blob: 4eb744db2fab4d37aec2ce77a7887df5b5fb0ccd [file] [log] [blame]
//===-- Type.cpp - Implement the Type class -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Type class for the VMCore library.
//
//===----------------------------------------------------------------------===//
#include "llvm/AbstractTypeUser.h"
#include "llvm/DerivedTypes.h"
#include "llvm/SymbolTable.h"
#include "llvm/Constants.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <iostream>
using namespace llvm;
// DEBUG_MERGE_TYPES - Enable this #define to see how and when derived types are
// created and later destroyed, all in an effort to make sure that there is only
// a single canonical version of a type.
//
//#define DEBUG_MERGE_TYPES 1
AbstractTypeUser::~AbstractTypeUser() {}
//===----------------------------------------------------------------------===//
// Type Class Implementation
//===----------------------------------------------------------------------===//
// Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions
// for types as they are needed. Because resolution of types must invalidate
// all of the abstract type descriptions, we keep them in a seperate map to make
// this easy.
static std::map<const Type*, std::string> ConcreteTypeDescriptions;
static std::map<const Type*, std::string> AbstractTypeDescriptions;
Type::Type( const std::string& name, TypeID id )
: RefCount(0), ForwardType(0) {
if (!name.empty())
ConcreteTypeDescriptions[this] = name;
ID = id;
Abstract = false;
}
const Type *Type::getPrimitiveType(TypeID IDNumber) {
switch (IDNumber) {
case VoidTyID : return VoidTy;
case BoolTyID : return BoolTy;
case UByteTyID : return UByteTy;
case SByteTyID : return SByteTy;
case UShortTyID: return UShortTy;
case ShortTyID : return ShortTy;
case UIntTyID : return UIntTy;
case IntTyID : return IntTy;
case ULongTyID : return ULongTy;
case LongTyID : return LongTy;
case FloatTyID : return FloatTy;
case DoubleTyID: return DoubleTy;
case LabelTyID : return LabelTy;
default:
return 0;
}
}
// isLosslesslyConvertibleTo - Return true if this type can be converted to
// 'Ty' without any reinterpretation of bits. For example, uint to int.
//
bool Type::isLosslesslyConvertibleTo(const Type *Ty) const {
if (this == Ty) return true;
if ((!isPrimitiveType() && !isa<PointerType>(this)) ||
(!isa<PointerType>(Ty) && !Ty->isPrimitiveType())) return false;
if (getTypeID() == Ty->getTypeID())
return true; // Handles identity cast, and cast of differing pointer types
// Now we know that they are two differing primitive or pointer types
switch (getTypeID()) {
case Type::UByteTyID: return Ty == Type::SByteTy;
case Type::SByteTyID: return Ty == Type::UByteTy;
case Type::UShortTyID: return Ty == Type::ShortTy;
case Type::ShortTyID: return Ty == Type::UShortTy;
case Type::UIntTyID: return Ty == Type::IntTy;
case Type::IntTyID: return Ty == Type::UIntTy;
case Type::ULongTyID: return Ty == Type::LongTy;
case Type::LongTyID: return Ty == Type::ULongTy;
case Type::PointerTyID: return isa<PointerType>(Ty);
default:
return false; // Other types have no identity values
}
}
/// getUnsignedVersion - If this is an integer type, return the unsigned
/// variant of this type. For example int -> uint.
const Type *Type::getUnsignedVersion() const {
switch (getTypeID()) {
default:
assert(isInteger()&&"Type::getUnsignedVersion is only valid for integers!");
case Type::UByteTyID:
case Type::SByteTyID: return Type::UByteTy;
case Type::UShortTyID:
case Type::ShortTyID: return Type::UShortTy;
case Type::UIntTyID:
case Type::IntTyID: return Type::UIntTy;
case Type::ULongTyID:
case Type::LongTyID: return Type::ULongTy;
}
}
/// getSignedVersion - If this is an integer type, return the signed variant
/// of this type. For example uint -> int.
const Type *Type::getSignedVersion() const {
switch (getTypeID()) {
default:
assert(isInteger() && "Type::getSignedVersion is only valid for integers!");
case Type::UByteTyID:
case Type::SByteTyID: return Type::SByteTy;
case Type::UShortTyID:
case Type::ShortTyID: return Type::ShortTy;
case Type::UIntTyID:
case Type::IntTyID: return Type::IntTy;
case Type::ULongTyID:
case Type::LongTyID: return Type::LongTy;
}
}
// getPrimitiveSize - Return the basic size of this type if it is a primitive
// type. These are fixed by LLVM and are not target dependent. This will
// return zero if the type does not have a size or is not a primitive type.
