization, allowing the |
| global data to be placed in the read-only section of an executable, etc). |
| Note that variables that need runtime initialization cannot be marked |
| "constant" as there is a store to the variable.</p> |
| |
| <p>LLVM explicitly allows <em>declarations</em> of global variables to be marked |
| constant, even if the final definition of the global is not. This capability |
| can be used to enable slightly better optimization of the program, but |
| requires the language definition to guarantee that optimizations based on the |
| 'constantness' are valid for the translation units that do not include the |
| definition.</p> |
| |
| <p>As SSA values, global variables define pointer values that are in scope |
| (i.e. they dominate) all basic blocks in the program. Global variables |
| always define a pointer to their "content" type because they describe a |
| region of memory, and all memory objects in LLVM are accessed through |
| pointers.</p> |
| |
| <p>A global variable may be declared to reside in a target-specific numbered |
| address space. For targets that support them, address spaces may affect how |
| optimizations are performed and/or what target instructions are used to |
| access the variable. The default address space is zero. The address space |
| qualifier must precede any other attributes.</p> |
| |
| <p>LLVM allows an explicit section to be specified for globals. If the target |
| supports it, it will emit globals to the section specified.</p> |
| |
| <p>An explicit alignment may be specified for a global. If not present, or if |
| the alignment is set to zero, the alignment of the global is set by the |
| target to whatever it feels convenient. If an explicit alignment is |
| specified, the global is forced to have at least that much alignment. All |
| alignments must be a power of 2.</p> |
| |
| <p>For example, the following defines a global in a numbered address space with |
| an initializer, section, and alignment:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| @G = addrspace(5) constant float 1.0, section "foo", align 4 |
| </pre> |
| </div> |
| |
| </div> |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="functionstructure">Functions</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an |
| optional <a href="#linkage">linkage type</a>, an optional |
| <a href="#visibility">visibility style</a>, an optional |
| <a href="#callingconv">calling convention</a>, a return type, an optional |
| <a href="#paramattrs">parameter attribute</a> for the return type, a function |
| name, a (possibly empty) argument list (each with optional |
| <a href="#paramattrs">parameter attributes</a>), optional |
| <a href="#fnattrs">function attributes</a>, an optional section, an optional |
| alignment, an optional <a href="#gc">garbage collector name</a>, an opening |
| curly brace, a list of basic blocks, and a closing curly brace.</p> |
| |
| <p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an |
| optional <a href="#linkage">linkage type</a>, an optional |
| <a href="#visibility">visibility style</a>, an optional |
| <a href="#callingconv">calling convention</a>, a return type, an optional |
| <a href="#paramattrs">parameter attribute</a> for the return type, a function |
| name, a possibly empty list of arguments, an optional alignment, and an |
| optional <a href="#gc">garbage collector name</a>.</p> |
| |
| <p>A function definition contains a list of basic blocks, forming the CFG |
| (Control Flow Graph) for the function. Each basic block may optionally start |
| with a label (giving the basic block a symbol table entry), contains a list |
| of instructions, and ends with a <a href="#terminators">terminator</a> |
| instruction (such as a branch or function return).</p> |
| |
| <p>The first basic block in a function is special in two ways: it is immediately |
| executed on entrance to the function, and it is not allowed to have |
| predecessor basic blocks (i.e. there can not be any branches to the entry |
| block of a function). Because the block can have no predecessors, it also |
| cannot have any <a href="#i_phi">PHI nodes</a>.</p> |
| |
| <p>LLVM allows an explicit section to be specified for functions. If the target |
| supports it, it will emit functions to the section specified.</p> |
| |
| <p>An explicit alignment may be specified for a function. If not present, or if |
| the alignment is set to zero, the alignment of the function is set by the |
| target to whatever it feels convenient. If an explicit alignment is |
| specified, the function is forced to have at least that much alignment. All |
| alignments must be a power of 2.</p> |
| |
| <h5>Syntax:</h5> |
| <div class="doc_code"> |
| <pre> |
| define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>] |
| [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] |
| <ResultType> @<FunctionName> ([argument list]) |
| [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N] |
| [<a href="#gc">gc</a>] { ... } |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="aliasstructure">Aliases</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Aliases act as "second name" for the aliasee value (which can be either |
| function, global variable, another alias or bitcast of global value). Aliases |
| may have an optional <a href="#linkage">linkage type</a>, and an |
| optional <a href="#visibility">visibility style</a>.</p> |
| |
| <h5>Syntax:</h5> |
| <div class="doc_code"> |
| <pre> |
| @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee> |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div> |
| |
| <div class="doc_text"> |
| |
| <p>The return type and each parameter of a function type may have a set of |
| <i>parameter attributes</i> associated with them. Parameter attributes are |
| used to communicate additional information about the result or parameters of |
| a function. Parameter attributes are considered to be part of the function, |
| not of the function type, so functions with different parameter attributes |
| can have the same function type.</p> |
| |
| <p>Parameter attributes are simple keywords that follow the type specified. If |
| multiple parameter attributes are needed, they are space separated. For |
| example:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| declare i32 @printf(i8* noalias nocapture, ...) |
| declare i32 @atoi(i8 zeroext) |
| declare signext i8 @returns_signed_char() |
| </pre> |
| </div> |
| |
| <p>Note that any attributes for the function result (<tt>nounwind</tt>, |
| <tt>readonly</tt>) come immediately after the argument list.</p> |
| |
| <p>Currently, only the following parameter attributes are defined:</p> |
| |
| <dl> |
| <dt><tt>zeroext</tt></dt> |
| <dd>This indicates to the code generator that the parameter or return value |
| should be zero-extended to a 32-bit value by the caller (for a parameter) |
| or the callee (for a return value).</dd> |
| |
| <dt><tt>signext</tt></dt> |
| <dd>This indicates to the code generator that the parameter or return value |
| should be sign-extended to a 32-bit value by the caller (for a parameter) |
| or the callee (for a return value).</dd> |
| |
| <dt><tt>inreg</tt></dt> |
| <dd>This indicates that this parameter or return value should be treated in a |
| special target-dependent fashion during while emitting code for a function |
| call or return (usually, by putting it in a register as opposed to memory, |
| though some targets use it to distinguish between two different kinds of |
| registers). Use of this attribute is target-specific.</dd> |
| |
| <dt><tt><a name="byval">byval</a></tt></dt> |
| <dd>This indicates that the pointer parameter should really be passed by value |
| to the function. The attribute implies that a hidden copy of the pointee |
| is made between the caller and the callee, so the callee is unable to |
| modify the value in the callee. This attribute is only valid on LLVM |
| pointer arguments. It is generally used to pass structs and arrays by |
| value, but is also valid on pointers to scalars. The copy is considered |
| to belong to the caller not the callee (for example, |
| <tt><a href="#readonly">readonly</a></tt> functions should not write to |
| <tt>byval</tt> parameters). This is not a valid attribute for return |
| values. The byval attribute also supports specifying an alignment with |
| the align attribute. This has a target-specific effect on the code |
| generator that usually indicates a desired alignment for the synthesized |
| stack slot.</dd> |
| |
| <dt><tt>sret</tt></dt> |
| <dd>This indicates that the pointer parameter specifies the address of a |
| structure that is the return value of the function in the source program. |
| This pointer must be guaranteed by the caller to be valid: loads and |
| stores to the structure may be assumed by the callee to not to trap. This |
| may only be applied to the first parameter. This is not a valid attribute |
| for return values. </dd> |
| |
| <dt><tt>noalias</tt></dt> |
| <dd>This indicates that the pointer does not alias any global or any other |
| parameter. The caller is responsible for ensuring that this is the |
