blob: 38fce9b435c550b6bafab20d695b1cfb8803c1cd [file] [log] [blame]
//===-- IfConversion.cpp - Machine code if conversion pass. ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level if-conversion pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ifcvt"
#include "llvm/Function.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
// Hidden options for help debugging.
static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
cl::init(false), cl::Hidden);
static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
cl::init(false), cl::Hidden);
STATISTIC(NumSimple, "Number of simple if-conversions performed");
STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
STATISTIC(NumDupBBs, "Number of duplicated blocks");
namespace {
class VISIBILITY_HIDDEN IfConverter : public MachineFunctionPass {
enum IfcvtKind {
ICNotClassfied, // BB data valid, but not classified.
ICSimpleFalse, // Same as ICSimple, but on the false path.
ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
ICTriangleRev, // Same as ICTriangle, but true path rev condition.
ICTriangleFalse, // Same as ICTriangle, but on the false path.
ICTriangle, // BB is entry of a triangle sub-CFG.
ICDiamond // BB is entry of a diamond sub-CFG.
};
/// BBInfo - One per MachineBasicBlock, this is used to cache the result
/// if-conversion feasibility analysis. This includes results from
/// TargetInstrInfo::AnalyzeBranch() (i.e. TBB, FBB, and Cond), and its
/// classification, and common tail block of its successors (if it's a
/// diamond shape), its size, whether it's predicable, and whether any
/// instruction can clobber the 'would-be' predicate.
///
/// IsDone - True if BB is not to be considered for ifcvt.
/// IsBeingAnalyzed - True if BB is currently being analyzed.
/// IsAnalyzed - True if BB has been analyzed (info is still valid).
/// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
/// IsBrAnalyzable - True if AnalyzeBranch() returns false.
/// HasFallThrough - True if BB may fallthrough to the following BB.
/// IsUnpredicable - True if BB is known to be unpredicable.
/// ClobbersPred - True if BB could modify predicates (e.g. has
/// cmp, call, etc.)
/// NonPredSize - Number of non-predicated instructions.
/// BB - Corresponding MachineBasicBlock.
/// TrueBB / FalseBB- See AnalyzeBranch().
/// BrCond - Conditions for end of block conditional branches.
/// Predicate - Predicate used in the BB.
struct BBInfo {
bool IsDone : 1;
bool IsBeingAnalyzed : 1;
bool IsAnalyzed : 1;
bool IsEnqueued : 1;
bool IsBrAnalyzable : 1;
bool HasFallThrough : 1;
bool IsUnpredicable : 1;
bool CannotBeCopied : 1;
bool ClobbersPred : 1;
unsigned NonPredSize;
MachineBasicBlock *BB;
MachineBasicBlock *TrueBB;
MachineBasicBlock *FalseBB;
SmallVector<MachineOperand, 4> BrCond;
SmallVector<MachineOperand, 4> Predicate;
BBInfo() : IsDone(false), IsBeingAnalyzed(false),
IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
HasFallThrough(false), IsUnpredicable(false),
CannotBeCopied(false), ClobbersPred(false), NonPredSize(0),
BB(0), TrueBB(0), FalseBB(0) {}
};
/// IfcvtToken - Record information about pending if-conversions to attemp:
/// BBI - Corresponding BBInfo.
/// Kind - Type of block. See IfcvtKind.
/// NeedSubsumsion - True if the to be predicated BB has already been
/// predicated.
/// NumDups - Number of instructions that would be duplicated due
/// to this if-conversion. (For diamonds, the number of
/// identical instructions at the beginnings of both
/// paths).
/// NumDups2 - For diamonds, the number of identical instructions
/// at the ends of both paths.
struct IfcvtToken {
BBInfo &BBI;
IfcvtKind Kind;
bool NeedSubsumsion;
unsigned NumDups;
unsigned NumDups2;
IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0)
: BBI(b), Kind(k), NeedSubsumsion(s), NumDups(d), NumDups2(d2) {}
};
/// Roots - Basic blocks that do not have successors. These are the starting
/// points of Graph traversal.
std::vector<MachineBasicBlock*> Roots;
/// BBAnalysis - Results of if-conversion feasibility analysis indexed by
/// basic block number.
