blob: 55acc82211442ecffeced9760d1a25e5cb1c9796 [file] [log] [blame]
//===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::LegalizeTypes method. It transforms
// an arbitrary well-formed SelectionDAG to only consist of legal types. This
// is common code shared among the LegalizeTypes*.cpp files.
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/CallingConv.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;
/// run - This is the main entry point for the type legalizer. This does a
/// top-down traversal of the dag, legalizing types as it goes.
void DAGTypeLegalizer::run() {
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted, and tracking any
// changes of the root.
HandleSDNode Dummy(DAG.getRoot());
// The root of the dag may dangle to deleted nodes until the type legalizer is
// done. Set it to null to avoid confusion.
DAG.setRoot(SDValue());
// Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess'
// (and remembering them) if they are leaves and assigning 'NewNode' if
// non-leaves.
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I) {
if (I->getNumOperands() == 0) {
I->setNodeId(ReadyToProcess);
Worklist.push_back(I);
} else {
I->setNodeId(NewNode);
}
}
// Now that we have a set of nodes to process, handle them all.
while (!Worklist.empty()) {
SDNode *N = Worklist.back();
Worklist.pop_back();
assert(N->getNodeId() == ReadyToProcess &&
"Node should be ready if on worklist!");
if (IgnoreNodeResults(N))
goto ScanOperands;
// Scan the values produced by the node, checking to see if any result
// types are illegal.
for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
MVT ResultVT = N->getValueType(i);
switch (getTypeAction(ResultVT)) {
default:
assert(false && "Unknown action!");
case Legal:
break;
case PromoteInteger:
PromoteIntegerResult(N, i);
goto NodeDone;
case ExpandInteger:
ExpandIntegerResult(N, i);
goto NodeDone;
case SoftenFloat:
SoftenFloatResult(N, i);
goto NodeDone;
case ExpandFloat:
ExpandFloatResult(N, i);
goto NodeDone;
case ScalarizeVector:
ScalarizeVectorResult(N, i);
goto NodeDone;
case SplitVector:
SplitVectorResult(N, i);
goto NodeDone;
}
}
ScanOperands:
// Scan the operand list for the node, handling any nodes with operands that
// are illegal.
{
unsigned NumOperands = N->getNumOperands();
bool NeedsRevisit = false;
unsigned i;
for (i = 0; i != NumOperands; ++i) {
if (IgnoreNodeResults(N->getOperand(i).getNode()))
continue;
MVT OpVT = N->getOperand(i).getValueType();
switch (getTypeAction(OpVT)) {
default:
assert(false && "Unknown action!");
case Legal:
continue;
case PromoteInteger:
NeedsRevisit = PromoteIntegerOperand(N, i);
break;
case ExpandInteger:
NeedsRevisit = ExpandIntegerOperand(N, i);
break;
case SoftenFloat:
NeedsRevisit = SoftenFloatOperand(N, i);
break;
case ExpandFloat:
NeedsRevisit = ExpandFloatOperand(N, i);
break;
case ScalarizeVector:
NeedsRevisit = ScalarizeVectorOperand(N, i);
break;
case SplitVector:
NeedsRevisit = SplitVectorOperand(N, i);
break;
}
break;
}
// If the node needs revisiting, don't add all users to the worklist etc.
if (NeedsRevisit)
continue;
if (i == NumOperands) {
DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
}
}
NodeDone:
// If we reach here, the node was processed, potentially creating new nodes.
// Mark it as processed and add its users to the worklist as appropriate.
N->setNodeId(Processed);
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
UI != E; ++UI) {
SDNode *User = *UI;
int NodeID = User->getNodeId();
assert(NodeID != ReadyToProcess && NodeID != Processed &&
"Invalid node id for user of unprocessed node!");
// This node has two options: it can either be a new node or its Node ID
// may be a count of the number of operands it has that are not ready.
if (NodeID > 0) {
User->setNodeId(NodeID-1);
// If this was the last use it was waiting on, add it to the ready list.
if (NodeID-1 == ReadyToProcess)
Worklist.push_back(User);
continue;
}
// Otherwise, this node is new: this is the first operand of it that
// became ready. Its new NodeID is the number of operands it has minus 1
// (as this node is now processed).
assert(NodeID == NewNode && "Unknown node ID!");
User->setNodeId(User->getNumOperands()-1);
// If the node only has a single operand, it is now ready.
if (User->getNumOperands() == 1)
Worklist.push_back(User);
}
}
// If the root changed (e.g. it was a dead load, update the root).