| case. On a function return value, <tt>noalias</tt> additionally indicates |
| that the pointer does not alias any other pointers visible to the |
| caller. For further details, please see the discussion of the NoAlias |
| response in |
| <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias |
| analysis</a>.</dd> |
| |
| <dt><tt>nocapture</tt></dt> |
| <dd>This indicates that the callee does not make any copies of the pointer |
| that outlive the callee itself. This is not a valid attribute for return |
| values.</dd> |
| |
| <dt><tt>nest</tt></dt> |
| <dd>This indicates that the pointer parameter can be excised using the |
| <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid |
| attribute for return values.</dd> |
| </dl> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="gc">Garbage Collector Names</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Each function may specify a garbage collector name, which is simply a |
| string:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| define void @f() gc "name" { ... |
| </pre> |
| </div> |
| |
| <p>The compiler declares the supported values of <i>name</i>. Specifying a |
| collector which will cause the compiler to alter its output in order to |
| support the named garbage collection algorithm.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="fnattrs">Function Attributes</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Function attributes are set to communicate additional information about a |
| function. Function attributes are considered to be part of the function, not |
| of the function type, so functions with different parameter attributes can |
| have the same function type.</p> |
| |
| <p>Function attributes are simple keywords that follow the type specified. If |
| multiple attributes are needed, they are space separated. For example:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| define void @f() noinline { ... } |
| define void @f() alwaysinline { ... } |
| define void @f() alwaysinline optsize { ... } |
| define void @f() optsize |
| </pre> |
| </div> |
| |
| <dl> |
| <dt><tt>alwaysinline</tt></dt> |
| <dd>This attribute indicates that the inliner should attempt to inline this |
| function into callers whenever possible, ignoring any active inlining size |
| threshold for this caller.</dd> |
| |
| <dt><tt>noinline</tt></dt> |
| <dd>This attribute indicates that the inliner should never inline this |
| function in any situation. This attribute may not be used together with |
| the <tt>alwaysinline</tt> attribute.</dd> |
| |
| <dt><tt>optsize</tt></dt> |
| <dd>This attribute suggests that optimization passes and code generator passes |
| make choices that keep the code size of this function low, and otherwise |
| do optimizations specifically to reduce code size.</dd> |
| |
| <dt><tt>noreturn</tt></dt> |
| <dd>This function attribute indicates that the function never returns |
| normally. This produces undefined behavior at runtime if the function |
| ever does dynamically return.</dd> |
| |
| <dt><tt>nounwind</tt></dt> |
| <dd>This function attribute indicates that the function never returns with an |
| unwind or exceptional control flow. If the function does unwind, its |
| runtime behavior is undefined.</dd> |
| |
| <dt><tt>readnone</tt></dt> |
| <dd>This attribute indicates that the function computes its result (or decides |
| to unwind an exception) based strictly on its arguments, without |
| dereferencing any pointer arguments or otherwise accessing any mutable |
| state (e.g. memory, control registers, etc) visible to caller functions. |
| It does not write through any pointer arguments |
| (including <tt><a href="#byval">byval</a></tt> arguments) and never |
| changes any state visible to callers. This means that it cannot unwind |
| exceptions by calling the <tt>C++</tt> exception throwing methods, but |
| could use the <tt>unwind</tt> instruction.</dd> |
| |
| <dt><tt><a name="readonly">readonly</a></tt></dt> |
| <dd>This attribute indicates that the function does not write through any |
| pointer arguments (including <tt><a href="#byval">byval</a></tt> |
| arguments) or otherwise modify any state (e.g. memory, control registers, |
| etc) visible to caller functions. It may dereference pointer arguments |
| and read state that may be set in the caller. A readonly function always |
| returns the same value (or unwinds an exception identically) when called |
| with the same set of arguments and global state. It cannot unwind an |
| exception by calling the <tt>C++</tt> exception throwing methods, but may |
| use the <tt>unwind</tt> instruction.</dd> |
| |
| <dt><tt><a name="ssp">ssp</a></tt></dt> |
| <dd>This attribute indicates that the function should emit a stack smashing |
| protector. It is in the form of a "canary"—a random value placed on |
| the stack before the local variables that's checked upon return from the |
| function to see if it has been overwritten. A heuristic is used to |
| determine if a function needs stack protectors or not.<br> |
| <br> |
| If a function that has an <tt>ssp</tt> attribute is inlined into a |
| function that doesn't have an <tt>ssp</tt> attribute, then the resulting |
| function will have an <tt>ssp</tt> attribute.</dd> |
| |
| <dt><tt>sspreq</tt></dt> |
| <dd>This attribute indicates that the function should <em>always</em> emit a |
| stack smashing protector. This overrides |
| the <tt><a href="#ssp">ssp</a></tt> function attribute.<br> |
| <br> |
| If a function that has an <tt>sspreq</tt> attribute is inlined into a |
| function that doesn't have an <tt>sspreq</tt> attribute or which has |
| an <tt>ssp</tt> attribute, then the resulting function will have |
| an <tt>sspreq</tt> attribute.</dd> |
| |
| <dt><tt>noredzone</tt></dt> |
| <dd>This attribute indicates that the code generator should not use a red |
| zone, even if the target-specific ABI normally permits it.</dd> |
| |
| <dt><tt>noimplicitfloat</tt></dt> |
| <dd>This attributes disables implicit floating point instructions.</dd> |
| |
| <dt><tt>naked</tt></dt> |
| <dd>This attribute disables prologue / epilogue emission for the function. |
| This can have very system-specific consequences.</dd> |
| </dl> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="moduleasm">Module-Level Inline Assembly</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Modules may contain "module-level inline asm" blocks, which corresponds to |
| the GCC "file scope inline asm" blocks. These blocks are internally |
| concatenated by LLVM and treated as a single unit, but may be separated in |
| the <tt>.ll</tt> file if desired. The syntax is very simple:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| module asm "inline asm code goes here" |
| module asm "more can go here" |
| </pre> |
| </div> |
| |
| <p>The strings can contain any character by escaping non-printable characters. |
| The escape sequence used is simply "\xx" where "xx" is the two digit hex code |
| for the number.</p> |
| |
| <p>The inline asm code is simply printed to the machine code .s file when |
| assembly code is generated.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="datalayout">Data Layout</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>A module may specify a target specific data layout string that specifies how |
| data is to be laid out in memory. The syntax for the data layout is |
| simply:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| target datalayout = "<i>layout specification</i>" |
| </pre> |
| </div> |
| |
| <p>The <i>layout specification</i> consists of a list of specifications |
| separated by the minus sign character ('-'). Each specification starts with |
| a letter and may include other information after the letter to define some |
| aspect of the data layout. The specifications accepted are as follows:</p> |
| |
| <dl> |
| <dt><tt>E</tt></dt> |
| <dd>Specifies that the target lays out data in big-endian form. That is, the |
| bits with the most significance have the lowest address location.</dd> |
| |
| <dt><tt>e</tt></dt> |
| <dd>Specifies that the target lays out data in little-endian form. That is, |
| the bits with the least significance have the lowest address |
| location.</dd> |
| |
| <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> |
| <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and |
| <i>preferred</i> alignments. All sizes are in bits. Specifying |
| the <i>pref</i> alignment is optional. If omitted, the |
| preceding <tt>:</tt> should be omitted too.</dd> |
| |
| <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> |
| <dd>This specifies the alignment for an integer type of a given bit |
| <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd> |
| |
| <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> |
| <dd>This specifies the alignment for a vector type of a given bit |
| <i>size</i>.</dd> |
| |
| <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> |
| <dd>This specifies the alignment for a floating point type of a given bit |
| <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64 |
| (double).</dd> |
| |