std::vector<BBInfo> BBAnalysis;
const TargetLowering *TLI;
const TargetInstrInfo *TII;
bool MadeChange;
public:
static char ID;
IfConverter() : MachineFunctionPass(&ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const { return "If Converter"; }
private:
bool ReverseBranchCondition(BBInfo &BBI);
bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups) const;
bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
bool FalseBranch, unsigned &Dups) const;
bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
unsigned &Dups1, unsigned &Dups2) const;
void ScanInstructions(BBInfo &BBI);
BBInfo &AnalyzeBlock(MachineBasicBlock *BB,
std::vector<IfcvtToken*> &Tokens);
bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond,
bool isTriangle = false, bool RevBranch = false);
bool AnalyzeBlocks(MachineFunction &MF,
std::vector<IfcvtToken*> &Tokens);
void InvalidatePreds(MachineBasicBlock *BB);
void RemoveExtraEdges(BBInfo &BBI);
bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
unsigned NumDups1, unsigned NumDups2);
void PredicateBlock(BBInfo &BBI,
MachineBasicBlock::iterator E,
SmallVectorImpl<MachineOperand> &Cond);
void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
SmallVectorImpl<MachineOperand> &Cond,
bool IgnoreBr = false);
void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI);
bool MeetIfcvtSizeLimit(unsigned Size) const {
return Size > 0 && Size <= TLI->getIfCvtBlockSizeLimit();
}
// blockAlwaysFallThrough - Block ends without a terminator.
bool blockAlwaysFallThrough(BBInfo &BBI) const {
return BBI.IsBrAnalyzable && BBI.TrueBB == NULL;
}
// IfcvtTokenCmp - Used to sort if-conversion candidates.
static bool IfcvtTokenCmp(IfcvtToken *C1, IfcvtToken *C2) {
int Incr1 = (C1->Kind == ICDiamond)
? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
int Incr2 = (C2->Kind == ICDiamond)
? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
if (Incr1 > Incr2)
return true;
else if (Incr1 == Incr2) {
// Favors subsumsion.
if (C1->NeedSubsumsion == false && C2->NeedSubsumsion == true)
return true;
else if (C1->NeedSubsumsion == C2->NeedSubsumsion) {
// Favors diamond over triangle, etc.
if ((unsigned)C1->Kind < (unsigned)C2->Kind)
return true;
else if (C1->Kind == C2->Kind)
return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
}
}
return false;
}
};
char IfConverter::ID = 0;
}
static RegisterPass<IfConverter>
X("if-converter", "If Converter");
FunctionPass *llvm::createIfConverterPass() { return new IfConverter(); }
bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
TLI = MF.getTarget().getTargetLowering();
TII = MF.getTarget().getInstrInfo();
if (!TII) return false;
static int FnNum = -1;
DOUT << "\nIfcvt: function (" << ++FnNum << ") \'"
<< MF.getFunction()->getName() << "\'";
if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
DOUT << " skipped\n";
return false;
}
DOUT << "\n";
MF.RenumberBlocks();
BBAnalysis.resize(MF.getNumBlockIDs());
// Look for root nodes, i.e. blocks without successors.
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
if (I->succ_empty())
Roots.push_back(I);
std::vector<IfcvtToken*> Tokens;
MadeChange = false;
unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
// Do an intial analysis for each basic block and finding all the potential
// candidates to perform if-convesion.
bool Change = AnalyzeBlocks(MF, Tokens);
while (!Tokens.empty()) {
IfcvtToken *Token = Tokens.back();
Tokens.pop_back();
BBInfo &BBI = Token->BBI;
IfcvtKind Kind = Token->Kind;
// If the block has been evicted out of the queue or it has already been
// marked dead (due to it being predicated), then skip it.
if (BBI.IsDone)
BBI.IsEnqueued = false;
if (!BBI.IsEnqueued)
continue;
BBI.IsEnqueued = false;
bool RetVal = false;
switch (Kind) {
default: assert(false && "Unexpected!");
break;
case ICSimple:
case ICSimpleFalse: {
bool isFalse = Kind == ICSimpleFalse;
if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
DOUT << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? " false" :"")
<< "): BB#" << BBI.BB->getNumber() << " ("
<< ((Kind == ICSimpleFalse)
? BBI.FalseBB->getNumber()
: BBI.TrueBB->getNumber()) << ") ";
RetVal = IfConvertSimple(BBI, Kind);
DOUT << (RetVal ? "succeeded!" : "failed!") << "\n";
if (RetVal) {
if (isFalse) NumSimpleFalse++;
else NumSimple++;
}
break;
}
case ICTriangle:
case ICTriangleRev:
case ICTriangleFalse:
case ICTriangleFRev: {
bool isFalse = Kind == ICTriangleFalse;
bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
if (DisableTriangle && !isFalse && !isRev) break;
if (DisableTriangleR && !isFalse && isRev) break;
if (DisableTriangleF && isFalse && !isRev) break;
if (DisableTriangleFR && isFalse && isRev) break;
DOUT << "Ifcvt (Triangle";
if (isFalse)
DOUT << " false";
if (isRev)
DOUT << " rev";
DOUT << "): BB#" << BBI.BB->getNumber() << " (T:"
<< BBI.TrueBB->getNumber() << ",F:"
<< BBI.FalseBB->getNumber() << ") ";
RetVal = IfConvertTriangle(BBI, Kind);
DOUT << (RetVal ? "succeeded!" : "failed!") << "\n";
if (RetVal) {
if (isFalse) {
if (isRev) NumTriangleFRev++;
else NumTriangleFalse++;
} else {
if (isRev) NumTriangleRev++;
else NumTriangle++;
}
}
break;
}
case ICDiamond: {
if (DisableDiamond) break;
DOUT << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:"
<< BBI.TrueBB->getNumber() << ",F:"
<< BBI.FalseBB->getNumber() << ") ";
RetVal = IfConvertDiamond(BBI, Kind, Token->NumDups, Token->NumDups2);
DOUT << (RetVal ? "succeeded!" : "failed!") << "\n";
if (RetVal) NumDiamonds++;
break;
}
}
Change |= RetVal;
NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
NumTriangleFalse + NumTriangleFRev + NumDiamonds;
if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
break;
}
if (!Change)
break;
MadeChange |= Change;
}
// Delete tokens in case of early exit.
