blob: 4bb32bbae8921b24508c2853adbffc315dd8959a [file] [log] [blame]
//===-- Type.cpp - Implement the Type class -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Type class for the VMCore library.
//
//===----------------------------------------------------------------------===//
#include "llvm/DerivedTypes.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/Constants.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
using namespace llvm;
// DEBUG_MERGE_TYPES - Enable this #define to see how and when derived types are
// created and later destroyed, all in an effort to make sure that there is only
// a single canonical version of a type.
//
// #define DEBUG_MERGE_TYPES 1
AbstractTypeUser::~AbstractTypeUser() {}
//===----------------------------------------------------------------------===//
// Type PATypeHolder Implementation
//===----------------------------------------------------------------------===//
/// get - This implements the forwarding part of the union-find algorithm for
/// abstract types. Before every access to the Type*, we check to see if the
/// type we are pointing to is forwarding to a new type. If so, we drop our
/// reference to the type.
///
Type* PATypeHolder::get() const {
const Type *NewTy = Ty->getForwardedType();
if (!NewTy) return const_cast<Type*>(Ty);
return *const_cast<PATypeHolder*>(this) = NewTy;
}
//===----------------------------------------------------------------------===//
// Type Class Implementation
//===----------------------------------------------------------------------===//
// Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions
// for types as they are needed. Because resolution of types must invalidate
// all of the abstract type descriptions, we keep them in a seperate map to make
// this easy.
static ManagedStatic<std::map<const Type*,
std::string> > ConcreteTypeDescriptions;
static ManagedStatic<std::map<const Type*,
std::string> > AbstractTypeDescriptions;
/// Because of the way Type subclasses are allocated, this function is necessary
/// to use the correct kind of "delete" operator to deallocate the Type object.
/// Some type objects (FunctionTy, StructTy) allocate additional space after
/// the space for their derived type to hold the contained types array of
/// PATypeHandles. Using this allocation scheme means all the PATypeHandles are
/// allocated with the type object, decreasing allocations and eliminating the
/// need for a std::vector to be used in the Type class itself.
/// @brief Type destruction function
void Type::destroy() const {
// Structures and Functions allocate their contained types past the end of
// the type object itself. These need to be destroyed differently than the
// other types.
if (isa<FunctionType>(this) || isa<StructType>(this)) {
// First, make sure we destruct any PATypeHandles allocated by these
// subclasses. They must be manually destructed.
for (unsigned i = 0; i < NumContainedTys; ++i)
ContainedTys[i].PATypeHandle::~PATypeHandle();
// Now call the destructor for the subclass directly because we're going
// to delete this as an array of char.
if (isa<FunctionType>(this))
((FunctionType*)this)->FunctionType::~FunctionType();
else
((StructType*)this)->StructType::~StructType();
// Finally, remove the memory as an array deallocation of the chars it was
// constructed from.
delete [] reinterpret_cast<const char*>(this);
return;
}
// For all the other type subclasses, there is either no contained types or
// just one (all Sequentials). For Sequentials, the PATypeHandle is not
// allocated past the type object, its included directly in the SequentialType
// class. This means we can safely just do "normal" delete of this object and
// all the destructors that need to run will be run.
delete this;
}
const Type *Type::getPrimitiveType(TypeID IDNumber) {
switch (IDNumber) {
case VoidTyID : return VoidTy;
case FloatTyID : return FloatTy;
case DoubleTyID: return DoubleTy;
case LabelTyID : return LabelTy;
default:
return 0;
}
}
const Type *Type::getVAArgsPromotedType() const {
if (ID == IntegerTyID && getSubclassData() < 32)
return Type::Int32Ty;
else if (ID == FloatTyID)
return Type::DoubleTy;
else
return this;
}
/// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
///
bool Type::isFPOrFPVector() const {
if (ID == Type::FloatTyID || ID == Type::DoubleTyID) return true;
if (ID != Type::VectorTyID) return false;
return cast<VectorType>(this)->getElementType()->isFloatingPoint();
}
// canLosslesllyBitCastTo - Return true if this type can be converted to
// 'Ty' without any reinterpretation of bits. For example, uint to int.
//
bool Type::canLosslesslyBitCastTo(const Type *Ty) const {
// Identity cast means no change so return true
if (this == Ty)
return true;
// They are not convertible unless they are at least first class types
if (!this->isFirstClassType() || !Ty->isFirstClassType())
return false;
// Vector -> Vector conversions are always lossless if the two vector types
// have the same size, otherwise not.
if (const VectorType *thisPTy = dyn_cast<VectorType>(this))
if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
return thisPTy->getBitWidth() == thatPTy->getBitWidth();
// At this point we have only various mismatches of the first class types
// remaining and ptr->ptr. Just select the lossless conversions. Everything
// else is not lossless.
if (isa<PointerType>(this))
return isa<PointerType>(Ty);
return false; // Other types have no identity values
}
unsigned Type::getPrimitiveSizeInBits() const {
switch (getTypeID()) {
case Type::FloatTyID: return 32;
case Type::DoubleTyID: return 64;
case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
default: return 0;
}
}
/// isSizedDerivedType - Derived types like structures and arrays are sized
/// iff all of the members of the type are sized as well. Since asking for
/// their size is relatively uncommon, move this operation out of line.
bool Type::isSizedDerivedType() const {
if (isa<IntegerType>(this))
return true;
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType()->isSized();
if (const VectorType *PTy = dyn_cast<VectorType>(this))
return PTy->getElementType()->isSized();
if (!isa<StructType>(this))
return false;
// Okay, our struct is sized if all of the elements are...
for (subtype_iterator I = subtype_begin(), E = subtype_end(); I != E; ++I)
if (!(*I)->isSized())
return false;
return true;
}
/// getForwardedTypeInternal - This method is used to implement the union-find
/// algorithm for when a type is being forwarded to another type.
const Type *Type::getForwardedTypeInternal() const {
assert(ForwardType && "This type is not being forwarded to another type!");
// Check to see if the forwarded type has been forwarded on. If so, collapse
// the forwarding links.
const Type *RealForwardedType = ForwardType->getForwardedType();
if (!RealForwardedType)
return ForwardType; // No it's not forwarded again
// Yes, it is forwarded again. First thing, add the reference to the new
// forward type.
if (RealForwardedType->isAbstract())
cast<DerivedType>(RealForwardedType)->addRef();
// Now drop the old reference. This could cause ForwardType to get deleted.
cast<DerivedType>(ForwardType)->dropRef();
// Return the updated type.