| <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> |
| <dd>This specifies the alignment for an aggregate type of a given bit |
| <i>size</i>.</dd> |
| |
| <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> |
| <dd>This specifies the alignment for a stack object of a given bit |
| <i>size</i>.</dd> |
| </dl> |
| |
| <p>When constructing the data layout for a given target, LLVM starts with a |
| default set of specifications which are then (possibly) overriden by the |
| specifications in the <tt>datalayout</tt> keyword. The default specifications |
| are given in this list:</p> |
| |
| <ul> |
| <li><tt>E</tt> - big endian</li> |
| <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li> |
| <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li> |
| <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li> |
| <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li> |
| <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li> |
| <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred |
| alignment of 64-bits</li> |
| <li><tt>f32:32:32</tt> - float is 32-bit aligned</li> |
| <li><tt>f64:64:64</tt> - double is 64-bit aligned</li> |
| <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li> |
| <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li> |
| <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li> |
| <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li> |
| </ul> |
| |
| <p>When LLVM is determining the alignment for a given type, it uses the |
| following rules:</p> |
| |
| <ol> |
| <li>If the type sought is an exact match for one of the specifications, that |
| specification is used.</li> |
| |
| <li>If no match is found, and the type sought is an integer type, then the |
| smallest integer type that is larger than the bitwidth of the sought type |
| is used. If none of the specifications are larger than the bitwidth then |
| the the largest integer type is used. For example, given the default |
| specifications above, the i7 type will use the alignment of i8 (next |
| largest) while both i65 and i256 will use the alignment of i64 (largest |
| specified).</li> |
| |
| <li>If no match is found, and the type sought is a vector type, then the |
| largest vector type that is smaller than the sought vector type will be |
| used as a fall back. This happens because <128 x double> can be |
| implemented in terms of 64 <2 x double>, for example.</li> |
| </ol> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="pointeraliasing">Pointer Aliasing Rules</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Any memory access must be done through a pointer value associated |
| with an address range of the memory access, otherwise the behavior |
| is undefined. Pointer values are associated with address ranges |
| according to the following rules:</p> |
| |
| <ul> |
| <li>A pointer value formed from a |
| <tt><a href="#i_getelementptr">getelementptr</a></tt> instruction |
| is associated with the addresses associated with the first operand |
| of the <tt>getelementptr</tt>.</li> |
| <li>An address of a global variable is associated with the address |
| range of the variable's storage.</li> |
| <li>The result value of an allocation instruction is associated with |
| the address range of the allocated storage.</li> |
| <li>A null pointer in the default address-space is associated with |
| no address.</li> |
| <li>A pointer value formed by an |
| <tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all |
| address ranges of all pointer values that contribute (directly or |
| indirectly) to the computation of the pointer's value.</li> |
| <li>The result value of a |
| <tt><a href="#i_bitcast">bitcast</a></tt> is associated with all |
| addresses associated with the operand of the <tt>bitcast</tt>.</li> |
| <li>An integer constant other than zero or a pointer value returned |
| from a function not defined within LLVM may be associated with address |
| ranges allocated through mechanisms other than those provided by |
| LLVM. Such ranges shall not overlap with any ranges of addresses |
| allocated by mechanisms provided by LLVM.</li> |
| </ul> |
| |
| <p>LLVM IR does not associate types with memory. The result type of a |
| <tt><a href="#i_load">load</a></tt> merely indicates the size and |
| alignment of the memory from which to load, as well as the |
| interpretation of the value. The first operand of a |
| <tt><a href="#i_store">store</a></tt> similarly only indicates the size |
| and alignment of the store.</p> |
| |
| <p>Consequently, type-based alias analysis, aka TBAA, aka |
| <tt>-fstrict-aliasing</tt>, is not applicable to general unadorned |
| LLVM IR. <a href="#metadata">Metadata</a> may be used to encode |
| additional information which specialized optimization passes may use |
| to implement type-based alias analysis.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="typesystem">Type System</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>The LLVM type system is one of the most important features of the |
| intermediate representation. Being typed enables a number of optimizations |
| to be performed on the intermediate representation directly, without having |
| to do extra analyses on the side before the transformation. A strong type |
| system makes it easier to read the generated code and enables novel analyses |
| and transformations that are not feasible to perform on normal three address |
| code representations.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="t_classifications">Type |
| Classifications</a> </div> |
| |
| <div class="doc_text"> |
| |
| <p>The types fall into a few useful classifications:</p> |
| |
| <table border="1" cellspacing="0" cellpadding="4"> |
| <tbody> |
| <tr><th>Classification</th><th>Types</th></tr> |
| <tr> |
| <td><a href="#t_integer">integer</a></td> |
| <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td> |
| </tr> |
| <tr> |
| <td><a href="#t_floating">floating point</a></td> |
| <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td> |
| </tr> |
| <tr> |
| <td><a name="t_firstclass">first class</a></td> |
| <td><a href="#t_integer">integer</a>, |
| <a href="#t_floating">floating point</a>, |
| <a href="#t_pointer">pointer</a>, |
| <a href="#t_vector">vector</a>, |
| <a href="#t_struct">structure</a>, |
| <a href="#t_array">array</a>, |
| <a href="#t_label">label</a>, |
| <a href="#t_metadata">metadata</a>. |
| </td> |
| </tr> |
| <tr> |
| <td><a href="#t_primitive">primitive</a></td> |
| <td><a href="#t_label">label</a>, |
| <a href="#t_void">void</a>, |
| <a href="#t_floating">floating point</a>, |
| <a href="#t_metadata">metadata</a>.</td> |
| </tr> |
| <tr> |
| <td><a href="#t_derived">derived</a></td> |
| <td><a href="#t_integer">integer</a>, |
| <a href="#t_array">array</a>, |
| <a href="#t_function">function</a>, |
| <a href="#t_pointer">pointer</a>, |
| <a href="#t_struct">structure</a>, |
| <a href="#t_pstruct">packed structure</a>, |
| <a href="#t_vector">vector</a>, |
| <a href="#t_opaque">opaque</a>. |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| |
| <p>The <a href="#t_firstclass">first class</a> types are perhaps the most |
| important. Values of these types are the only ones which can be produced by |
| instructions, passed as arguments, or used as operands to instructions.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div> |
| |
| <div class="doc_text"> |
| |
| <p>The primitive types are the fundamental building blocks of the LLVM |
| system.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div> |
| |
| <div class="doc_text"> |
| |
| <table> |
| <tbody> |
| <tr><th>Type</th><th>Description</th></tr> |
| <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr> |
| <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr> |
| <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr> |
| <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr> |
| <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr> |
| </tbody> |
| </table> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>The void type does not represent any value and has no size.</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| void |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>The label type represents code labels.</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| label |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>The metadata type represents embedded metadata. The only derived type that |
| may contain metadata is <tt>metadata*</tt> or a function type that returns or |
| takes metadata typed parameters, but not pointer to metadata types.</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| metadata |
| </pre> |
| |
| </div> |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div> |
| |
| <div class="doc_text"> |
| |
| <p>The real power in LLVM comes from the derived types in the system. This is |
| what allows a programmer to represent arrays, functions, pointers, and other |
| useful types. Note that these derived types may be recursive: For example, |
| it is possible to have a two dimensional array.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>The integer type is a very simple derived type that simply specifies an |