while (!Tokens.empty()) {
IfcvtToken *Token = Tokens.back();
Tokens.pop_back();
delete Token;
}
Tokens.clear();
Roots.clear();
BBAnalysis.clear();
return MadeChange;
}
/// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
/// its 'true' successor.
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
MachineBasicBlock *TrueBB) {
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
E = BB->succ_end(); SI != E; ++SI) {
MachineBasicBlock *SuccBB = *SI;
if (SuccBB != TrueBB)
return SuccBB;
}
return NULL;
}
/// ReverseBranchCondition - Reverse the condition of the end of the block
/// branchs. Swap block's 'true' and 'false' successors.
bool IfConverter::ReverseBranchCondition(BBInfo &BBI) {
if (!TII->ReverseBranchCondition(BBI.BrCond)) {
TII->RemoveBranch(*BBI.BB);
TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond);
std::swap(BBI.TrueBB, BBI.FalseBB);
return true;
}
return false;
}
/// getNextBlock - Returns the next block in the function blocks ordering. If
/// it is the end, returns NULL.
static inline MachineBasicBlock *getNextBlock(MachineBasicBlock *BB) {
MachineFunction::iterator I = BB;
MachineFunction::iterator E = BB->getParent()->end();
if (++I == E)
return NULL;
return I;
}
/// ValidSimple - Returns true if the 'true' block (along with its
/// predecessor) forms a valid simple shape for ifcvt. It also returns the
/// number of instructions that the ifcvt would need to duplicate if performed
/// in Dups.
bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups) const {
Dups = 0;
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
return false;
if (TrueBBI.IsBrAnalyzable)
return false;
if (TrueBBI.BB->pred_size() > 1) {
if (TrueBBI.CannotBeCopied ||
TrueBBI.NonPredSize > TLI->getIfCvtDupBlockSizeLimit())
return false;
Dups = TrueBBI.NonPredSize;
}
return true;
}
/// ValidTriangle - Returns true if the 'true' and 'false' blocks (along
/// with their common predecessor) forms a valid triangle shape for ifcvt.
/// If 'FalseBranch' is true, it checks if 'true' block's false branch
/// branches to the false branch rather than the other way around. It also
/// returns the number of instructions that the ifcvt would need to duplicate
/// if performed in 'Dups'.
bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
bool FalseBranch, unsigned &Dups) const {
Dups = 0;
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
return false;
if (TrueBBI.BB->pred_size() > 1) {
if (TrueBBI.CannotBeCopied)
return false;
unsigned Size = TrueBBI.NonPredSize;
if (TrueBBI.IsBrAnalyzable) {
if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
// End with an unconditional branch. It will be removed.
--Size;
else {
MachineBasicBlock *FExit = FalseBranch
? TrueBBI.TrueBB : TrueBBI.FalseBB;
if (FExit)
// Require a conditional branch
++Size;
}
}
if (Size > TLI->getIfCvtDupBlockSizeLimit())
return false;
Dups = Size;
}
MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
MachineFunction::iterator I = TrueBBI.BB;
if (++I == TrueBBI.BB->getParent()->end())
return false;
TExit = I;
}
return TExit && TExit == FalseBBI.BB;
}
static
MachineBasicBlock::iterator firstNonBranchInst(MachineBasicBlock *BB,
const TargetInstrInfo *TII) {
MachineBasicBlock::iterator I = BB->end();
while (I != BB->begin()) {
--I;
if (!I->getDesc().isBranch())
break;
}
return I;
}
/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
/// with their common predecessor) forms a valid diamond shape for ifcvt.
bool IfConverter::ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
unsigned &Dups1, unsigned &Dups2) const {
Dups1 = Dups2 = 0;
if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
return false;
MachineBasicBlock *TT = TrueBBI.TrueBB;
MachineBasicBlock *FT = FalseBBI.TrueBB;
if (!TT && blockAlwaysFallThrough(TrueBBI))
TT = getNextBlock(TrueBBI.BB);
if (!FT && blockAlwaysFallThrough(FalseBBI))
FT = getNextBlock(FalseBBI.BB);
if (TT != FT)
return false;
if (TT == NULL && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
return false;
if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
return false;
// FIXME: Allow true block to have an early exit?