ForwardType = RealForwardedType;
return ForwardType;
}
void Type::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
abort();
}
void Type::typeBecameConcrete(const DerivedType *AbsTy) {
abort();
}
// getTypeDescription - This is a recursive function that walks a type hierarchy
// calculating the description for a type.
//
static std::string getTypeDescription(const Type *Ty,
std::vector<const Type *> &TypeStack) {
if (isa<OpaqueType>(Ty)) { // Base case for the recursion
std::map<const Type*, std::string>::iterator I =
AbstractTypeDescriptions->lower_bound(Ty);
if (I != AbstractTypeDescriptions->end() && I->first == Ty)
return I->second;
std::string Desc = "opaque";
AbstractTypeDescriptions->insert(std::make_pair(Ty, Desc));
return Desc;
}
if (!Ty->isAbstract()) { // Base case for the recursion
std::map<const Type*, std::string>::iterator I =
ConcreteTypeDescriptions->find(Ty);
if (I != ConcreteTypeDescriptions->end())
return I->second;
if (Ty->isPrimitiveType()) {
switch (Ty->getTypeID()) {
default: assert(0 && "Unknown prim type!");
case Type::VoidTyID: return (*ConcreteTypeDescriptions)[Ty] = "void";
case Type::FloatTyID: return (*ConcreteTypeDescriptions)[Ty] = "float";
case Type::DoubleTyID: return (*ConcreteTypeDescriptions)[Ty] = "double";
case Type::LabelTyID: return (*ConcreteTypeDescriptions)[Ty] = "label";
}
}
}
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
//
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot); // Here's the upreference
// Recursive case: derived types...
std::string Result;
TypeStack.push_back(Ty); // Add us to the stack..
switch (Ty->getTypeID()) {
case Type::IntegerTyID: {
const IntegerType *ITy = cast<IntegerType>(Ty);
Result = "i" + utostr(ITy->getBitWidth());
break;
}
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
if (!Result.empty())
Result += " ";
Result += getTypeDescription(FTy->getReturnType(), TypeStack) + " (";
unsigned Idx = 1;
const ParamAttrsList *Attrs = FTy->getParamAttrs();
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
Result += ", ";
if (Attrs && Attrs->getParamAttrs(Idx) != ParamAttr::None)
Result += Attrs->getParamAttrsTextByIndex(Idx);
Idx++;
Result += getTypeDescription(*I, TypeStack);
}
if (FTy->isVarArg()) {
if (FTy->getNumParams()) Result += ", ";
Result += "...";
}
Result += ")";
if (Attrs && Attrs->getParamAttrs(0) != ParamAttr::None) {
Result += " " + Attrs->getParamAttrsTextByIndex(0);
}
break;
}
case Type::PackedStructTyID:
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
if (STy->isPacked())
Result = "<{ ";
else
Result = "{ ";
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
if (I != STy->element_begin())
Result += ", ";
Result += getTypeDescription(*I, TypeStack);
}
Result += " }";
if (STy->isPacked())
Result += ">";
break;
}
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(Ty);
Result = getTypeDescription(PTy->getElementType(), TypeStack) + " *";
break;
}
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
unsigned NumElements = ATy->getNumElements();
Result = "[";
Result += utostr(NumElements) + " x ";
Result += getTypeDescription(ATy->getElementType(), TypeStack) + "]";
break;
}
case Type::VectorTyID: {
const VectorType *PTy = cast<VectorType>(Ty);
unsigned NumElements = PTy->getNumElements();
Result = "<";
Result += utostr(NumElements) + " x ";
Result += getTypeDescription(PTy->getElementType(), TypeStack) + ">";
break;
}
default:
Result = "<error>";
assert(0 && "Unhandled type in getTypeDescription!");
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
static const std::string &getOrCreateDesc(std::map<const Type*,std::string>&Map,
const Type *Ty) {
std::map<const Type*, std::string>::iterator I = Map.find(Ty);
if (I != Map.end()) return I->second;
std::vector<const Type *> TypeStack;
std::string Result = getTypeDescription(Ty, TypeStack);
return Map[Ty] = Result;
}
const std::string &Type::getDescription() const {
if (isAbstract())
return getOrCreateDesc(*AbstractTypeDescriptions, this);
else
return getOrCreateDesc(*ConcreteTypeDescriptions, this);
}
bool StructType::indexValid(const Value *V) const {
// Structure indexes require 32-bit integer constants.
if (V->getType() == Type::Int32Ty)
if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
return CU->getZExtValue() < NumContainedTys;
return false;
}
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For a structure type, this must be a constant value...