| arbitrary bit width for the integer type desired. Any bit width from 1 bit to |
| 2^23-1 (about 8 million) can be specified.</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| iN |
| </pre> |
| |
| <p>The number of bits the integer will occupy is specified by the <tt>N</tt> |
| value.</p> |
| |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>i1</tt></td> |
| <td class="left">a single-bit integer.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>i32</tt></td> |
| <td class="left">a 32-bit integer.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>i1942652</tt></td> |
| <td class="left">a really big integer of over 1 million bits.</td> |
| </tr> |
| </table> |
| |
| <p>Note that the code generator does not yet support large integer types to be |
| used as function return types. The specific limit on how large a return type |
| the code generator can currently handle is target-dependent; currently it's |
| often 64 bits for 32-bit targets and 128 bits for 64-bit targets.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>The array type is a very simple derived type that arranges elements |
| sequentially in memory. The array type requires a size (number of elements) |
| and an underlying data type.</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| [<# elements> x <elementtype>] |
| </pre> |
| |
| <p>The number of elements is a constant integer value; <tt>elementtype</tt> may |
| be any type with a size.</p> |
| |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>[40 x i32]</tt></td> |
| <td class="left">Array of 40 32-bit integer values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>[41 x i32]</tt></td> |
| <td class="left">Array of 41 32-bit integer values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>[4 x i8]</tt></td> |
| <td class="left">Array of 4 8-bit integer values.</td> |
| </tr> |
| </table> |
| <p>Here are some examples of multidimensional arrays:</p> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>[3 x [4 x i32]]</tt></td> |
| <td class="left">3x4 array of 32-bit integer values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>[12 x [10 x float]]</tt></td> |
| <td class="left">12x10 array of single precision floating point values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td> |
| <td class="left">2x3x4 array of 16-bit integer values.</td> |
| </tr> |
| </table> |
| |
| <p>Note that 'variable sized arrays' can be implemented in LLVM with a zero |
| length array. Normally, accesses past the end of an array are undefined in |
| LLVM (e.g. it is illegal to access the 5th element of a 3 element array). As |
| a special case, however, zero length arrays are recognized to be variable |
| length. This allows implementation of 'pascal style arrays' with the LLVM |
| type "<tt>{ i32, [0 x float]}</tt>", for example.</p> |
| |
| <p>Note that the code generator does not yet support large aggregate types to be |
| used as function return types. The specific limit on how large an aggregate |
| return type the code generator can currently handle is target-dependent, and |
| also dependent on the aggregate element types.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>The function type can be thought of as a function signature. It consists of |
| a return type and a list of formal parameter types. The return type of a |
| function type is a scalar type, a void type, or a struct type. If the return |
| type is a struct type then all struct elements must be of first class types, |
| and the struct must have at least one element.</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <returntype list> (<parameter list>) |
| </pre> |
| |
| <p>...where '<tt><parameter list></tt>' is a comma-separated list of type |
| specifiers. Optionally, the parameter list may include a type <tt>...</tt>, |
| which indicates that the function takes a variable number of arguments. |
| Variable argument functions can access their arguments with |
| the <a href="#int_varargs">variable argument handling intrinsic</a> |
| functions. '<tt><returntype list></tt>' is a comma-separated list of |
| <a href="#t_firstclass">first class</a> type specifiers.</p> |
| |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>i32 (i32)</tt></td> |
| <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt> |
| </td> |
| </tr><tr class="layout"> |
| <td class="left"><tt>float (i16 signext, i32 *) * |
| </tt></td> |
| <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes |
| an <tt>i16</tt> that should be sign extended and a |
| <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning |
| <tt>float</tt>. |
| </td> |
| </tr><tr class="layout"> |
| <td class="left"><tt>i32 (i8*, ...)</tt></td> |
| <td class="left">A vararg function that takes at least one |
| <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C), |
| which returns an integer. This is the signature for <tt>printf</tt> in |
| LLVM. |
| </td> |
| </tr><tr class="layout"> |
| <td class="left"><tt>{i32, i32} (i32)</tt></td> |
| <td class="left">A function taking an <tt>i32</tt>, returning two |
| <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt> |
| </td> |
| </tr> |
| </table> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>The structure type is used to represent a collection of data members together |
| in memory. The packing of the field types is defined to match the ABI of the |
| underlying processor. The elements of a structure may be any type that has a |
| size.</p> |
| |
| <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and |
| '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with |
| the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| { <type list> } |
| </pre> |
| |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>{ i32, i32, i32 }</tt></td> |
| <td class="left">A triple of three <tt>i32</tt> values</td> |
| </tr><tr class="layout"> |
| <td class="left"><tt>{ float, i32 (i32) * }</tt></td> |
| <td class="left">A pair, where the first element is a <tt>float</tt> and the |
| second element is a <a href="#t_pointer">pointer</a> to a |
| <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning |
| an <tt>i32</tt>.</td> |
| </tr> |
| </table> |
| |
| <p>Note that the code generator does not yet support large aggregate types to be |
| used as function return types. The specific limit on how large an aggregate |
| return type the code generator can currently handle is target-dependent, and |
| also dependent on the aggregate element types.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>The packed structure type is used to represent a collection of data members |
| together in memory. There is no padding between fields. Further, the |
| alignment of a packed structure is 1 byte. The elements of a packed |
| structure may be any type that has a size.</p> |
| |
| <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and |
| '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with |
| the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| < { <type list> } > |
| </pre> |
| |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>< { i32, i32, i32 } ></tt></td> |
| <td class="left">A triple of three <tt>i32</tt> values</td> |
| </tr><tr class="layout"> |
| <td class="left"> |
| <tt>< { float, i32 (i32)* } ></tt></td> |
| <td class="left">A pair, where the first element is a <tt>float</tt> and the |
| second element is a <a href="#t_pointer">pointer</a> to a |
| <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning |
| an <tt>i32</tt>.</td> |
| </tr> |
| </table> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>As in many languages, the pointer type represents a pointer or reference to |
| another object, which must live in memory. Pointer types may have an optional |
| address space attribute defining the target-specific numbered address space |
| where the pointed-to object resides. The default address space is zero.</p> |
| |
| <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it |
| permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <type> * |
| </pre> |
| |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>[4 x i32]*</tt></td> |
| <td class="left">A <a href="#t_pointer">pointer</a> to <a |
| href="#t_array">array</a> of four <tt>i32</tt> values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>i32 (i32 *) *</tt></td> |
| <td class="left"> A <a href="#t_pointer">pointer</a> to a <a |
| href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an |
| <tt>i32</tt>.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>i32 addrspace(5)*</tt></td> |
| <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value |
| that resides in address space #5.</td> |
| </tr> |
| </table> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>A vector type is a simple derived type that represents a vector of elements. |
| Vector types are used when multiple primitive data are operated in parallel |
| using a single instruction (SIMD). A vector type requires a size (number of |
| elements) and an underlying primitive data type. Vectors must have a power |
| of two length (1, 2, 4, 8, 16 ...). Vector types are considered |