if (TrueBBI.FalseBB || FalseBBI.FalseBB ||
(TrueBBI.ClobbersPred && FalseBBI.ClobbersPred))
return false;
MachineBasicBlock::iterator TI = TrueBBI.BB->begin();
MachineBasicBlock::iterator FI = FalseBBI.BB->begin();
while (TI != TrueBBI.BB->end() && FI != FalseBBI.BB->end()) {
if (!TI->isIdenticalTo(FI))
break;
++Dups1;
++TI;
++FI;
}
TI = firstNonBranchInst(TrueBBI.BB, TII);
FI = firstNonBranchInst(FalseBBI.BB, TII);
while (TI != TrueBBI.BB->begin() && FI != FalseBBI.BB->begin()) {
if (!TI->isIdenticalTo(FI))
break;
++Dups2;
--TI;
--FI;
}
return true;
}
/// ScanInstructions - Scan all the instructions in the block to determine if
/// the block is predicable. In most cases, that means all the instructions
/// in the block are isPredicable(). Also checks if the block contains any
/// instruction which can clobber a predicate (e.g. condition code register).
/// If so, the block is not predicable unless it's the last instruction.
void IfConverter::ScanInstructions(BBInfo &BBI) {
if (BBI.IsDone)
return;
bool AlreadyPredicated = BBI.Predicate.size() > 0;
// First analyze the end of BB branches.
BBI.TrueBB = BBI.FalseBB = NULL;
BBI.BrCond.clear();
BBI.IsBrAnalyzable =
!TII->AnalyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == NULL;
if (BBI.BrCond.size()) {
// No false branch. This BB must end with a conditional branch and a
// fallthrough.
if (!BBI.FalseBB)
BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
assert(BBI.FalseBB && "Expected to find the fallthrough block!");
}
// Then scan all the instructions.
BBI.NonPredSize = 0;
BBI.ClobbersPred = false;
bool SeenCondBr = false;
for (MachineBasicBlock::iterator I = BBI.BB->begin(), E = BBI.BB->end();
I != E; ++I) {
const TargetInstrDesc &TID = I->getDesc();
if (TID.isNotDuplicable())
BBI.CannotBeCopied = true;
bool isPredicated = TII->isPredicated(I);
bool isCondBr = BBI.IsBrAnalyzable && TID.isConditionalBranch();
if (!isCondBr) {
if (!isPredicated)
BBI.NonPredSize++;
else if (!AlreadyPredicated) {
// FIXME: This instruction is already predicated before the
// if-conversion pass. It's probably something like a conditional move.
// Mark this block unpredicable for now.
BBI.IsUnpredicable = true;
return;
}
}
if (BBI.ClobbersPred && !isPredicated) {
// Predicate modification instruction should end the block (except for
// already predicated instructions and end of block branches).
if (isCondBr) {
SeenCondBr = true;
// Conditional branches is not predicable. But it may be eliminated.
continue;
}
// Predicate may have been modified, the subsequent (currently)
// unpredicated instructions cannot be correctly predicated.
BBI.IsUnpredicable = true;
return;
}
// FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
// still potentially predicable.
std::vector<MachineOperand> PredDefs;
if (TII->DefinesPredicate(I, PredDefs))
BBI.ClobbersPred = true;
if (!TID.isPredicable()) {
BBI.IsUnpredicable = true;
return;
}
}
}
/// FeasibilityAnalysis - Determine if the block is a suitable candidate to be
/// predicated by the specified predicate.
bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
SmallVectorImpl<MachineOperand> &Pred,
bool isTriangle, bool RevBranch) {
// If the block is dead or unpredicable, then it cannot be predicated.
if (BBI.IsDone || BBI.IsUnpredicable)
return false;
// If it is already predicated, check if its predicate subsumes the new
// predicate.
if (BBI.Predicate.size() && !TII->SubsumesPredicate(BBI.Predicate, Pred))
return false;
if (BBI.BrCond.size()) {
if (!isTriangle)
return false;
// Test predicate subsumsion.
SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
if (RevBranch) {
if (TII->ReverseBranchCondition(Cond))
return false;
}
if (TII->ReverseBranchCondition(RevPred) ||
!TII->SubsumesPredicate(Cond, RevPred))
return false;
}
return true;
}
/// AnalyzeBlock - Analyze the structure of the sub-CFG starting from
/// the specified block. Record its successors and whether it looks like an
/// if-conversion candidate.