//
const Type *StructType::getTypeAtIndex(const Value *V) const {
assert(indexValid(V) && "Invalid structure index!");
unsigned Idx = (unsigned)cast<ConstantInt>(V)->getZExtValue();
return ContainedTys[Idx];
}
//===----------------------------------------------------------------------===//
// Primitive 'Type' data
//===----------------------------------------------------------------------===//
const Type *Type::VoidTy = new Type(Type::VoidTyID);
const Type *Type::FloatTy = new Type(Type::FloatTyID);
const Type *Type::DoubleTy = new Type(Type::DoubleTyID);
const Type *Type::LabelTy = new Type(Type::LabelTyID);
namespace {
struct BuiltinIntegerType : public IntegerType {
BuiltinIntegerType(unsigned W) : IntegerType(W) {}
};
}
const IntegerType *Type::Int1Ty = new BuiltinIntegerType(1);
const IntegerType *Type::Int8Ty = new BuiltinIntegerType(8);
const IntegerType *Type::Int16Ty = new BuiltinIntegerType(16);
const IntegerType *Type::Int32Ty = new BuiltinIntegerType(32);
const IntegerType *Type::Int64Ty = new BuiltinIntegerType(64);
//===----------------------------------------------------------------------===//
// Derived Type Constructors
//===----------------------------------------------------------------------===//
FunctionType::FunctionType(const Type *Result,
const std::vector<const Type*> &Params,
bool IsVarArgs, const ParamAttrsList *Attrs)
: DerivedType(FunctionTyID), isVarArgs(IsVarArgs), ParamAttrs(Attrs) {
ContainedTys = reinterpret_cast<PATypeHandle*>(this+1);
NumContainedTys = Params.size() + 1; // + 1 for result type
assert((Result->isFirstClassType() || Result == Type::VoidTy ||
isa<OpaqueType>(Result)) &&
"LLVM functions cannot return aggregates");
bool isAbstract = Result->isAbstract();
new (&ContainedTys[0]) PATypeHandle(Result, this);
for (unsigned i = 0; i != Params.size(); ++i) {
assert((Params[i]->isFirstClassType() || isa<OpaqueType>(Params[i])) &&
"Function arguments must be value types!");
new (&ContainedTys[i+1]) PATypeHandle(Params[i],this);
isAbstract |= Params[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
StructType::StructType(const std::vector<const Type*> &Types, bool isPacked)
: CompositeType(StructTyID) {
ContainedTys = reinterpret_cast<PATypeHandle*>(this + 1);
NumContainedTys = Types.size();
setSubclassData(isPacked);
bool isAbstract = false;
for (unsigned i = 0; i < Types.size(); ++i) {
assert(Types[i] != Type::VoidTy && "Void type for structure field!!");
new (&ContainedTys[i]) PATypeHandle(Types[i], this);
isAbstract |= Types[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
ArrayType::ArrayType(const Type *ElType, uint64_t NumEl)
: SequentialType(ArrayTyID, ElType) {
NumElements = NumEl;
// Calculate whether or not this type is abstract
setAbstract(ElType->isAbstract());
}
VectorType::VectorType(const Type *ElType, unsigned NumEl)
: SequentialType(VectorTyID, ElType) {
NumElements = NumEl;
setAbstract(ElType->isAbstract());
assert(NumEl > 0 && "NumEl of a VectorType must be greater than 0");
assert((ElType->isInteger() || ElType->isFloatingPoint() ||
isa<OpaqueType>(ElType)) &&
"Elements of a VectorType must be a primitive type");
}
PointerType::PointerType(const Type *E) : SequentialType(PointerTyID, E) {
// Calculate whether or not this type is abstract
setAbstract(E->isAbstract());
}
OpaqueType::OpaqueType() : DerivedType(OpaqueTyID) {
setAbstract(true);
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *this << "\n";
#endif
}
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
void DerivedType::dropAllTypeUses() {
if (NumContainedTys != 0) {
// The type must stay abstract. To do this, we insert a pointer to a type
// that will never get resolved, thus will always be abstract.
static Type *AlwaysOpaqueTy = OpaqueType::get();
static PATypeHolder Holder(AlwaysOpaqueTy);
ContainedTys[0] = AlwaysOpaqueTy;
// Change the rest of the types to be Int32Ty's. It doesn't matter what we
// pick so long as it doesn't point back to this type. We choose something
// concrete to avoid overhead for adding to AbstracTypeUser lists and stuff.
for (unsigned i = 1, e = NumContainedTys; i != e; ++i)
ContainedTys[i] = Type::Int32Ty;
}
}
/// TypePromotionGraph and graph traits - this is designed to allow us to do
/// efficient SCC processing of type graphs. This is the exact same as
/// GraphTraits<Type*>, except that we pretend that concrete types have no
/// children to avoid processing them.
struct TypePromotionGraph {
Type *Ty;
TypePromotionGraph(Type *T) : Ty(T) {}
};
namespace llvm {
template <> struct GraphTraits<TypePromotionGraph> {
typedef Type NodeType;
typedef Type::subtype_iterator ChildIteratorType;
static inline NodeType *getEntryNode(TypePromotionGraph G) { return G.Ty; }
static inline ChildIteratorType child_begin(NodeType *N) {
if (N->isAbstract())
return N->subtype_begin();
else // No need to process children of concrete types.
return N->subtype_end();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->subtype_end();
}
};
}
// PromoteAbstractToConcrete - This is a recursive function that walks a type
// graph calculating whether or not a type is abstract.
//
void Type::PromoteAbstractToConcrete() {
if (!isAbstract()) return;
scc_iterator<TypePromotionGraph> SI = scc_begin(TypePromotionGraph(this));
scc_iterator<TypePromotionGraph> SE = scc_end (TypePromotionGraph(this));
for (; SI != SE; ++SI) {
std::vector<Type*> &SCC = *SI;
// Concrete types are leaves in the tree. Since an SCC will either be all
// abstract or all concrete, we only need to check one type.
if (SCC[0]->isAbstract()) {
if (isa<OpaqueType>(SCC[0]))
return; // Not going to be concrete, sorry.
// If all of the children of all of the types in this SCC are concrete,
// then this SCC is now concrete as well. If not, neither this SCC, nor
// any parent SCCs will be concrete, so we might as well just exit.
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
for (Type::subtype_iterator CI = SCC[i]->subtype_begin(),
E = SCC[i]->subtype_end(); CI != E; ++CI)
if ((*CI)->isAbstract())
// If the child type is in our SCC, it doesn't make the entire SCC
// abstract unless there is a non-SCC abstract type.
if (std::find(SCC.begin(), SCC.end(), *CI) == SCC.end())
return; // Not going to be concrete, sorry.