| <a href="#t_firstclass">first class</a>.</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| < <# elements> x <elementtype> > |
| </pre> |
| |
| <p>The number of elements is a constant integer value; elementtype may be any |
| integer or floating point type.</p> |
| |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt><4 x i32></tt></td> |
| <td class="left">Vector of 4 32-bit integer values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt><8 x float></tt></td> |
| <td class="left">Vector of 8 32-bit floating-point values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt><2 x i64></tt></td> |
| <td class="left">Vector of 2 64-bit integer values.</td> |
| </tr> |
| </table> |
| |
| <p>Note that the code generator does not yet support large vector types to be |
| used as function return types. The specific limit on how large a vector |
| return type codegen can currently handle is target-dependent; currently it's |
| often a few times longer than a hardware vector register.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div> |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>Opaque types are used to represent unknown types in the system. This |
| corresponds (for example) to the C notion of a forward declared structure |
| type. In LLVM, opaque types can eventually be resolved to any type (not just |
| a structure type).</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| opaque |
| </pre> |
| |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>opaque</tt></td> |
| <td class="left">An opaque type.</td> |
| </tr> |
| </table> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="t_uprefs">Type Up-references</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>An "up reference" allows you to refer to a lexically enclosing type without |
| requiring it to have a name. For instance, a structure declaration may |
| contain a pointer to any of the types it is lexically a member of. Example |
| of up references (with their equivalent as named type declarations) |
| include:</p> |
| |
| <pre> |
| { \2 * } %x = type { %x* } |
| { \2 }* %y = type { %y }* |
| \1* %z = type %z* |
| </pre> |
| |
| <p>An up reference is needed by the asmprinter for printing out cyclic types |
| when there is no declared name for a type in the cycle. Because the |
| asmprinter does not want to print out an infinite type string, it needs a |
| syntax to handle recursive types that have no names (all names are optional |
| in llvm IR).</p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| \<level> |
| </pre> |
| |
| <p>The level is the count of the lexical type that is being referred to.</p> |
| |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>\1*</tt></td> |
| <td class="left">Self-referential pointer.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td> |
| <td class="left">Recursive structure where the upref refers to the out-most |
| structure.</td> |
| </tr> |
| </table> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="constants">Constants</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM has several different basic types of constants. This section describes |
| them all and their syntax.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div> |
| |
| <div class="doc_text"> |
| |
| <dl> |
| <dt><b>Boolean constants</b></dt> |
| <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid |
| constants of the <tt><a href="#t_primitive">i1</a></tt> type.</dd> |
| |
| <dt><b>Integer constants</b></dt> |
| <dd>Standard integers (such as '4') are constants of |
| the <a href="#t_integer">integer</a> type. Negative numbers may be used |
| with integer types.</dd> |
| |
| <dt><b>Floating point constants</b></dt> |
| <dd>Floating point constants use standard decimal notation (e.g. 123.421), |
| exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal |
| notation (see below). The assembler requires the exact decimal value of a |
| floating-point constant. For example, the assembler accepts 1.25 but |
| rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point |
| constants must have a <a href="#t_floating">floating point</a> type. </dd> |
| |
| <dt><b>Null pointer constants</b></dt> |
| <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant |
| and must be of <a href="#t_pointer">pointer type</a>.</dd> |
| </dl> |
| |
| <p>The one non-intuitive notation for constants is the hexadecimal form of |
| floating point constants. For example, the form '<tt>double |
| 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) |
| '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point |
| constants are required (and the only time that they are generated by the |
| disassembler) is when a floating point constant must be emitted but it cannot |
| be represented as a decimal floating point number in a reasonable number of |
| digits. For example, NaN's, infinities, and other special values are |
| represented in their IEEE hexadecimal format so that assembly and disassembly |
| do not cause any bits to change in the constants.</p> |
| |
| <p>When using the hexadecimal form, constants of types float and double are |
| represented using the 16-digit form shown above (which matches the IEEE754 |
| representation for double); float values must, however, be exactly |
| representable as IEE754 single precision. Hexadecimal format is always used |
| for long double, and there are three forms of long double. The 80-bit format |
| used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits. |
| The 128-bit format used by PowerPC (two adjacent doubles) is represented |
| by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format |
| is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no |
| currently supported target uses this format. Long doubles will only work if |
| they match the long double format on your target. All hexadecimal formats |
| are big-endian (sign bit at the left).</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="aggregateconstants"></a> <!-- old anchor --> |
| <a name="complexconstants">Complex Constants</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Complex constants are a (potentially recursive) combination of simple |
| constants and smaller complex constants.</p> |
| |
| <dl> |
| <dt><b>Structure constants</b></dt> |
| <dd>Structure constants are represented with notation similar to structure |
| type definitions (a comma separated list of elements, surrounded by braces |
| (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>", |
| where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". |
| Structure constants must have <a href="#t_struct">structure type</a>, and |
| the number and types of elements must match those specified by the |
| type.</dd> |
| |
| <dt><b>Array constants</b></dt> |
| <dd>Array constants are represented with notation similar to array type |
| definitions (a comma separated list of elements, surrounded by square |
| brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 |
| ]</tt>". Array constants must have <a href="#t_array">array type</a>, and |
| the number and types of elements must match those specified by the |
| type.</dd> |
| |
| <dt><b>Vector constants</b></dt> |
| <dd>Vector constants are represented with notation similar to vector type |
| definitions (a comma separated list of elements, surrounded by |
| less-than/greater-than's (<tt><></tt>)). For example: "<tt>< i32 |
| 42, i32 11, i32 74, i32 100 ></tt>". Vector constants must |
| have <a href="#t_vector">vector type</a>, and the number and types of |
| elements must match those specified by the type.</dd> |
| |
| <dt><b>Zero initialization</b></dt> |
| <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a |
| value to zero of <em>any</em> type, including scalar and aggregate types. |
| This is often used to avoid having to print large zero initializers |
| (e.g. for large arrays) and is always exactly equivalent to using explicit |
| zero initializers.</dd> |
| |
| <dt><b>Metadata node</b></dt> |
| <dd>A metadata node is a structure-like constant with |
| <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{ |
| i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to |
| be interpreted as part of the instruction stream, metadata is a place to |
| attach additional information such as debug info.</dd> |
| </dl> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="globalconstants">Global Variable and Function Addresses</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>The addresses of <a href="#globalvars">global variables</a> |
| and <a href="#functionstructure">functions</a> are always implicitly valid |
| (link-time) constants. These constants are explicitly referenced when |
| the <a href="#identifiers">identifier for the global</a> is used and always |
| have <a href="#t_pointer">pointer</a> type. For example, the following is a |
| legal LLVM file:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| @X = global i32 17 |
| @Y = global i32 42 |
| @Z = global [2 x i32*] [ i32* @X, i32* @Y ] |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div> |
| <div class="doc_text"> |
| |
| <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has no |