IfConverter::BBInfo &IfConverter::AnalyzeBlock(MachineBasicBlock *BB,
std::vector<IfcvtToken*> &Tokens) {
BBInfo &BBI = BBAnalysis[BB->getNumber()];
if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed)
return BBI;
BBI.BB = BB;
BBI.IsBeingAnalyzed = true;
ScanInstructions(BBI);
// Unanalyable or ends with fallthrough or unconditional branch.
if (!BBI.IsBrAnalyzable || BBI.BrCond.empty()) {
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
return BBI;
}
// Do not ifcvt if either path is a back edge to the entry block.
if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
return BBI;
}
BBInfo &TrueBBI = AnalyzeBlock(BBI.TrueBB, Tokens);
BBInfo &FalseBBI = AnalyzeBlock(BBI.FalseBB, Tokens);
if (TrueBBI.IsDone && FalseBBI.IsDone) {
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
return BBI;
}
SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
bool CanRevCond = !TII->ReverseBranchCondition(RevCond);
unsigned Dups = 0;
unsigned Dups2 = 0;
bool TNeedSub = TrueBBI.Predicate.size() > 0;
bool FNeedSub = FalseBBI.Predicate.size() > 0;
bool Enqueued = false;
if (CanRevCond && ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2) &&
MeetIfcvtSizeLimit(TrueBBI.NonPredSize - (Dups + Dups2)) &&
MeetIfcvtSizeLimit(FalseBBI.NonPredSize - (Dups + Dups2)) &&
FeasibilityAnalysis(TrueBBI, BBI.BrCond) &&
FeasibilityAnalysis(FalseBBI, RevCond)) {
// Diamond:
// EBB
// / \_
// | |
// TBB FBB
// \ /
// TailBB
// Note TailBB can be empty.
Tokens.push_back(new IfcvtToken(BBI, ICDiamond, TNeedSub|FNeedSub, Dups,
Dups2));
Enqueued = true;
}
if (ValidTriangle(TrueBBI, FalseBBI, false, Dups) &&
MeetIfcvtSizeLimit(TrueBBI.NonPredSize) &&
FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
// Triangle:
// EBB
// | \_
// | |
// | TBB
// | /
// FBB
Tokens.push_back(new IfcvtToken(BBI, ICTriangle, TNeedSub, Dups));
Enqueued = true;
}
if (ValidTriangle(TrueBBI, FalseBBI, true, Dups) &&
MeetIfcvtSizeLimit(TrueBBI.NonPredSize) &&
FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
Tokens.push_back(new IfcvtToken(BBI, ICTriangleRev, TNeedSub, Dups));
Enqueued = true;
}
if (ValidSimple(TrueBBI, Dups) &&
MeetIfcvtSizeLimit(TrueBBI.NonPredSize) &&
FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
// Simple (split, no rejoin):
// EBB
// | \_
// | |
// | TBB---> exit
// |
// FBB
Tokens.push_back(new IfcvtToken(BBI, ICSimple, TNeedSub, Dups));
Enqueued = true;
}
if (CanRevCond) {
// Try the other path...
if (ValidTriangle(FalseBBI, TrueBBI, false, Dups) &&
MeetIfcvtSizeLimit(FalseBBI.NonPredSize) &&
FeasibilityAnalysis(FalseBBI, RevCond, true)) {
Tokens.push_back(new IfcvtToken(BBI, ICTriangleFalse, FNeedSub, Dups));
Enqueued = true;
}
if (ValidTriangle(FalseBBI, TrueBBI, true, Dups) &&
MeetIfcvtSizeLimit(FalseBBI.NonPredSize) &&
FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
Tokens.push_back(new IfcvtToken(BBI, ICTriangleFRev, FNeedSub, Dups));
Enqueued = true;
}
if (ValidSimple(FalseBBI, Dups) &&
MeetIfcvtSizeLimit(FalseBBI.NonPredSize) &&
FeasibilityAnalysis(FalseBBI, RevCond)) {
Tokens.push_back(new IfcvtToken(BBI, ICSimpleFalse, FNeedSub, Dups));
Enqueued = true;
}
}
BBI.IsEnqueued = Enqueued;
BBI.IsBeingAnalyzed = false;
BBI.IsAnalyzed = true;
return BBI;
}
/// AnalyzeBlocks - Analyze all blocks and find entries for all if-conversion
/// candidates. It returns true if any CFG restructuring is done to expose more
/// if-conversion opportunities.
bool IfConverter::AnalyzeBlocks(MachineFunction &MF,
std::vector<IfcvtToken*> &Tokens) {
bool Change = false;
std::set<MachineBasicBlock*> Visited;
for (unsigned i = 0, e = Roots.size(); i != e; ++i) {
for (idf_ext_iterator<MachineBasicBlock*> I=idf_ext_begin(Roots[i],Visited),
E = idf_ext_end(Roots[i], Visited); I != E; ++I) {
MachineBasicBlock *BB = *I;
AnalyzeBlock(BB, Tokens);
}
}
// Sort to favor more complex ifcvt scheme.