DAG.setRoot(Dummy.getValue());
//DAG.viewGraph();
// Remove dead nodes. This is important to do for cleanliness but also before
// the checking loop below. Implicit folding by the DAG.getNode operators can
// cause unreachable nodes to be around with their flags set to new.
DAG.RemoveDeadNodes();
// In a debug build, scan all the nodes to make sure we found them all. This
// ensures that there are no cycles and that everything got processed.
#ifndef NDEBUG
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I) {
bool Failed = false;
// Check that all result types are legal.
if (!IgnoreNodeResults(I))
for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
if (!isTypeLegal(I->getValueType(i))) {
cerr << "Result type " << i << " illegal!\n";
Failed = true;
}
// Check that all operand types are legal.
for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
!isTypeLegal(I->getOperand(i).getValueType())) {
cerr << "Operand type " << i << " illegal!\n";
Failed = true;
}
if (I->getNodeId() != Processed) {
if (I->getNodeId() == NewNode)
cerr << "New node not 'noticed'?\n";
else if (I->getNodeId() > 0)
cerr << "Operand not processed?\n";
else if (I->getNodeId() == ReadyToProcess)
cerr << "Not added to worklist?\n";
Failed = true;
}
if (Failed) {
I->dump(&DAG); cerr << "\n";
abort();
}
}
#endif
}
/// AnalyzeNewNode - The specified node is the root of a subtree of potentially
/// new nodes. Correct any processed operands (this may change the node) and
/// calculate the NodeId.
/// Returns the potentially changed node.
SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
// If this was an existing node that is already done, we're done.
if (N->getNodeId() != NewNode)
return N;
// Remove any stale map entries.
ExpungeNode(N);
// Okay, we know that this node is new. Recursively walk all of its operands
// to see if they are new also. The depth of this walk is bounded by the size
// of the new tree that was constructed (usually 2-3 nodes), so we don't worry
// about revisiting of nodes.
//
// As we walk the operands, keep track of the number of nodes that are
// processed. If non-zero, this will become the new nodeid of this node.
// Already processed operands may need to be remapped to the node that
// replaced them, which can result in our node changing. Since remapping
// is rare, the code tries to minimize overhead in the non-remapping case.
SmallVector<SDValue, 8> NewOps;
unsigned NumProcessed = 0;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDValue OrigOp = N->getOperand(i);
SDValue Op = OrigOp;
if (Op.getNode()->getNodeId() == Processed)
RemapNode(Op);
if (Op.getNode()->getNodeId() == NewNode)
AnalyzeNewNode(Op);
else if (Op.getNode()->getNodeId() == Processed)
++NumProcessed;
if (!NewOps.empty()) {
// Some previous operand changed. Add this one to the list.
NewOps.push_back(Op);
} else if (Op != OrigOp) {
// This is the first operand to change - add all operands so far.
for (unsigned j = 0; j < i; ++j)
NewOps.push_back(N->getOperand(j));
NewOps.push_back(Op);
}
}
// Some operands changed - update the node.
if (!NewOps.empty())
N = DAG.UpdateNodeOperands(SDValue(N, 0),
&NewOps[0],
NewOps.size()).getNode();
N->setNodeId(N->getNumOperands()-NumProcessed);
if (N->getNodeId() == ReadyToProcess)
Worklist.push_back(N);
return N;
}
/// AnalyzeNewNode - call AnalyzeNewNode(SDNode *N)
/// and update the node in SDValue if necessary.