| specific value. Undefined values may be of any type and be used anywhere a |
| constant is permitted.</p> |
| |
| <p>Undefined values indicate to the compiler that the program is well defined no |
| matter what value is used, giving the compiler more freedom to optimize.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Constant expressions are used to allow expressions involving other constants |
| to be used as constants. Constant expressions may be of |
| any <a href="#t_firstclass">first class</a> type and may involve any LLVM |
| operation that does not have side effects (e.g. load and call are not |
| supported). The following is the syntax for constant expressions:</p> |
| |
| <dl> |
| <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt> |
| <dd>Truncate a constant to another type. The bit size of CST must be larger |
| than the bit size of TYPE. Both types must be integers.</dd> |
| |
| <dt><b><tt>zext ( CST to TYPE )</tt></b></dt> |
| <dd>Zero extend a constant to another type. The bit size of CST must be |
| smaller or equal to the bit size of TYPE. Both types must be |
| integers.</dd> |
| |
| <dt><b><tt>sext ( CST to TYPE )</tt></b></dt> |
| <dd>Sign extend a constant to another type. The bit size of CST must be |
| smaller or equal to the bit size of TYPE. Both types must be |
| integers.</dd> |
| |
| <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt> |
| <dd>Truncate a floating point constant to another floating point type. The |
| size of CST must be larger than the size of TYPE. Both types must be |
| floating point.</dd> |
| |
| <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt> |
| <dd>Floating point extend a constant to another type. The size of CST must be |
| smaller or equal to the size of TYPE. Both types must be floating |
| point.</dd> |
| |
| <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt> |
| <dd>Convert a floating point constant to the corresponding unsigned integer |
| constant. TYPE must be a scalar or vector integer type. CST must be of |
| scalar or vector floating point type. Both CST and TYPE must be scalars, |
| or vectors of the same number of elements. If the value won't fit in the |
| integer type, the results are undefined.</dd> |
| |
| <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt> |
| <dd>Convert a floating point constant to the corresponding signed integer |
| constant. TYPE must be a scalar or vector integer type. CST must be of |
| scalar or vector floating point type. Both CST and TYPE must be scalars, |
| or vectors of the same number of elements. If the value won't fit in the |
| integer type, the results are undefined.</dd> |
| |
| <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt> |
| <dd>Convert an unsigned integer constant to the corresponding floating point |
| constant. TYPE must be a scalar or vector floating point type. CST must be |
| of scalar or vector integer type. Both CST and TYPE must be scalars, or |
| vectors of the same number of elements. If the value won't fit in the |
| floating point type, the results are undefined.</dd> |
| |
| <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt> |
| <dd>Convert a signed integer constant to the corresponding floating point |
| constant. TYPE must be a scalar or vector floating point type. CST must be |
| of scalar or vector integer type. Both CST and TYPE must be scalars, or |
| vectors of the same number of elements. If the value won't fit in the |
| floating point type, the results are undefined.</dd> |
| |
| <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt> |
| <dd>Convert a pointer typed constant to the corresponding integer constant |
| <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer |
| type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to |
| make it fit in <tt>TYPE</tt>.</dd> |
| |
| <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt> |
| <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer |
| type. CST must be of integer type. The CST value is zero extended, |
| truncated, or unchanged to make it fit in a pointer size. This one is |
| <i>really</i> dangerous!</dd> |
| |
| <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt> |
| <dd>Convert a constant, CST, to another TYPE. The constraints of the operands |
| are the same as those for the <a href="#i_bitcast">bitcast |
| instruction</a>.</dd> |
| |
| <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt> |
| <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt> |
| <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on |
| constants. As with the <a href="#i_getelementptr">getelementptr</a> |
| instruction, the index list may have zero or more indexes, which are |
| required to make sense for the type of "CSTPTR".</dd> |
| |
| <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt> |
| <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd> |
| |
| <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt> |
| <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd> |
| |
| <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt> |
| <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd> |
| |
| <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt> |
| <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on |
| constants.</dd> |
| |
| <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt> |
| <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on |
| constants.</dd> |
| |
| <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt> |
| <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on |
| constants.</dd> |
| |
| <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt> |
| <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may |
| be any of the <a href="#binaryops">binary</a> |
| or <a href="#bitwiseops">bitwise binary</a> operations. The constraints |
| on operands are the same as those for the corresponding instruction |
| (e.g. no bitwise operations on floating point values are allowed).</dd> |
| </dl> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"><a name="metadata">Embedded Metadata</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Embedded metadata provides a way to attach arbitrary data to the instruction |
| stream without affecting the behaviour of the program. There are two |
| metadata primitives, strings and nodes. All metadata has the |
| <tt>metadata</tt> type and is identified in syntax by a preceding exclamation |
| point ('<tt>!</tt>').</p> |
| |
| <p>A metadata string is a string surrounded by double quotes. It can contain |
| any character by escaping non-printable characters with "\xx" where "xx" is |
| the two digit hex code. For example: "<tt>!"test\00"</tt>".</p> |
| |
| <p>Metadata nodes are represented with notation similar to structure constants |
| (a comma separated list of elements, surrounded by braces and preceeded by an |
| exclamation point). For example: "<tt>!{ metadata !"test\00", i32 |
| 10}</tt>".</p> |
| |
| <p>A metadata node will attempt to track changes to the values it holds. In the |
| event that a value is deleted, it will be replaced with a typeless |
| "<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p> |
| |
| <p>Optimizations may rely on metadata to provide additional information about |
| the program that isn't available in the instructions, or that isn't easily |
| computable. Similarly, the code generator may expect a certain metadata |
| format to be used to express debugging information.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="othervalues">Other Values</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="inlineasm">Inline Assembler Expressions</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM supports inline assembler expressions (as opposed |
| to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of |
| a special value. This value represents the inline assembler as a string |
| (containing the instructions to emit), a list of operand constraints (stored |
| as a string), and a flag that indicates whether or not the inline asm |
| expression has side effects. An example inline assembler expression is:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| i32 (i32) asm "bswap $0", "=r,r" |
| </pre> |
| </div> |
| |
| <p>Inline assembler expressions may <b>only</b> be used as the callee operand of |
| a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we |
| have:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y) |
| </pre> |
| </div> |
| |
| <p>Inline asms with side effects not visible in the constraint list must be |
| marked as having side effects. This is done through the use of the |
| '<tt>sideeffect</tt>' keyword, like so:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| call void asm sideeffect "eieio", ""() |
| </pre> |
| </div> |
| |
| <p>TODO: The format of the asm and constraints string still need to be |
| documented here. Constraints on what can be done (e.g. duplication, moving, |
| etc need to be documented). This is probably best done by reference to |
| another document that covers inline asm from a holistic perspective.</p> |
| |
| </div> |
| |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="intrinsic_globals">Intrinsic Global Variables</a> |