std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
return Change;
}
/// canFallThroughTo - Returns true either if ToBB is the next block after BB or
/// that all the intervening blocks are empty (given BB can fall through to its
/// next block).
static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) {
MachineFunction::iterator I = BB;
MachineFunction::iterator TI = ToBB;
MachineFunction::iterator E = BB->getParent()->end();
while (++I != TI)
if (I == E || !I->empty())
return false;
return true;
}
/// InvalidatePreds - Invalidate predecessor BB info so it would be re-analyzed
/// to determine if it can be if-converted. If predecessor is already enqueued,
/// dequeue it!
void IfConverter::InvalidatePreds(MachineBasicBlock *BB) {
for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
E = BB->pred_end(); PI != E; ++PI) {
BBInfo &PBBI = BBAnalysis[(*PI)->getNumber()];
if (PBBI.IsDone || PBBI.BB == BB)
continue;
PBBI.IsAnalyzed = false;
PBBI.IsEnqueued = false;
}
}
/// InsertUncondBranch - Inserts an unconditional branch from BB to ToBB.
///
static void InsertUncondBranch(MachineBasicBlock *BB, MachineBasicBlock *ToBB,
const TargetInstrInfo *TII) {
SmallVector<MachineOperand, 0> NoCond;
TII->InsertBranch(*BB, ToBB, NULL, NoCond);
}
/// RemoveExtraEdges - Remove true / false edges if either / both are no longer
/// successors.
void IfConverter::RemoveExtraEdges(BBInfo &BBI) {
MachineBasicBlock *TBB = NULL, *FBB = NULL;
SmallVector<MachineOperand, 4> Cond;
if (!TII->AnalyzeBranch(*BBI.BB, TBB, FBB, Cond))
BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
}
/// IfConvertSimple - If convert a simple (split, no rejoin) sub-CFG.
///
bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
BBInfo *CvtBBI = &TrueBBI;
BBInfo *NextBBI = &FalseBBI;
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
if (Kind == ICSimpleFalse)
std::swap(CvtBBI, NextBBI);
if (CvtBBI->IsDone ||
(CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) {
// Something has changed. It's no longer safe to predicate this block.
BBI.IsAnalyzed = false;
CvtBBI->IsAnalyzed = false;
return false;
}
if (Kind == ICSimpleFalse)
TII->ReverseBranchCondition(Cond);
if (CvtBBI->BB->pred_size() > 1) {
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
// Copy instructions in the true block, predicate them add them to
// the entry block.
CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
} else {
PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
// Merge converted block into entry block.
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
MergeBlocks(BBI, *CvtBBI);
}
bool IterIfcvt = true;
if (!canFallThroughTo(BBI.BB, NextBBI->BB)) {
InsertUncondBranch(BBI.BB, NextBBI->BB, TII);
BBI.HasFallThrough = false;
// Now ifcvt'd block will look like this:
// BB:
// ...
// t, f = cmp
// if t op
// b BBf
//
// We cannot further ifcvt this block because the unconditional branch
// will have to be predicated on the new condition, that will not be
// available if cmp executes.
IterIfcvt = false;
}
RemoveExtraEdges(BBI);
// Update block info. BB can be iteratively if-converted.
if (!IterIfcvt)
BBI.IsDone = true;
InvalidatePreds(BBI.BB);
CvtBBI->IsDone = true;
// FIXME: Must maintain LiveIns.
return true;
}
/// IfConvertTriangle - If convert a triangle sub-CFG.
///
bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
BBInfo *CvtBBI = &TrueBBI;
BBInfo *NextBBI = &FalseBBI;
SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
std::swap(CvtBBI, NextBBI);
if (CvtBBI->IsDone ||
(CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) {
// Something has changed. It's no longer safe to predicate this block.
BBI.IsAnalyzed = false;
CvtBBI->IsAnalyzed = false;
return false;
}
if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
TII->ReverseBranchCondition(Cond);
if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
ReverseBranchCondition(*CvtBBI);
// BB has been changed, modify its predecessors (except for this
// one) so they don't get ifcvt'ed based on bad intel.
for (MachineBasicBlock::pred_iterator PI = CvtBBI->BB->pred_begin(),
E = CvtBBI->BB->pred_end(); PI != E; ++PI) {
MachineBasicBlock *PBB = *PI;
if (PBB == BBI.BB)
continue;
BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
if (PBBI.IsEnqueued) {
PBBI.IsAnalyzed = false;
PBBI.IsEnqueued = false;
}
}
}
bool HasEarlyExit = CvtBBI->FalseBB != NULL;
bool DupBB = CvtBBI->BB->pred_size() > 1;
if (DupBB) {
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
// Copy instructions in the true block, predicate them add them to
// the entry block.
CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
} else {
// Predicate the 'true' block after removing its branch.
