blob: ae57409d8fc8b34e14954f716144f7c8743eca96 [file] [log] [blame]
//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DAGTypeLegalizer class. This is a private interface
// shared between the code that implements the SelectionDAG::LegalizeTypes
// method.
//
//===----------------------------------------------------------------------===//
#ifndef SELECTIONDAG_LEGALIZETYPES_H
#define SELECTIONDAG_LEGALIZETYPES_H
#define DEBUG_TYPE "legalize-types"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
namespace llvm {
//===----------------------------------------------------------------------===//
/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks
/// on it until only value types the target machine can handle are left. This
/// involves promoting small sizes to large sizes or splitting up large values
/// into small values.
///
class VISIBILITY_HIDDEN DAGTypeLegalizer {
TargetLowering &TLI;
SelectionDAG &DAG;
public:
// NodeIDFlags - This pass uses the NodeID on the SDNodes to hold information
// about the state of the node. The enum has all the values.
enum NodeIDFlags {
/// ReadyToProcess - All operands have been processed, so this node is ready
/// to be handled.
ReadyToProcess = 0,
/// NewNode - This is a new node that was created in the process of
/// legalizing some other node.
NewNode = -1,
/// Processed - This is a node that has already been processed.
Processed = -2
// 1+ - This is a node which has this many unlegalized operands.
};
private:
enum LegalizeAction {
Legal, // The target natively supports this type.
PromoteInteger, // Replace this integer type with a larger one.
ExpandInteger, // Split this integer type into two of half the size.
SoftenFloat, // Convert this float type to a same size integer type.
ExpandFloat, // Split this float type into two of half the size.
ScalarizeVector, // Replace this one-element vector with its element type.
SplitVector // This vector type should be split into smaller vectors.
};
/// ValueTypeActions - This is a bitvector that contains two bits for each
/// simple value type, where the two bits correspond to the LegalizeAction
/// enum from TargetLowering. This can be queried with "getTypeAction(VT)".
TargetLowering::ValueTypeActionImpl ValueTypeActions;
/// getTypeAction - Return how we should legalize values of this type, either
/// it is already legal, or we need to promote it to a larger integer type, or
/// we need to expand it into multiple registers of a smaller integer type, or
/// we need to split a vector type into smaller vector types, or we need to
/// convert it to a different type of the same size.
LegalizeAction getTypeAction(MVT VT) const {
switch (ValueTypeActions.getTypeAction(VT)) {
default:
assert(false && "Unknown legalize action!");
case TargetLowering::Legal:
return Legal;
case TargetLowering::Promote:
return PromoteInteger;
case TargetLowering::Expand:
// Expand can mean
// 1) split scalar in half, 2) convert a float to an integer,
// 3) scalarize a single-element vector, 4) split a vector in two.
if (!VT.isVector()) {
if (VT.isInteger())
return ExpandInteger;
else if (VT.getSizeInBits() ==
TLI.getTypeToTransformTo(VT).getSizeInBits())
return SoftenFloat;
else
return ExpandFloat;
} else if (VT.getVectorNumElements() == 1) {
return ScalarizeVector;
} else {
return SplitVector;
}
}
}
/// isTypeLegal - Return true if this type is legal on this target.
bool isTypeLegal(MVT VT) const {
return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal;
}
/// IgnoreNodeResults - Pretend all of this node's results are legal.
bool IgnoreNodeResults(SDNode *N) const {
return N->getOpcode() == ISD::TargetConstant;
}
/// PromotedIntegers - For integer nodes that are below legal width, this map
/// indicates what promoted value to use.
DenseMap<SDValue, SDValue> PromotedIntegers;
/// ExpandedIntegers - For integer nodes that need to be expanded this map
/// indicates which operands are the expanded version of the input.
DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedIntegers;
/// SoftenedFloats - For floating point nodes converted to integers of
/// the same size, this map indicates the converted value to use.
DenseMap<SDValue, SDValue> SoftenedFloats;
/// ExpandedFloats - For float nodes that need to be expanded this map
/// indicates which operands are the expanded version of the input.
DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedFloats;
/// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the
/// scalar value of type 'ty' to use.
DenseMap<SDValue, SDValue> ScalarizedVectors;
/// SplitVectors - For nodes that need to be split this map indicates
/// which operands are the expanded version of the input.
DenseMap<SDValue, std::pair<SDValue, SDValue> > SplitVectors;
/// ReplacedNodes - For nodes that have been replaced with another,
/// indicates the replacement node to use.
DenseMap<SDValue, SDValue> ReplacedNodes;
/// Worklist - This defines a worklist of nodes to process. In order to be
/// pushed onto this worklist, all operands of a node must have already been
/// processed.