void DAGTypeLegalizer::AnalyzeNewNode(SDValue &Val) {
SDNode *N(Val.getNode());
SDNode *M(AnalyzeNewNode(N));
if (N != M)
Val.setNode(M);
}
namespace {
/// NodeUpdateListener - This class is a DAGUpdateListener that listens for
/// updates to nodes and recomputes their ready state.
class VISIBILITY_HIDDEN NodeUpdateListener :
public SelectionDAG::DAGUpdateListener {
DAGTypeLegalizer &DTL;
public:
explicit NodeUpdateListener(DAGTypeLegalizer &dtl) : DTL(dtl) {}
virtual void NodeDeleted(SDNode *N, SDNode *E) {
assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
"RAUW deleted processed node!");
// It is possible, though rare, for the deleted node N to occur as a
// target in a map, so note the replacement N -> E in ReplacedNodes.
assert(E && "Node not replaced?");
DTL.NoteDeletion(N, E);
}
virtual void NodeUpdated(SDNode *N) {
// Node updates can mean pretty much anything. It is possible that an
// operand was set to something already processed (f.e.) in which case
// this node could become ready. Recompute its flags.
assert(N->getNodeId() != DAGTypeLegalizer::Processed &&
N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
"RAUW updated processed node!");
DTL.ReanalyzeNode(N);
}
};
}
/// ReplaceValueWith - The specified value was legalized to the specified other
/// value. If they are different, update the DAG and NodeIDs replacing any uses
/// of From to use To instead.
void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
if (From == To) return;
// If expansion produced new nodes, make sure they are properly marked.
ExpungeNode(From.getNode());
AnalyzeNewNode(To); // Expunges To.
// Anything that used the old node should now use the new one. Note that this
// can potentially cause recursive merging.
NodeUpdateListener NUL(*this);
DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
// The old node may still be present in a map like ExpandedIntegers or
// PromotedIntegers. Inform maps about the replacement.
ReplacedNodes[From] = To;
}
/// ReplaceNodeWith - Replace uses of the 'from' node's results with the 'to'
/// node's results. The from and to node must define identical result types.
void DAGTypeLegalizer::ReplaceNodeWith(SDNode *From, SDNode *To) {
if (From == To) return;
// If expansion produced new nodes, make sure they are properly marked.
ExpungeNode(From);
To = AnalyzeNewNode(To); // Expunges To.
assert(From->getNumValues() == To->getNumValues() &&
"Node results don't match");
// Anything that used the old node should now use the new one. Note that this
// can potentially cause recursive merging.
NodeUpdateListener NUL(*this);
DAG.ReplaceAllUsesWith(From, To, &NUL);
// The old node may still be present in a map like ExpandedIntegers or
// PromotedIntegers. Inform maps about the replacement.
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
assert(From->getValueType(i) == To->getValueType(i) &&
"Node results don't match");
ReplacedNodes[SDValue(From, i)] = SDValue(To, i);
}
}
/// RemapNode - If the specified value was already legalized to another value,
/// replace it by that value.
void DAGTypeLegalizer::RemapNode(SDValue &N) {
DenseMap<SDValue, SDValue>::iterator I = ReplacedNodes.find(N);
if (I != ReplacedNodes.end()) {
// Use path compression to speed up future lookups if values get multiply
// replaced with other values.
RemapNode(I->second);
N = I->second;
}
}
/// ExpungeNode - If N has a bogus mapping in ReplacedNodes, eliminate it.
/// This can occur when a node is deleted then reallocated as a new node -
/// the mapping in ReplacedNodes applies to the deleted node, not the new
/// one.
/// The only map that can have a deleted node as a source is ReplacedNodes.