CvtBBI->NonPredSize -= TII->RemoveBranch(*CvtBBI->BB);
PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
}
if (!DupBB) {
// Now merge the entry of the triangle with the true block.
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
MergeBlocks(BBI, *CvtBBI);
}
// If 'true' block has a 'false' successor, add an exit branch to it.
if (HasEarlyExit) {
SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
CvtBBI->BrCond.end());
if (TII->ReverseBranchCondition(RevCond))
assert(false && "Unable to reverse branch condition!");
TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, NULL, RevCond);
BBI.BB->addSuccessor(CvtBBI->FalseBB);
}
// Merge in the 'false' block if the 'false' block has no other
// predecessors. Otherwise, add a unconditional branch from to 'false'.
bool FalseBBDead = false;
bool IterIfcvt = true;
bool isFallThrough = canFallThroughTo(BBI.BB, NextBBI->BB);
if (!isFallThrough) {
// Only merge them if the true block does not fallthrough to the false
// block. By not merging them, we make it possible to iteratively
// ifcvt the blocks.
if (!HasEarlyExit &&
NextBBI->BB->pred_size() == 1 && !NextBBI->HasFallThrough) {
MergeBlocks(BBI, *NextBBI);
FalseBBDead = true;
} else {
InsertUncondBranch(BBI.BB, NextBBI->BB, TII);
BBI.HasFallThrough = false;
}
// Mixed predicated and unpredicated code. This cannot be iteratively
// predicated.
IterIfcvt = false;
}
RemoveExtraEdges(BBI);
// Update block info. BB can be iteratively if-converted.
if (!IterIfcvt)
BBI.IsDone = true;
InvalidatePreds(BBI.BB);
CvtBBI->IsDone = true;
if (FalseBBDead)
NextBBI->IsDone = true;
// FIXME: Must maintain LiveIns.
return true;
}
/// IfConvertDiamond - If convert a diamond sub-CFG.
///
bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
unsigned NumDups1, unsigned NumDups2) {
BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
MachineBasicBlock *TailBB = TrueBBI.TrueBB;
// True block must fall through or ended with unanalyzable terminator.
if (!TailBB) {
if (blockAlwaysFallThrough(TrueBBI))
TailBB = FalseBBI.TrueBB;
assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
}
if (TrueBBI.IsDone || FalseBBI.IsDone ||
TrueBBI.BB->pred_size() > 1 ||
FalseBBI.BB->pred_size() > 1) {
// Something has changed. It's no longer safe to predicate these blocks.
BBI.IsAnalyzed = false;
TrueBBI.IsAnalyzed = false;
FalseBBI.IsAnalyzed = false;
return false;
}
// Merge the 'true' and 'false' blocks by copying the instructions
// from the 'false' block to the 'true' block. That is, unless the true
// block would clobber the predicate, in that case, do the opposite.
BBInfo *BBI1 = &TrueBBI;
BBInfo *BBI2 = &FalseBBI;
SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
TII->ReverseBranchCondition(RevCond);
SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
// Figure out the more profitable ordering.
bool DoSwap = false;
if (TrueBBI.ClobbersPred && !FalseBBI.ClobbersPred)
DoSwap = true;
else if (TrueBBI.ClobbersPred == FalseBBI.ClobbersPred) {
if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
DoSwap = true;
}
if (DoSwap) {
std::swap(BBI1, BBI2);
std::swap(Cond1, Cond2);
}
// Remove the conditional branch from entry to the blocks.
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
// Remove the duplicated instructions at the beginnings of both paths.
MachineBasicBlock::iterator DI1 = BBI1->BB->begin();
MachineBasicBlock::iterator DI2 = BBI2->BB->begin();
BBI1->NonPredSize -= NumDups1;
BBI2->NonPredSize -= NumDups1;
while (NumDups1 != 0) {
++DI1;
++DI2;
--NumDups1;
}
BBI.BB->splice(BBI.BB->end(), BBI1->BB, BBI1->BB->begin(), DI1);
BBI2->BB->erase(BBI2->BB->begin(), DI2);
// Predicate the 'true' block after removing its branch.
BBI1->NonPredSize -= TII->RemoveBranch(*BBI1->BB);
DI1 = BBI1->BB->end();
for (unsigned i = 0; i != NumDups2; ++i)
--DI1;
BBI1->BB->erase(DI1, BBI1->BB->end());
PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1);
// Predicate the 'false' block.
BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB);
DI2 = BBI2->BB->end();
while (NumDups2 != 0) {
--DI2;
--NumDups2;
}
PredicateBlock(*BBI2, DI2, *Cond2);
// Merge the true block into the entry of the diamond.