// Okay, we just discovered this whole SCC is now concrete, mark it as
// such!
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
assert(SCC[i]->isAbstract() && "Why are we processing concrete types?");
SCC[i]->setAbstract(false);
}
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
assert(!SCC[i]->isAbstract() && "Concrete type became abstract?");
// The type just became concrete, notify all users!
cast<DerivedType>(SCC[i])->notifyUsesThatTypeBecameConcrete();
}
}
}
}
//===----------------------------------------------------------------------===//
// Type Structural Equality Testing
//===----------------------------------------------------------------------===//
// TypesEqual - Two types are considered structurally equal if they have the
// same "shape": Every level and element of the types have identical primitive
// ID's, and the graphs have the same edges/nodes in them. Nodes do not have to
// be pointer equals to be equivalent though. This uses an optimistic algorithm
// that assumes that two graphs are the same until proven otherwise.
//
static bool TypesEqual(const Type *Ty, const Type *Ty2,
std::map<const Type *, const Type *> &EqTypes) {
if (Ty == Ty2) return true;
if (Ty->getTypeID() != Ty2->getTypeID()) return false;
if (isa<OpaqueType>(Ty))
return false; // Two unequal opaque types are never equal
std::map<const Type*, const Type*>::iterator It = EqTypes.lower_bound(Ty);
if (It != EqTypes.end() && It->first == Ty)
return It->second == Ty2; // Looping back on a type, check for equality
// Otherwise, add the mapping to the table to make sure we don't get
// recursion on the types...
EqTypes.insert(It, std::make_pair(Ty, Ty2));
// Two really annoying special cases that breaks an otherwise nice simple
// algorithm is the fact that arraytypes have sizes that differentiates types,
// and that function types can be varargs or not. Consider this now.
//
if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
const IntegerType *ITy2 = cast<IntegerType>(Ty2);
return ITy->getBitWidth() == ITy2->getBitWidth();
} else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
return TypesEqual(PTy->getElementType(),
cast<PointerType>(Ty2)->getElementType(), EqTypes);
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructType *STy2 = cast<StructType>(Ty2);
if (STy->getNumElements() != STy2->getNumElements()) return false;
if (STy->isPacked() != STy2->isPacked()) return false;
for (unsigned i = 0, e = STy2->getNumElements(); i != e; ++i)
if (!TypesEqual(STy->getElementType(i), STy2->getElementType(i), EqTypes))
return false;
return true;
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
const ArrayType *ATy2 = cast<ArrayType>(Ty2);
return ATy->getNumElements() == ATy2->getNumElements() &&
TypesEqual(ATy->getElementType(), ATy2->getElementType(), EqTypes);
} else if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
const VectorType *PTy2 = cast<VectorType>(Ty2);
return PTy->getNumElements() == PTy2->getNumElements() &&
TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes);
} else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
if (FTy->isVarArg() != FTy2->isVarArg() ||
FTy->getNumParams() != FTy2->getNumParams() ||
!TypesEqual(FTy->getReturnType(), FTy2->getReturnType(), EqTypes))
return false;
const ParamAttrsList *Attrs1 = FTy->getParamAttrs();
const ParamAttrsList *Attrs2 = FTy2->getParamAttrs();
if ((!Attrs1 && Attrs2) || (!Attrs2 && Attrs1) ||
(Attrs1 && Attrs2 && (Attrs1->size() != Attrs2->size() ||
(Attrs1->getParamAttrs(0) != Attrs2->getParamAttrs(0)))))
return false;
for (unsigned i = 0, e = FTy2->getNumParams(); i != e; ++i) {
if (Attrs1 && Attrs1->getParamAttrs(i+1) != Attrs2->getParamAttrs(i+1))
return false;
if (!TypesEqual(FTy->getParamType(i), FTy2->getParamType(i), EqTypes))
return false;
}
return true;
} else {
assert(0 && "Unknown derived type!");
return false;
}
}
static bool TypesEqual(const Type *Ty, const Type *Ty2) {
std::map<const Type *, const Type *> EqTypes;
return TypesEqual(Ty, Ty2, EqTypes);
}
// AbstractTypeHasCycleThrough - Return true there is a path from CurTy to
// TargetTy in the type graph. We know that Ty is an abstract type, so if we
// ever reach a non-abstract type, we know that we don't need to search the
// subgraph.
static bool AbstractTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
std::set<const Type*> &VisitedTypes) {
if (TargetTy == CurTy) return true;
if (!CurTy->isAbstract()) return false;
if (!VisitedTypes.insert(CurTy).second)
return false; // Already been here.
for (Type::subtype_iterator I = CurTy->subtype_begin(),
E = CurTy->subtype_end(); I != E; ++I)
if (AbstractTypeHasCycleThrough(TargetTy, *I, VisitedTypes))
return true;
return false;
}
static bool ConcreteTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
std::set<const Type*> &VisitedTypes) {
if (TargetTy == CurTy) return true;
if (!VisitedTypes.insert(CurTy).second)
return false; // Already been here.
for (Type::subtype_iterator I = CurTy->subtype_begin(),
E = CurTy->subtype_end(); I != E; ++I)
if (ConcreteTypeHasCycleThrough(TargetTy, *I, VisitedTypes))
return true;
return false;
}
/// TypeHasCycleThroughItself - Return true if the specified type has a cycle
/// back to itself.
static bool TypeHasCycleThroughItself(const Type *Ty) {
std::set<const Type*> VisitedTypes;
if (Ty->isAbstract()) { // Optimized case for abstract types.