/// Other maps can have deleted nodes as targets, but since their looked-up
/// values are always immediately remapped using RemapNode, resulting in a
/// not-deleted node, this is harmless as long as ReplacedNodes/RemapNode
/// always performs correct mappings. In order to keep the mapping correct,
/// ExpungeNode should be called on any new nodes *before* adding them as
/// either source or target to ReplacedNodes (which typically means calling
/// Expunge when a new node is first seen, since it may no longer be marked
/// NewNode by the time it is added to ReplacedNodes).
void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
if (N->getNodeId() != NewNode)
return;
// If N is not remapped by ReplacedNodes then there is nothing to do.
unsigned i, e;
for (i = 0, e = N->getNumValues(); i != e; ++i)
if (ReplacedNodes.find(SDValue(N, i)) != ReplacedNodes.end())
break;
if (i == e)
return;
// Remove N from all maps - this is expensive but rare.
for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
E = PromotedIntegers.end(); I != E; ++I) {
assert(I->first.getNode() != N);
RemapNode(I->second);
}
for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
E = SoftenedFloats.end(); I != E; ++I) {
assert(I->first.getNode() != N);
RemapNode(I->second);
}
for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
E = ScalarizedVectors.end(); I != E; ++I) {
assert(I->first.getNode() != N);
RemapNode(I->second);
}
for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
assert(I->first.getNode() != N);
RemapNode(I->second.first);
RemapNode(I->second.second);
}
for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
assert(I->first.getNode() != N);
RemapNode(I->second.first);
RemapNode(I->second.second);
}
for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
assert(I->first.getNode() != N);
RemapNode(I->second.first);
RemapNode(I->second.second);
}
for (DenseMap<SDValue, SDValue>::iterator I = ReplacedNodes.begin(),
E = ReplacedNodes.end(); I != E; ++I)
RemapNode(I->second);
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
ReplacedNodes.erase(SDValue(N, i));
}
void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
AnalyzeNewNode(Result);
SDValue &OpEntry = PromotedIntegers[Op];
assert(OpEntry.getNode() == 0 && "Node is already promoted!");
OpEntry = Result;
}
void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
AnalyzeNewNode(Result);
SDValue &OpEntry = SoftenedFloats[Op];
assert(OpEntry.getNode() == 0 && "Node is already converted to integer!");
OpEntry = Result;
}
void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
AnalyzeNewNode(Result);
SDValue &OpEntry = ScalarizedVectors[Op];
assert(OpEntry.getNode() == 0 && "Node is already scalarized!");
OpEntry = Result;
}
void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
SDValue &Hi) {
std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
RemapNode(Entry.first);
RemapNode(Entry.second);
assert(Entry.first.getNode() && "Operand isn't expanded");
Lo = Entry.first;
Hi = Entry.second;
}
void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
SDValue Hi) {
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
AnalyzeNewNode(Lo);
AnalyzeNewNode(Hi);
// Remember that this is the result of the node.
std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
assert(Entry.first.getNode() == 0 && "Node already expanded");
Entry.first = Lo;
Entry.second = Hi;
}
void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
SDValue &Hi) {
std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
RemapNode(Entry.first);
RemapNode(Entry.second);
assert(Entry.first.getNode() && "Operand isn't expanded");
Lo = Entry.first;
Hi = Entry.second;
}
void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
SDValue Hi) {
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
AnalyzeNewNode(Lo);
AnalyzeNewNode(Hi);
// Remember that this is the result of the node.
std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
assert(Entry.first.getNode() == 0 && "Node already expanded");
Entry.first = Lo;
Entry.second = Hi;
}
void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
SDValue &Hi) {
std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
RemapNode(Entry.first);
RemapNode(Entry.second);
assert(Entry.first.getNode() && "Operand isn't split");
Lo = Entry.first;
Hi = Entry.second;
}
void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
SDValue Hi) {
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
AnalyzeNewNode(Lo);
AnalyzeNewNode(Hi);
// Remember that this is the result of the node.
std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
assert(Entry.first.getNode() == 0 && "Node already split");
Entry.first = Lo;
Entry.second = Hi;
}
//===----------------------------------------------------------------------===//
// Utilities.
//===----------------------------------------------------------------------===//
/// BitConvertToInteger - Convert to an integer of the same size.
SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
unsigned BitWidth = Op.getValueType().getSizeInBits();
return DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerVT(BitWidth), Op);
}
SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
MVT DestVT) {
// Create the stack frame object. Make sure it is aligned for both
// the source and destination types.
unsigned SrcAlign =
TLI.getTargetData()->getPrefTypeAlignment(Op.getValueType().getTypeForMVT());
SDValue FIPtr = DAG.CreateStackTemporary(DestVT, SrcAlign);
// Emit a store to the stack slot.