MergeBlocks(BBI, *BBI1);
MergeBlocks(BBI, *BBI2);
// If the if-converted block fallthrough or unconditionally branch into the
// tail block, and the tail block does not have other predecessors, then
// fold the tail block in as well. Otherwise, unless it falls through to the
// tail, add a unconditional branch to it.
if (TailBB) {
BBInfo TailBBI = BBAnalysis[TailBB->getNumber()];
if (TailBB->pred_size() == 1 && !TailBBI.HasFallThrough) {
BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
MergeBlocks(BBI, TailBBI);
TailBBI.IsDone = true;
} else {
InsertUncondBranch(BBI.BB, TailBB, TII);
BBI.HasFallThrough = false;
}
}
RemoveExtraEdges(BBI);
// Update block info.
BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
InvalidatePreds(BBI.BB);
// FIXME: Must maintain LiveIns.
return true;
}
/// PredicateBlock - Predicate instructions from the start of the block to the
/// specified end with the specified condition.
void IfConverter::PredicateBlock(BBInfo &BBI,
MachineBasicBlock::iterator E,
SmallVectorImpl<MachineOperand> &Cond) {
for (MachineBasicBlock::iterator I = BBI.BB->begin(); I != E; ++I) {
if (TII->isPredicated(I))
continue;
if (!TII->PredicateInstruction(I, Cond)) {
cerr << "Unable to predicate " << *I << "!\n";
abort();
}
}
std::copy(Cond.begin(), Cond.end(), std::back_inserter(BBI.Predicate));
BBI.IsAnalyzed = false;
BBI.NonPredSize = 0;
NumIfConvBBs++;
}
/// CopyAndPredicateBlock - Copy and predicate instructions from source BB to
/// the destination block. Skip end of block branches if IgnoreBr is true.
void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
SmallVectorImpl<MachineOperand> &Cond,
bool IgnoreBr) {
MachineFunction &MF = *ToBBI.BB->getParent();
for (MachineBasicBlock::iterator I = FromBBI.BB->begin(),
E = FromBBI.BB->end(); I != E; ++I) {
const TargetInstrDesc &TID = I->getDesc();
bool isPredicated = TII->isPredicated(I);
// Do not copy the end of the block branches.
if (IgnoreBr && !isPredicated && TID.isBranch())
break;
MachineInstr *MI = MF.CloneMachineInstr(I);
ToBBI.BB->insert(ToBBI.BB->end(), MI);
ToBBI.NonPredSize++;
if (!isPredicated)
if (!TII->PredicateInstruction(MI, Cond)) {
cerr << "Unable to predicate " << *MI << "!\n";
abort();
}
}
std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(),
FromBBI.BB->succ_end());
MachineBasicBlock *NBB = getNextBlock(FromBBI.BB);
MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : NULL;
for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
MachineBasicBlock *Succ = Succs[i];
// Fallthrough edge can't be transferred.
if (Succ == FallThrough)
continue;
if (!ToBBI.BB->isSuccessor(Succ))
ToBBI.BB->addSuccessor(Succ);
}
std::copy(FromBBI.Predicate.begin(), FromBBI.Predicate.end(),
std::back_inserter(ToBBI.Predicate));
std::copy(Cond.begin(), Cond.end(), std::back_inserter(ToBBI.Predicate));
ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
ToBBI.IsAnalyzed = false;
NumDupBBs++;
}
/// MergeBlocks - Move all instructions from FromBB to the end of ToBB.
///
void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI) {
ToBBI.BB->splice(ToBBI.BB->end(),
FromBBI.BB, FromBBI.BB->begin(), FromBBI.BB->end());
// Redirect all branches to FromBB to ToBB.
std::vector<MachineBasicBlock *> Preds(FromBBI.BB->pred_begin(),
FromBBI.BB->pred_end());
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
MachineBasicBlock *Pred = Preds[i];
if (Pred == ToBBI.BB)
continue;
Pred->ReplaceUsesOfBlockWith(FromBBI.BB, ToBBI.BB);
}
std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(),
FromBBI.BB->succ_end());
MachineBasicBlock *NBB = getNextBlock(FromBBI.BB);
MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : NULL;
for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
MachineBasicBlock *Succ = Succs[i];
// Fallthrough edge can't be transferred.
if (Succ == FallThrough)
continue;
FromBBI.BB->removeSuccessor(Succ);
if (!ToBBI.BB->isSuccessor(Succ))
ToBBI.BB->addSuccessor(Succ);
}
// Now FromBBI always fall through to the next block!
if (NBB && !FromBBI.BB->isSuccessor(NBB))
FromBBI.BB->addSuccessor(NBB);
std::copy(FromBBI.Predicate.begin(), FromBBI.Predicate.end(),
std::back_inserter(ToBBI.Predicate));
FromBBI.Predicate.clear();
ToBBI.NonPredSize += FromBBI.NonPredSize;
FromBBI.NonPredSize = 0;
ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
ToBBI.HasFallThrough = FromBBI.HasFallThrough;
ToBBI.IsAnalyzed = false;
FromBBI.IsAnalyzed = false;
}