SmallVector<SDNode*, 128> Worklist;
public:
explicit DAGTypeLegalizer(SelectionDAG &dag)
: TLI(dag.getTargetLoweringInfo()), DAG(dag),
ValueTypeActions(TLI.getValueTypeActions()) {
assert(MVT::LAST_VALUETYPE <= 32 &&
"Too many value types for ValueTypeActions to hold!");
}
void run();
/// ReanalyzeNode - Recompute the NodeID and correct processed operands
/// for the specified node, adding it to the worklist if ready.
SDNode *ReanalyzeNode(SDNode *N) {
N->setNodeId(NewNode);
return AnalyzeNewNode(N);
}
void NoteDeletion(SDNode *Old, SDNode *New) {
ExpungeNode(Old);
ExpungeNode(New);
for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
ReplacedNodes[SDValue(Old, i)] = SDValue(New, i);
}
private:
void AnalyzeNewNode(SDValue &Val);
SDNode *AnalyzeNewNode(SDNode *N);
void ReplaceValueWith(SDValue From, SDValue To);
void ReplaceNodeWith(SDNode *From, SDNode *To);
void RemapNode(SDValue &N);
void ExpungeNode(SDNode *N);
// Common routines.
SDValue CreateStackStoreLoad(SDValue Op, MVT DestVT);
SDValue MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
const SDValue *Ops, unsigned NumOps, bool isSigned);
SDValue BitConvertToInteger(SDValue Op);
SDValue JoinIntegers(SDValue Lo, SDValue Hi);
void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
void SplitInteger(SDValue Op, MVT LoVT, MVT HiVT,
SDValue &Lo, SDValue &Hi);
SDValue GetVectorElementPointer(SDValue VecPtr, MVT EltVT,
SDValue Index);
//===--------------------------------------------------------------------===//
// Integer Promotion Support: LegalizeIntegerTypes.cpp
//===--------------------------------------------------------------------===//
SDValue GetPromotedInteger(SDValue Op) {
SDValue &PromotedOp = PromotedIntegers[Op];
RemapNode(PromotedOp);
assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp;
}
void SetPromotedInteger(SDValue Op, SDValue Result);
/// ZExtPromotedInteger - Get a promoted operand and zero extend it to the
/// final size.
SDValue ZExtPromotedInteger(SDValue Op) {
MVT OldVT = Op.getValueType();
Op = GetPromotedInteger(Op);
return DAG.getZeroExtendInReg(Op, OldVT);
}
// Integer Result Promotion.
void PromoteIntegerResult(SDNode *N, unsigned ResNo);
SDValue PromoteIntRes_AssertSext(SDNode *N);
SDValue PromoteIntRes_AssertZext(SDNode *N);
SDValue PromoteIntRes_BIT_CONVERT(SDNode *N);
SDValue PromoteIntRes_BSWAP(SDNode *N);
SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
SDValue PromoteIntRes_Constant(SDNode *N);
SDValue PromoteIntRes_CTLZ(SDNode *N);
SDValue PromoteIntRes_CTPOP(SDNode *N);
SDValue PromoteIntRes_CTTZ(SDNode *N);
SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
SDValue PromoteIntRes_LOAD(LoadSDNode *N);
SDValue PromoteIntRes_SDIV(SDNode *N);
SDValue PromoteIntRes_SELECT (SDNode *N);
SDValue PromoteIntRes_SELECT_CC(SDNode *N);
SDValue PromoteIntRes_SETCC(SDNode *N);
SDValue PromoteIntRes_SHL(SDNode *N);
SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
SDValue PromoteIntRes_SRA(SDNode *N);
SDValue PromoteIntRes_SRL(SDNode *N);
SDValue PromoteIntRes_TRUNCATE(SDNode *N);
SDValue PromoteIntRes_UDIV(SDNode *N);
SDValue PromoteIntRes_UNDEF(SDNode *N);
SDValue PromoteIntRes_VAARG(SDNode *N);
// Integer Operand Promotion.
bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo);
SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
SDValue PromoteIntOp_FP_EXTEND(SDNode *N);
SDValue PromoteIntOp_FP_ROUND(SDNode *N);
SDValue PromoteIntOp_INT_TO_FP(SDNode *N);
SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MEMBARRIER(SDNode *N);
SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_TRUNCATE(SDNode *N);
SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
//===--------------------------------------------------------------------===//
// Integer Expansion Support: LegalizeIntegerTypes.cpp
//===--------------------------------------------------------------------===//
void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
// Integer Result Expansion.
void ExpandIntegerResult(SDNode *N, unsigned ResNo);
void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandShiftByConstant(SDNode *N, unsigned Amt,
SDValue &Lo, SDValue &Hi);
bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
// Integer Operand Expansion.
bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo);
SDValue ExpandIntOp_BIT_CONVERT(SDNode *N);
SDValue ExpandIntOp_BR_CC(SDNode *N);
SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N);
SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N);
SDValue ExpandIntOp_SELECT_CC(SDNode *N);
SDValue ExpandIntOp_SETCC(SDNode *N);
SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue ExpandIntOp_TRUNCATE(SDNode *N);
SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode);
//===--------------------------------------------------------------------===//
// Float to Integer Conversion Support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
SDValue GetSoftenedFloat(SDValue Op) {
SDValue &SoftenedOp = SoftenedFloats[Op];
RemapNode(SoftenedOp);
assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?");
return SoftenedOp;
}
void SetSoftenedFloat(SDValue Op, SDValue Result);
// Result Float to Integer Conversion.