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
if (AbstractTypeHasCycleThrough(Ty, *I, VisitedTypes))
return true;
} else {
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
if (ConcreteTypeHasCycleThrough(Ty, *I, VisitedTypes))
return true;
}
return false;
}
/// getSubElementHash - Generate a hash value for all of the SubType's of this
/// type. The hash value is guaranteed to be zero if any of the subtypes are
/// an opaque type. Otherwise we try to mix them in as well as possible, but do
/// not look at the subtype's subtype's.
static unsigned getSubElementHash(const Type *Ty) {
unsigned HashVal = 0;
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I) {
HashVal *= 32;
const Type *SubTy = I->get();
HashVal += SubTy->getTypeID();
switch (SubTy->getTypeID()) {
default: break;
case Type::OpaqueTyID: return 0; // Opaque -> hash = 0 no matter what.
case Type::IntegerTyID:
HashVal ^= (cast<IntegerType>(SubTy)->getBitWidth() << 3);
break;
case Type::FunctionTyID:
HashVal ^= cast<FunctionType>(SubTy)->getNumParams()*2 +
cast<FunctionType>(SubTy)->isVarArg();
break;
case Type::ArrayTyID:
HashVal ^= cast<ArrayType>(SubTy)->getNumElements();
break;
case Type::VectorTyID:
HashVal ^= cast<VectorType>(SubTy)->getNumElements();
break;
case Type::StructTyID:
HashVal ^= cast<StructType>(SubTy)->getNumElements();
break;
}
}
return HashVal ? HashVal : 1; // Do not return zero unless opaque subty.
}
//===----------------------------------------------------------------------===//
// Derived Type Factory Functions
//===----------------------------------------------------------------------===//
namespace llvm {
class TypeMapBase {
protected:
/// TypesByHash - Keep track of types by their structure hash value. Note
/// that we only keep track of types that have cycles through themselves in
/// this map.
///
std::multimap<unsigned, PATypeHolder> TypesByHash;
public:
void RemoveFromTypesByHash(unsigned Hash, const Type *Ty) {
std::multimap<unsigned, PATypeHolder>::iterator I =
TypesByHash.lower_bound(Hash);
for (; I != TypesByHash.end() && I->first == Hash; ++I) {
if (I->second == Ty) {
TypesByHash.erase(I);
return;
}
}
// This must be do to an opaque type that was resolved. Switch down to hash
// code of zero.
assert(Hash && "Didn't find type entry!");
RemoveFromTypesByHash(0, Ty);
}
/// TypeBecameConcrete - When Ty gets a notification that TheType just became
/// concrete, drop uses and make Ty non-abstract if we should.
void TypeBecameConcrete(DerivedType *Ty, const DerivedType *TheType) {
// If the element just became concrete, remove 'ty' from the abstract
// type user list for the type. Do this for as many times as Ty uses
// OldType.
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
if (I->get() == TheType)
TheType->removeAbstractTypeUser(Ty);
// If the type is currently thought to be abstract, rescan all of our
// subtypes to see if the type has just become concrete! Note that this
// may send out notifications to AbstractTypeUsers that types become
// concrete.
if (Ty->isAbstract())
Ty->PromoteAbstractToConcrete();
}
};
}
// TypeMap - Make sure that only one instance of a particular type may be
// created on any given run of the compiler... note that this involves updating
// our map if an abstract type gets refined somehow.
//
namespace llvm {
template<class ValType, class TypeClass>
class TypeMap : public TypeMapBase {
std::map<ValType, PATypeHolder> Map;
public:
typedef typename std::map<ValType, PATypeHolder>::iterator iterator;
~TypeMap() { print("ON EXIT"); }
inline TypeClass *get(const ValType &V) {
iterator I = Map.find(V);
return I != Map.end() ? cast<TypeClass>((Type*)I->second.get()) : 0;
}
inline void add(const ValType &V, TypeClass *Ty) {
Map.insert(std::make_pair(V, Ty));
// If this type has a cycle, remember it.
TypesByHash.insert(std::make_pair(ValType::hashTypeStructure(Ty), Ty));
print("add");
}
/// RefineAbstractType - This method is called after we have merged a type
/// with another one. We must now either merge the type away with
/// some other type or reinstall it in the map with it's new configuration.
void RefineAbstractType(TypeClass *Ty, const DerivedType *OldType,
const Type *NewType) {
#ifdef DEBUG_MERGE_TYPES
DOUT << "RefineAbstractType(" << (void*)OldType << "[" << *OldType
<< "], " << (void*)NewType << " [" << *NewType << "])\n";
#endif
// Otherwise, we are changing one subelement type into another. Clearly the
// OldType must have been abstract, making us abstract.
assert(Ty->isAbstract() && "Refining a non-abstract type!");
assert(OldType != NewType);
// Make a temporary type holder for the type so that it doesn't disappear on
// us when we erase the entry from the map.
PATypeHolder TyHolder = Ty;
// The old record is now out-of-date, because one of the children has been
// updated. Remove the obsolete entry from the map.
unsigned NumErased = Map.erase(ValType::get(Ty));
assert(NumErased && "Element not found!");
// Remember the structural hash for the type before we start hacking on it,
// in case we need it later.
unsigned OldTypeHash = ValType::hashTypeStructure(Ty);
// Find the type element we are refining... and change it now!
for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i)
if (Ty->ContainedTys[i] == OldType)
Ty->ContainedTys[i] = NewType;
unsigned NewTypeHash = ValType::hashTypeStructure(Ty);
// If there are no cycles going through this node, we can do a simple,
// efficient lookup in the map, instead of an inefficient nasty linear
// lookup.
if (!TypeHasCycleThroughItself(Ty)) {
typename std::map<ValType, PATypeHolder>::iterator I;
bool Inserted;
tie(I, Inserted) = Map.insert(std::make_pair(ValType::get(Ty), Ty));
if (!Inserted) {
// Refined to a different type altogether?
RemoveFromTypesByHash(OldTypeHash, Ty);
// We already have this type in the table. Get rid of the newly refined
// type.
TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get());
Ty->refineAbstractTypeTo(NewTy);
return;
}
} else {
// Now we check to see if there is an existing entry in the table which is
// structurally identical to the newly refined type. If so, this type
// gets refined to the pre-existing type.