| </div> |
| <!-- *********************************************************************** --> |
| |
| <p>LLVM has a number of "magic" global variables that contain data that affect |
| code generation or other IR semantics. These are documented here. All globals |
| of this sort should have a section specified as "<tt>llvm.metadata</tt>". This |
| section and all globals that start with "<tt>llvm.</tt>" are reserved for use |
| by LLVM.</p> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a |
| href="#linkage_appending">appending linkage</a>. This array contains a list of |
| pointers to global variables and functions which may optionally have a pointer |
| cast formed of bitcast or getelementptr. For example, a legal use of it is:</p> |
| |
| <pre> |
| @X = global i8 4 |
| @Y = global i32 123 |
| |
| @llvm.used = appending global [2 x i8*] [ |
| i8* @X, |
| i8* bitcast (i32* @Y to i8*) |
| ], section "llvm.metadata" |
| </pre> |
| |
| <p>If a global variable appears in the <tt>@llvm.used</tt> list, then the |
| compiler, assembler, and linker are required to treat the symbol as if there is |
| a reference to the global that it cannot see. For example, if a variable has |
| internal linkage and no references other than that from the <tt>@llvm.used</tt> |
| list, it cannot be deleted. This is commonly used to represent references from |
| inline asms and other things the compiler cannot "see", and corresponds to |
| "attribute((used))" in GNU C.</p> |
| |
| <p>On some targets, the code generator must emit a directive to the assembler or |
| object file to prevent the assembler and linker from molesting the symbol.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>The <tt>@llvm.compiler.used</tt> directive is the same as the |
| <tt>@llvm.used</tt> directive, except that it only prevents the compiler from |
| touching the symbol. On targets that support it, this allows an intelligent |
| linker to optimize references to the symbol without being impeded as it would be |
| by <tt>@llvm.used</tt>.</p> |
| |
| <p>This is a rare construct that should only be used in rare circumstances, and |
| should not be exposed to source languages.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>TODO: Describe this.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>TODO: Describe this.</p> |
| |
| </div> |
| |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="instref">Instruction Reference</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>The LLVM instruction set consists of several different classifications of |
| instructions: <a href="#terminators">terminator |
| instructions</a>, <a href="#binaryops">binary instructions</a>, |
| <a href="#bitwiseops">bitwise binary instructions</a>, |
| <a href="#memoryops">memory instructions</a>, and |
| <a href="#otherops">other instructions</a>.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="terminators">Terminator |
| Instructions</a> </div> |
| |
| <div class="doc_text"> |
| |
| <p>As mentioned <a href="#functionstructure">previously</a>, every basic block |
| in a program ends with a "Terminator" instruction, which indicates which |
| block should be executed after the current block is finished. These |
| terminator instructions typically yield a '<tt>void</tt>' value: they produce |
| control flow, not values (the one exception being the |
| '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p> |
| |
| <p>There are six different terminator instructions: the |
| '<a href="#i_ret"><tt>ret</tt></a>' instruction, the |
| '<a href="#i_br"><tt>br</tt></a>' instruction, the |
| '<a href="#i_switch"><tt>switch</tt></a>' instruction, the |
| '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the |
| '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the |
| '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>' |
| Instruction</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| ret <type> <value> <i>; Return a value from a non-void function</i> |
| ret void <i>; Return from void function</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally |
| a value) from a function back to the caller.</p> |
| |
| <p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a |
| value and then causes control flow, and one that just causes control flow to |
| occur.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the |
| return value. The type of the return value must be a |
| '<a href="#t_firstclass">first class</a>' type.</p> |
| |
| <p>A function is not <a href="#wellformed">well formed</a> if it it has a |
| non-void return type and contains a '<tt>ret</tt>' instruction with no return |
| value or a return value with a type that does not match its type, or if it |
| has a void return type and contains a '<tt>ret</tt>' instruction with a |
| return value.</p> |
| |
| <h5>Semantics:</h5> |
| <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to |
| the calling function's context. If the caller is a |
| "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the |
| instruction after the call. If the caller was an |
| "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at |
| the beginning of the "normal" destination block. If the instruction returns |
| a value, that value shall set the call or invoke instruction's return |
| value.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| ret i32 5 <i>; Return an integer value of 5</i> |
| ret void <i>; Return from a void function</i> |
| ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i> |
| </pre> |
| |
| <p>Note that the code generator does not yet fully support large |
| return values. The specific sizes that are currently supported are |
| dependent on the target. For integers, on 32-bit targets the limit |
| is often 64 bits, and on 64-bit targets the limit is often 128 bits. |
| For aggregate types, the current limits are dependent on the element |
| types; for example targets are often limited to 2 total integer |
| elements and 2 total floating-point elements.</p> |
| |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| br i1 <cond>, label <iftrue>, label <iffalse><br> br label <dest> <i>; Unconditional branch</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a |
| different basic block in the current function. There are two forms of this |
| instruction, corresponding to a conditional branch and an unconditional |
| branch.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single |
| '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form |
| of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a |
| target.</p> |
| |
| <h5>Semantics:</h5> |
| <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>' |
| argument is evaluated. If the value is <tt>true</tt>, control flows to the |
| '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>, |
| control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| Test: |
| %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b |
| br i1 %cond, label %IfEqual, label %IfUnequal |
| IfEqual: |
| <a href="#i_ret">ret</a> i32 1 |
| IfUnequal: |
| <a href="#i_ret">ret</a> i32 0 |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_switch">'<tt>switch</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ] |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of |
| several different places. It is a generalization of the '<tt>br</tt>' |
| instruction, allowing a branch to occur to one of many possible |
| destinations.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The '<tt>switch</tt>' instruction uses three parameters: an integer |
| comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, |
| and an array of pairs of comparison value constants and '<tt>label</tt>'s. |
| The table is not allowed to contain duplicate constant entries.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The <tt>switch</tt> instruction specifies a table of values and |
| destinations. When the '<tt>switch</tt>' instruction is executed, this table |
| is searched for the given value. If the value is found, control flow is |
| transfered to the corresponding destination; otherwise, control flow is |
| transfered to the default destination.</p> |
| |
| <h5>Implementation:</h5> |
| <p>Depending on properties of the target machine and the particular |
| <tt>switch</tt> instruction, this instruction may be code generated in |
| different ways. For example, it could be generated as a series of chained |
| conditional branches or with a lookup table.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| <i>; Emulate a conditional br instruction</i> |
| %Val = <a href="#i_zext">zext</a> i1 %value to i32 |
| switch i32 %Val, label %truedest [ i32 0, label %falsedest ] |
| |
| <i>; Emulate an unconditional br instruction</i> |
| switch i32 0, label %dest [ ] |
| |
| <i>; Implement a jump table:</i> |
| switch i32 %val, label %otherwise [ i32 0, label %onzero |
| i32 1, label %onone |
| i32 2, label %ontwo ] |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_invoke">'<tt>invoke</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] <ptr to function ty> <function ptr val>(<function args>) [<a href="#fnattrs">fn attrs</a>] |