void SoftenFloatResult(SDNode *N, unsigned OpNo);
SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N);
SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N);
SDValue SoftenFloatRes_FABS(SDNode *N);
SDValue SoftenFloatRes_FADD(SDNode *N);
SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
SDValue SoftenFloatRes_FDIV(SDNode *N);
SDValue SoftenFloatRes_FMUL(SDNode *N);
SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
SDValue SoftenFloatRes_FPOWI(SDNode *N);
SDValue SoftenFloatRes_FSUB(SDNode *N);
SDValue SoftenFloatRes_LOAD(SDNode *N);
SDValue SoftenFloatRes_SELECT(SDNode *N);
SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
SDValue SoftenFloatRes_SINT_TO_FP(SDNode *N);
SDValue SoftenFloatRes_UINT_TO_FP(SDNode *N);
// Operand Float to Integer Conversion.
bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N);
SDValue SoftenFloatOp_BR_CC(SDNode *N);
SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N);
SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N);
SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
SDValue SoftenFloatOp_SETCC(SDNode *N);
SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode);
//===--------------------------------------------------------------------===//
// Float Expansion Support: LegalizeFloatTypes.cpp
//===--------------------------------------------------------------------===//
void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
// Float Result Expansion.
void ExpandFloatResult(SDNode *N, unsigned ResNo);
void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
// Float Operand Expansion.
bool ExpandFloatOperand(SDNode *N, unsigned OperandNo);
SDValue ExpandFloatOp_BR_CC(SDNode *N);
SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N);
SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N);
SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
SDValue ExpandFloatOp_SETCC(SDNode *N);
SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode);
//===--------------------------------------------------------------------===//
// Scalarization Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
SDValue GetScalarizedVector(SDValue Op) {
SDValue &ScalarizedOp = ScalarizedVectors[Op];
RemapNode(ScalarizedOp);
assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
return ScalarizedOp;
}
void SetScalarizedVector(SDValue Op, SDValue Result);
// Vector Result Scalarization: <1 x ty> -> ty.
void ScalarizeVectorResult(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecRes_BinOp(SDNode *N);
SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N);
SDValue ScalarizeVecRes_FPOWI(SDNode *N);
SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
SDValue ScalarizeVecRes_SELECT(SDNode *N);
SDValue ScalarizeVecRes_UNDEF(SDNode *N);
SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
SDValue ScalarizeVecRes_VSETCC(SDNode *N);
// Vector Operand Scalarization: <1 x ty> -> ty.
bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N);
SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
//===--------------------------------------------------------------------===//
// Vector Splitting Support: LegalizeVectorTypes.cpp
//===--------------------------------------------------------------------===//
void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
// Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
void SplitVectorResult(SDNode *N, unsigned OpNo);
void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_VSETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
// Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
bool SplitVectorOperand(SDNode *N, unsigned OpNo);
SDValue SplitVecOp_BIT_CONVERT(SDNode *N);
SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo);
//===--------------------------------------------------------------------===//
// Generic Splitting: LegalizeTypesGeneric.cpp
//===--------------------------------------------------------------------===//
// Legalization methods which only use that the illegal type is split into two
// not necessarily identical types. As such they can be used for splitting
// vectors and expanding integers and floats.
void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
if (Op.getValueType().isVector())
GetSplitVector(Op, Lo, Hi);
else if (Op.getValueType().isInteger())
GetExpandedInteger(Op, Lo, Hi);
else
GetExpandedFloat(Op, Lo, Hi);
}
/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
/// which is split (or expanded) into two not necessarily identical pieces.
void GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT);
// Generic Result Splitting.
void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi);
//===--------------------------------------------------------------------===//
// Generic Expansion: LegalizeTypesGeneric.cpp
//===--------------------------------------------------------------------===//
// Legalization methods which only use that the illegal type is split into two
// identical types of half the size, and that the Lo/Hi part is stored first
// in memory on little/big-endian machines, followed by the Hi/Lo part. As
// such they can be used for expanding integers and floats.
void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
if (Op.getValueType().isInteger())
GetExpandedInteger(Op, Lo, Hi);
else
GetExpandedFloat(Op, Lo, Hi);
}
// Generic Result Expansion.
void ExpandRes_BIT_CONVERT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi);
// Generic Operand Expansion.
SDValue ExpandOp_BIT_CONVERT (SDNode *N);
SDValue ExpandOp_BUILD_VECTOR (SDNode *N);
SDValue ExpandOp_EXTRACT_ELEMENT(SDNode *N);
SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo);
};
} // end namespace llvm.
#endif