//
std::multimap<unsigned, PATypeHolder>::iterator I, E, Entry;
tie(I, E) = TypesByHash.equal_range(NewTypeHash);
Entry = E;
for (; I != E; ++I) {
if (I->second == Ty) {
// Remember the position of the old type if we see it in our scan.
Entry = I;
} else {
if (TypesEqual(Ty, I->second)) {
TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get());
// Remove the old entry form TypesByHash. If the hash values differ
// now, remove it from the old place. Otherwise, continue scanning
// withing this hashcode to reduce work.
if (NewTypeHash != OldTypeHash) {
RemoveFromTypesByHash(OldTypeHash, Ty);
} else {
if (Entry == E) {
// Find the location of Ty in the TypesByHash structure if we
// haven't seen it already.
while (I->second != Ty) {
++I;
assert(I != E && "Structure doesn't contain type??");
}
Entry = I;
}
TypesByHash.erase(Entry);
}
Ty->refineAbstractTypeTo(NewTy);
return;
}
}
}
// If there is no existing type of the same structure, we reinsert an
// updated record into the map.
Map.insert(std::make_pair(ValType::get(Ty), Ty));
}
// If the hash codes differ, update TypesByHash
if (NewTypeHash != OldTypeHash) {
RemoveFromTypesByHash(OldTypeHash, Ty);
TypesByHash.insert(std::make_pair(NewTypeHash, Ty));
}
// If the type is currently thought to be abstract, rescan all of our
// subtypes to see if the type has just become concrete! Note that this
// may send out notifications to AbstractTypeUsers that types become
// concrete.
if (Ty->isAbstract())
Ty->PromoteAbstractToConcrete();
}
void print(const char *Arg) const {
#ifdef DEBUG_MERGE_TYPES
DOUT << "TypeMap<>::" << Arg << " table contents:\n";
unsigned i = 0;
for (typename std::map<ValType, PATypeHolder>::const_iterator I
= Map.begin(), E = Map.end(); I != E; ++I)
DOUT << " " << (++i) << ". " << (void*)I->second.get() << " "
<< *I->second.get() << "\n";
#endif
}
void dump() const { print("dump output"); }
};
}
//===----------------------------------------------------------------------===//
// Function Type Factory and Value Class...
//
//===----------------------------------------------------------------------===//
// Integer Type Factory...
//
namespace llvm {
class IntegerValType {
uint32_t bits;
public:
IntegerValType(uint16_t numbits) : bits(numbits) {}
static IntegerValType get(const IntegerType *Ty) {
return IntegerValType(Ty->getBitWidth());
}
static unsigned hashTypeStructure(const IntegerType *Ty) {
return (unsigned)Ty->getBitWidth();
}
inline bool operator<(const IntegerValType &IVT) const {
return bits < IVT.bits;
}
};
}
static ManagedStatic<TypeMap<IntegerValType, IntegerType> > IntegerTypes;
const IntegerType *IntegerType::get(unsigned NumBits) {
assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
// Check for the built-in integer types
switch (NumBits) {
case 1: return cast<IntegerType>(Type::Int1Ty);
case 8: return cast<IntegerType>(Type::Int8Ty);
case 16: return cast<IntegerType>(Type::Int16Ty);
case 32: return cast<IntegerType>(Type::Int32Ty);
case 64: return cast<IntegerType>(Type::Int64Ty);
default:
break;
}
IntegerValType IVT(NumBits);
IntegerType *ITy = IntegerTypes->get(IVT);
if (ITy) return ITy; // Found a match, return it!
// Value not found. Derive a new type!
ITy = new IntegerType(NumBits);
IntegerTypes->add(IVT, ITy);
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *ITy << "\n";
#endif
return ITy;
}
bool IntegerType::isPowerOf2ByteWidth() const {
unsigned BitWidth = getBitWidth();
return (BitWidth > 7) && isPowerOf2_32(BitWidth);
}
APInt IntegerType::getMask() const {
return APInt::getAllOnesValue(getBitWidth());
}
// FunctionValType - Define a class to hold the key that goes into the TypeMap
//
namespace llvm {
class FunctionValType {
const Type *RetTy;
std::vector<const Type*> ArgTypes;
const ParamAttrsList *ParamAttrs;
bool isVarArg;
public:
FunctionValType(const Type *ret, const std::vector<const Type*> &args,
bool IVA, const ParamAttrsList *attrs)
: RetTy(ret), ParamAttrs(attrs), isVarArg(IVA) {
for (unsigned i = 0; i < args.size(); ++i)
ArgTypes.push_back(args[i]);
}
static FunctionValType get(const FunctionType *FT);
static unsigned hashTypeStructure(const FunctionType *FT) {
unsigned Result = FT->getNumParams()*64 + FT->isVarArg();
if (FT->getParamAttrs())
Result += FT->getParamAttrs()->size()*2;
return Result;
}
inline bool operator<(const FunctionValType &MTV) const {
if (RetTy < MTV.RetTy) return true;
if (RetTy > MTV.RetTy) return false;
if (isVarArg < MTV.isVarArg) return true;
if (isVarArg > MTV.isVarArg) return false;
if (ArgTypes < MTV.ArgTypes) return true;
if (ArgTypes > MTV.ArgTypes) return false;
if (ParamAttrs)
if (MTV.ParamAttrs)
return *ParamAttrs < *MTV.ParamAttrs;
else
return false;
else if (MTV.ParamAttrs)
return true;
return false;
}
};
}
// Define the actual map itself now...
static ManagedStatic<TypeMap<FunctionValType, FunctionType> > FunctionTypes;
FunctionValType FunctionValType::get(const FunctionType *FT) {
// Build up a FunctionValType
std::vector<const Type *> ParamTypes;
ParamTypes.reserve(FT->getNumParams());
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
ParamTypes.push_back(FT->getParamType(i));
return FunctionValType(FT->getReturnType(), ParamTypes, FT->isVarArg(),
FT->getParamAttrs());
}
// FunctionType::get - The factory function for the FunctionType class...