SDValue Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0);
// Result is a load from the stack slot.
return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
}
/// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
MVT LVT = Lo.getValueType();
MVT HVT = Hi.getValueType();
MVT NVT = MVT::getIntegerVT(LVT.getSizeInBits() + HVT.getSizeInBits());
Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Lo);
Hi = DAG.getNode(ISD::ANY_EXTEND, NVT, Hi);
Hi = DAG.getNode(ISD::SHL, NVT, Hi, DAG.getConstant(LVT.getSizeInBits(),
TLI.getShiftAmountTy()));
return DAG.getNode(ISD::OR, NVT, Lo, Hi);
}
/// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
/// bits in Hi.
void DAGTypeLegalizer::SplitInteger(SDValue Op,
MVT LoVT, MVT HiVT,
SDValue &Lo, SDValue &Hi) {
assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
Lo = DAG.getNode(ISD::TRUNCATE, LoVT, Op);
Hi = DAG.getNode(ISD::SRL, Op.getValueType(), Op,
DAG.getConstant(LoVT.getSizeInBits(),
TLI.getShiftAmountTy()));
Hi = DAG.getNode(ISD::TRUNCATE, HiVT, Hi);
}
/// SplitInteger - Return the lower and upper halves of Op's bits in a value type
/// half the size of Op's.
void DAGTypeLegalizer::SplitInteger(SDValue Op,
SDValue &Lo, SDValue &Hi) {
MVT HalfVT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()/2);
SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
}
/// MakeLibCall - Generate a libcall taking the given operands as arguments and
/// returning a result of type RetVT.
SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, MVT RetVT,
const SDValue *Ops, unsigned NumOps,
bool isSigned) {
TargetLowering::ArgListTy Args;
Args.reserve(NumOps);
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0; i != NumOps; ++i) {
Entry.Node = Ops[i];
Entry.Ty = Entry.Node.getValueType().getTypeForMVT();
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
Args.push_back(Entry);
}
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
TLI.getPointerTy());
const Type *RetTy = RetVT.getTypeForMVT();
std::pair<SDValue,SDValue> CallInfo =
TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
false, CallingConv::C, false, Callee, Args, DAG);
return CallInfo.first;
}
SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, MVT EltVT,
SDValue Index) {
// Make sure the index type is big enough to compute in.
if (Index.getValueType().bitsGT(TLI.getPointerTy()))
Index = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Index);
else
Index = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Index);
// Calculate the element offset and add it to the pointer.
unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
Index = DAG.getNode(ISD::MUL, Index.getValueType(), Index,
DAG.getConstant(EltSize, Index.getValueType()));
return DAG.getNode(ISD::ADD, Index.getValueType(), Index, VecPtr);
}
/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
/// which is split into two not necessarily identical pieces.
void DAGTypeLegalizer::GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT) {
if (!InVT.isVector()) {
LoVT = HiVT = TLI.getTypeToTransformTo(InVT);
} else {
MVT NewEltVT = InVT.getVectorElementType();
unsigned NumElements = InVT.getVectorNumElements();
if ((NumElements & (NumElements-1)) == 0) { // Simple power of two vector.
NumElements >>= 1;
LoVT = HiVT = MVT::getVectorVT(NewEltVT, NumElements);
} else { // Non-power-of-two vectors.
unsigned NewNumElts_Lo = 1 << Log2_32(NumElements);
unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo;
LoVT = MVT::getVectorVT(NewEltVT, NewNumElts_Lo);
HiVT = MVT::getVectorVT(NewEltVT, NewNumElts_Hi);
}
}
}
//===----------------------------------------------------------------------===//
// Entry Point
//===----------------------------------------------------------------------===//
/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
/// only uses types natively supported by the target.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void SelectionDAG::LegalizeTypes() {
DAGTypeLegalizer(*this).run();
}