| to label <normal label> unwind label <exception label> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified |
| function, with the possibility of control flow transfer to either the |
| '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee |
| function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction, |
| control flow will return to the "normal" label. If the callee (or any |
| indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>" |
| instruction, control is interrupted and continued at the dynamically nearest |
| "exception" label.</p> |
| |
| <h5>Arguments:</h5> |
| <p>This instruction requires several arguments:</p> |
| |
| <ol> |
| <li>The optional "cconv" marker indicates which <a href="#callingconv">calling |
| convention</a> the call should use. If none is specified, the call |
| defaults to using C calling conventions.</li> |
| |
| <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for |
| return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and |
| '<tt>inreg</tt>' attributes are valid here.</li> |
| |
| <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to |
| function value being invoked. In most cases, this is a direct function |
| invocation, but indirect <tt>invoke</tt>s are just as possible, branching |
| off an arbitrary pointer to function value.</li> |
| |
| <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a |
| function to be invoked. </li> |
| |
| <li>'<tt>function args</tt>': argument list whose types match the function |
| signature argument types. If the function signature indicates the |
| function accepts a variable number of arguments, the extra arguments can |
| be specified.</li> |
| |
| <li>'<tt>normal label</tt>': the label reached when the called function |
| executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li> |
| |
| <li>'<tt>exception label</tt>': the label reached when a callee returns with |
| the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li> |
| |
| <li>The optional <a href="#fnattrs">function attributes</a> list. Only |
| '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and |
| '<tt>readnone</tt>' attributes are valid here.</li> |
| </ol> |
| |
| <h5>Semantics:</h5> |
| <p>This instruction is designed to operate as a standard |
| '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The |
| primary difference is that it establishes an association with a label, which |
| is used by the runtime library to unwind the stack.</p> |
| |
| <p>This instruction is used in languages with destructors to ensure that proper |
| cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown |
| exception. Additionally, this is important for implementation of |
| '<tt>catch</tt>' clauses in high-level languages that support them.</p> |
| |
| <p>For the purposes of the SSA form, the definition of the value returned by the |
| '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current |
| block to the "normal" label. If the callee unwinds then no return value is |
| available.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %retval = invoke i32 @Test(i32 15) to label %Continue |
| unwind label %TestCleanup <i>; {i32}:retval set</i> |
| %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue |
| unwind label %TestCleanup <i>; {i32}:retval set</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| |
| <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>' |
| Instruction</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| unwind |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow |
| at the first callee in the dynamic call stack which used |
| an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. |
| This is primarily used to implement exception handling.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The '<tt>unwind</tt>' instruction causes execution of the current function to |
| immediately halt. The dynamic call stack is then searched for the |
| first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. |
| Once found, execution continues at the "exceptional" destination block |
| specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt> |
| instruction in the dynamic call chain, undefined behavior results.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| |
| <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>' |
| Instruction</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| unreachable |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>unreachable</tt>' instruction has no defined semantics. This |
| instruction is used to inform the optimizer that a particular portion of the |
| code is not reachable. This can be used to indicate that the code after a |
| no-return function cannot be reached, and other facts.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div> |
| |
| <div class="doc_text"> |
| |
| <p>Binary operators are used to do most of the computation in a program. They |
| require two operands of the same type, execute an operation on them, and |
| produce a single value. The operands might represent multiple data, as is |
| the case with the <a href="#t_vector">vector</a> data type. The result value |
| has the same type as its operands.</p> |
| |
| <p>There are several different binary operators:</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_add">'<tt>add</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = add <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| <result> = add nuw <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| <result> = add nsw <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| <result> = add nuw nsw <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>add</tt>' instruction must |
| be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of |
| integer values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The value produced is the integer sum of the two operands.</p> |
| |
| <p>If the sum has unsigned overflow, the result returned is the mathematical |
| result modulo 2<sup>n</sup>, where n is the bit width of the result.</p> |
| |
| <p>Because LLVM integers use a two's complement representation, this instruction |
| is appropriate for both signed and unsigned integers.</p> |
| |
| <p><tt>nuw</tt> and <tt>nsw</tt> stand for "No Unsigned Wrap" |
| and "No Signed Wrap", respectively. If the <tt>nuw</tt> and/or |
| <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt> |
| is undefined if unsigned and/or signed overflow, respectively, occurs.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| <result> = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_fadd">'<tt>fadd</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = fadd <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>fadd</tt>' instruction must be |
| <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of |
| floating point values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The value produced is the floating point sum of the two operands.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| <result> = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_sub">'<tt>sub</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = sub <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| <result> = sub nuw <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| <result> = sub nsw <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| <result> = sub nuw nsw <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>sub</tt>' instruction returns the difference of its two |
| operands.</p> |
| |
| <p>Note that the '<tt>sub</tt>' instruction is used to represent the |
| '<tt>neg</tt>' instruction present in most other intermediate |
| representations.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>sub</tt>' instruction must |
| be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of |
| integer values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The value produced is the integer difference of the two operands.</p> |
| |
| <p>If the difference has unsigned overflow, the result returned is the |
| mathematical result modulo 2<sup>n</sup>, where n is the bit width of the |
| result.</p> |
| |
| <p>Because LLVM integers use a two's complement representation, this instruction |
| is appropriate for both signed and unsigned integers.</p> |
| |
| <p><tt>nuw</tt> and <tt>nsw</tt> stand for "No Unsigned Wrap" |
| and "No Signed Wrap", respectively. If the <tt>nuw</tt> and/or |
| <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt> |
| is undefined if unsigned and/or signed overflow, respectively, occurs.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| <result> = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i> |
| <result> = sub i32 0, %val <i>; yields {i32}:result = -%var</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_fsub">'<tt>fsub</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = fsub <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>fsub</tt>' instruction returns the difference of its two |
| operands.</p> |
| |
| <p>Note that the '<tt>fsub</tt>' instruction is used to represent the |
| '<tt>fneg</tt>' instruction present in most other intermediate |
| representations.</p> |
|