FunctionType *FunctionType::get(const Type *ReturnType,
const std::vector<const Type*> &Params,
bool isVarArg,
const ParamAttrsList *Attrs) {
FunctionValType VT(ReturnType, Params, isVarArg, Attrs);
FunctionType *FT = FunctionTypes->get(VT);
if (FT) {
return FT;
}
FT = (FunctionType*) new char[sizeof(FunctionType) +
sizeof(PATypeHandle)*(Params.size()+1)];
new (FT) FunctionType(ReturnType, Params, isVarArg, Attrs);
FunctionTypes->add(VT, FT);
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << FT << "\n";
#endif
return FT;
}
bool FunctionType::isStructReturn() const {
if (ParamAttrs)
return ParamAttrs->paramHasAttr(1, ParamAttr::StructRet);
return false;
}
//===----------------------------------------------------------------------===//
// Array Type Factory...
//
namespace llvm {
class ArrayValType {
const Type *ValTy;
uint64_t Size;
public:
ArrayValType(const Type *val, uint64_t sz) : ValTy(val), Size(sz) {}
static ArrayValType get(const ArrayType *AT) {
return ArrayValType(AT->getElementType(), AT->getNumElements());
}
static unsigned hashTypeStructure(const ArrayType *AT) {
return (unsigned)AT->getNumElements();
}
inline bool operator<(const ArrayValType &MTV) const {
if (Size < MTV.Size) return true;
return Size == MTV.Size && ValTy < MTV.ValTy;
}
};
}
static ManagedStatic<TypeMap<ArrayValType, ArrayType> > ArrayTypes;
ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) {
assert(ElementType && "Can't get array of null types!");
ArrayValType AVT(ElementType, NumElements);
ArrayType *AT = ArrayTypes->get(AVT);
if (AT) return AT; // Found a match, return it!
// Value not found. Derive a new type!
ArrayTypes->add(AVT, AT = new ArrayType(ElementType, NumElements));
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *AT << "\n";
#endif
return AT;
}
//===----------------------------------------------------------------------===//
// Vector Type Factory...
//
namespace llvm {
class VectorValType {
const Type *ValTy;
unsigned Size;
public:
VectorValType(const Type *val, int sz) : ValTy(val), Size(sz) {}
static VectorValType get(const VectorType *PT) {
return VectorValType(PT->getElementType(), PT->getNumElements());
}
static unsigned hashTypeStructure(const VectorType *PT) {
return PT->getNumElements();
}
inline bool operator<(const VectorValType &MTV) const {
if (Size < MTV.Size) return true;
return Size == MTV.Size && ValTy < MTV.ValTy;
}
};
}
static ManagedStatic<TypeMap<VectorValType, VectorType> > VectorTypes;
VectorType *VectorType::get(const Type *ElementType, unsigned NumElements) {
assert(ElementType && "Can't get packed of null types!");
assert(isPowerOf2_32(NumElements) && "Vector length should be a power of 2!");
VectorValType PVT(ElementType, NumElements);
VectorType *PT = VectorTypes->get(PVT);
if (PT) return PT; // Found a match, return it!
// Value not found. Derive a new type!
VectorTypes->add(PVT, PT = new VectorType(ElementType, NumElements));
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *PT << "\n";
#endif
return PT;
}
//===----------------------------------------------------------------------===//
// Struct Type Factory...
//
namespace llvm {
// StructValType - Define a class to hold the key that goes into the TypeMap
//
class StructValType {
std::vector<const Type*> ElTypes;
bool packed;
public:
StructValType(const std::vector<const Type*> &args, bool isPacked)
: ElTypes(args), packed(isPacked) {}
static StructValType get(const StructType *ST) {
std::vector<const Type *> ElTypes;
ElTypes.reserve(ST->getNumElements());
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
ElTypes.push_back(ST->getElementType(i));
return StructValType(ElTypes, ST->isPacked());
}
static unsigned hashTypeStructure(const StructType *ST) {
return ST->getNumElements();
}
inline bool operator<(const StructValType &STV) const {
if (ElTypes < STV.ElTypes) return true;
else if (ElTypes > STV.ElTypes) return false;
else return (int)packed < (int)STV.packed;
}
};
}
static ManagedStatic<TypeMap<StructValType, StructType> > StructTypes;
StructType *StructType::get(const std::vector<const Type*> &ETypes,
bool isPacked) {
StructValType STV(ETypes, isPacked);
StructType *ST = StructTypes->get(STV);
if (ST) return ST;
// Value not found. Derive a new type!
ST = (StructType*) new char[sizeof(StructType) +
sizeof(PATypeHandle) * ETypes.size()];
new (ST) StructType(ETypes, isPacked);
StructTypes->add(STV, ST);
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *ST << "\n";
#endif
return ST;
}
//===----------------------------------------------------------------------===//
// Pointer Type Factory...
//
// PointerValType - Define a class to hold the key that goes into the TypeMap
//
namespace llvm {
class PointerValType {
const Type *ValTy;
public:
PointerValType(const Type *val) : ValTy(val) {}
static PointerValType get(const PointerType *PT) {
return PointerValType(PT->getElementType());
}
static unsigned hashTypeStructure(const PointerType *PT) {
return getSubElementHash(PT);
}
bool operator<(const PointerValType &MTV) const {
return ValTy < MTV.ValTy;
}
};
}
static ManagedStatic<TypeMap<PointerValType, PointerType> > PointerTypes;
PointerType *PointerType::get(const Type *ValueType) {
assert(ValueType && "Can't get a pointer to <null> type!");
assert(ValueType != Type::VoidTy &&
"Pointer to void is not valid, use sbyte* instead!");
assert(ValueType != Type::LabelTy && "Pointer to label is not valid!");
PointerValType PVT(ValueType);
PointerType *PT = PointerTypes->get(PVT);
if (PT) return PT;
// Value not found. Derive a new type!
PointerTypes->add(PVT, PT = new PointerType(ValueType));
#ifdef DEBUG_MERGE_TYPES
DOUT << "Derived new type: " << *PT << "\n";
#endif
return PT;
}
//===----------------------------------------------------------------------===//
// Derived Type Refinement Functions
//===----------------------------------------------------------------------===//
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
// the PATypeHandle class. When there are no users of the abstract type, it
// is annihilated, because there is no way to get a reference to it ever again.
//
void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
// Search from back to front because we will notify users from back to
// front. Also, it is likely that there will be a stack like behavior to
// users that register and unregister users.
//
unsigned i;
for (i = AbstractTypeUsers.size(); AbstractTypeUsers[i-1] != U; --i)
assert(i != 0 && "AbstractTypeUser not in user list!");
--i; // Convert to be in range 0 <= i < size()
assert(i < AbstractTypeUsers.size() && "Index out of range!"); // Wraparound?
AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i);
#ifdef DEBUG_MERGE_TYPES
DOUT << " remAbstractTypeUser[" << (void*)this << ", "
<< *this << "][" << i << "] User = " << U << "\n";
#endif
if (AbstractTypeUsers.empty() && getRefCount() == 0 && isAbstract()) {
#ifdef DEBUG_MERGE_TYPES
DOUT << "DELETEing unused abstract type: <" << *this
<< ">[" << (void*)this << "]" << "\n";
#endif
this->destroy();
}
}
// refineAbstractTypeTo - This function is used when it is discovered that
// the 'this' abstract type is actually equivalent to the NewType specified.
// This causes all users of 'this' to switch to reference the more concrete type
// NewType and for 'this' to be deleted.
//
void DerivedType::refineAbstractTypeTo(const Type *NewType) {
assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!");
assert(this != NewType && "Can't refine to myself!");
assert(ForwardType == 0 && "This type has already been refined!");
// The descriptions may be out of date. Conservatively clear them all!
AbstractTypeDescriptions->clear();
#ifdef DEBUG_MERGE_TYPES
DOUT << "REFINING abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewType << " "
<< *NewType << "]!\n";
#endif
// Make sure to put the type to be refined to into a holder so that if IT gets
// refined, that we will not continue using a dead reference...
//
PATypeHolder NewTy(NewType);
// Any PATypeHolders referring to this type will now automatically forward to
// the type we are resolved to.
ForwardType = NewType;
if (NewType->isAbstract())
cast<DerivedType>(NewType)->addRef();
// Add a self use of the current type so that we don't delete ourself until
// after the function exits.
//
PATypeHolder CurrentTy(this);
// To make the situation simpler, we ask the subclass to remove this type from
// the type map, and to replace any type uses with uses of non-abstract types.
// This dramatically limits the amount of recursive type trouble we can find
// ourselves in.
dropAllTypeUses();
// Iterate over all of the uses of this type, invoking callback. Each user
// should remove itself from our use list automatically. We have to check to
// make sure that NewTy doesn't _become_ 'this'. If it does, resolving types
// will not cause users to drop off of the use list. If we resolve to ourself
// we succeed!
//
while (!AbstractTypeUsers.empty() && NewTy != this) {
AbstractTypeUser *User = AbstractTypeUsers.back();
unsigned OldSize = AbstractTypeUsers.size();
#ifdef DEBUG_MERGE_TYPES
DOUT << " REFINING user " << OldSize-1 << "[" << (void*)User
<< "] of abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewTy.get() << " "
<< *NewTy << "]!\n";
#endif
User->refineAbstractType(this, NewTy);
assert(AbstractTypeUsers.size() != OldSize &&
"AbsTyUser did not remove self from user list!");
}
// If we were successful removing all users from the type, 'this' will be
// deleted when the last PATypeHolder is destroyed or updated from this type.
// This may occur on exit of this function, as the CurrentTy object is
// destroyed.
}
// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type that
// the current type has transitioned from being abstract to being concrete.
//
void DerivedType::notifyUsesThatTypeBecameConcrete() {
#ifdef DEBUG_MERGE_TYPES
DOUT << "typeIsREFINED type: " << (void*)this << " " << *this << "\n";
#endif
unsigned OldSize = AbstractTypeUsers.size();
while (!AbstractTypeUsers.empty()) {
AbstractTypeUser *ATU = AbstractTypeUsers.back();
ATU->typeBecameConcrete(this);
assert(AbstractTypeUsers.size() < OldSize-- &&
"AbstractTypeUser did not remove itself from the use list!");
}
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void FunctionType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
FunctionTypes->RefineAbstractType(this, OldType, NewType);
}
void FunctionType::typeBecameConcrete(const DerivedType *AbsTy) {
FunctionTypes->TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void ArrayType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
ArrayTypes->RefineAbstractType(this, OldType, NewType);
}
void ArrayType::typeBecameConcrete(const DerivedType *AbsTy) {
ArrayTypes->TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void VectorType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
VectorTypes->RefineAbstractType(this, OldType, NewType);
}
void VectorType::typeBecameConcrete(const DerivedType *AbsTy) {
VectorTypes->TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void StructType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
StructTypes->RefineAbstractType(this, OldType, NewType);
}
void StructType::typeBecameConcrete(const DerivedType *AbsTy) {
StructTypes->TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void PointerType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
PointerTypes->RefineAbstractType(this, OldType, NewType);
}
void PointerType::typeBecameConcrete(const DerivedType *AbsTy) {
PointerTypes->TypeBecameConcrete(this, AbsTy);
}
bool SequentialType::indexValid(const Value *V) const {
if (const IntegerType *IT = dyn_cast<IntegerType>(V->getType()))
return IT->getBitWidth() == 32 || IT->getBitWidth() == 64;
return false;
}
namespace llvm {
std::ostream &operator<<(std::ostream &OS, const Type *T) {
if (T == 0)
OS << "<null> value!\n";
else
T->print(OS);
return OS;
}
std::ostream &operator<<(std::ostream &OS, const Type &T) {
T.print(OS);
return OS;
}
}