//
unsigned Type::getPrimitiveSize() const {
switch (getTypeID()) {
case Type::BoolTyID:
case Type::SByteTyID:
case Type::UByteTyID: return 1;
case Type::UShortTyID:
case Type::ShortTyID: return 2;
case Type::FloatTyID:
case Type::IntTyID:
case Type::UIntTyID: return 4;
case Type::LongTyID:
case Type::ULongTyID:
case Type::DoubleTyID: return 8;
default: return 0;
}
}
unsigned Type::getPrimitiveSizeInBits() const {
switch (getTypeID()) {
case Type::BoolTyID: return 1;
case Type::SByteTyID:
case Type::UByteTyID: return 8;
case Type::UShortTyID:
case Type::ShortTyID: return 16;
case Type::FloatTyID:
case Type::IntTyID:
case Type::UIntTyID: return 32;
case Type::LongTyID:
case Type::ULongTyID:
case Type::DoubleTyID: return 64;
default: return 0;
}
}
/// isSizedDerivedType - Derived types like structures and arrays are sized
/// iff all of the members of the type are sized as well. Since asking for
/// their size is relatively uncommon, move this operation out of line.
bool Type::isSizedDerivedType() const {
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType()->isSized();
if (const PackedType *PTy = dyn_cast<PackedType>(this))
return PTy->getElementType()->isSized();
if (!isa<StructType>(this)) return false;
// Okay, our struct is sized if all of the elements are...
for (subtype_iterator I = subtype_begin(), E = subtype_end(); I != E; ++I)
if (!(*I)->isSized()) return false;
return true;
}
/// getForwardedTypeInternal - This method is used to implement the union-find
/// algorithm for when a type is being forwarded to another type.
const Type *Type::getForwardedTypeInternal() const {
assert(ForwardType && "This type is not being forwarded to another type!");
// Check to see if the forwarded type has been forwarded on. If so, collapse
// the forwarding links.
const Type *RealForwardedType = ForwardType->getForwardedType();
if (!RealForwardedType)
return ForwardType; // No it's not forwarded again
// Yes, it is forwarded again. First thing, add the reference to the new
// forward type.
if (RealForwardedType->isAbstract())
cast<DerivedType>(RealForwardedType)->addRef();
// Now drop the old reference. This could cause ForwardType to get deleted.
cast<DerivedType>(ForwardType)->dropRef();
// Return the updated type.
ForwardType = RealForwardedType;
return ForwardType;
}
// getTypeDescription - This is a recursive function that walks a type hierarchy
// calculating the description for a type.
//
static std::string getTypeDescription(const Type *Ty,
std::vector<const Type *> &TypeStack) {
if (isa<OpaqueType>(Ty)) { // Base case for the recursion
std::map<const Type*, std::string>::iterator I =
AbstractTypeDescriptions.lower_bound(Ty);
if (I != AbstractTypeDescriptions.end() && I->first == Ty)
return I->second;
std::string Desc = "opaque";
AbstractTypeDescriptions.insert(std::make_pair(Ty, Desc));
return Desc;
}
if (!Ty->isAbstract()) { // Base case for the recursion
std::map<const Type*, std::string>::iterator I =
ConcreteTypeDescriptions.find(Ty);
if (I != ConcreteTypeDescriptions.end()) return I->second;
}
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
//
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot); // Here's the upreference
// Recursive case: derived types...
std::string Result;
TypeStack.push_back(Ty); // Add us to the stack..
switch (Ty->getTypeID()) {
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
Result = getTypeDescription(FTy->getReturnType(), TypeStack) + " (";
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
Result += ", ";
Result += getTypeDescription(*I, TypeStack);
}
if (FTy->isVarArg()) {
if (FTy->getNumParams()) Result += ", ";
Result += "...";
}
Result += ")";
break;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
Result = "{ ";
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
if (I != STy->element_begin())
Result += ", ";
Result += getTypeDescription(*I, TypeStack);
}
Result += " }";
break;
}
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(Ty);
Result = getTypeDescription(PTy->getElementType(), TypeStack) + " *";
break;
}
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
unsigned NumElements = ATy->getNumElements();
Result = "[";
Result += utostr(NumElements) + " x ";
Result += getTypeDescription(ATy->getElementType(), TypeStack) + "]";
break;
}
case Type::PackedTyID: {
const PackedType *PTy = cast<PackedType>(Ty);
unsigned NumElements = PTy->getNumElements();
Result = "<";
Result += utostr(NumElements) + " x ";
Result += getTypeDescription(PTy->getElementType(), TypeStack) + ">";
break;
}
default:
Result = "<error>";
assert(0 && "Unhandled type in getTypeDescription!");
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
static const std::string &getOrCreateDesc(std::map<const Type*,std::string>&Map,
const Type *Ty) {
std::map<const Type*, std::string>::iterator I = Map.find(Ty);
if (I != Map.end()) return I->second;
std::vector<const Type *> TypeStack;
std::string Result = getTypeDescription(Ty, TypeStack);
return Map[Ty] = Result;
}
const std::string &Type::getDescription() const {
if (isAbstract())
return getOrCreateDesc(AbstractTypeDescriptions, this);
else
return getOrCreateDesc(ConcreteTypeDescriptions, this);
}
bool StructType::indexValid(const Value *V) const {
// Structure indexes require unsigned integer constants.
if (V->getType() == Type::UIntTy)
if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(V))
return CU->getValue() < ContainedTys.size();
return false;
}
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For a structure type, this must be a constant value...
//
const Type *StructType::getTypeAtIndex(const Value *V) const {
assert(indexValid(V) && "Invalid structure index!");
unsigned Idx = (unsigned)cast<ConstantUInt>(V)->getValue();
return ContainedTys[Idx];
}
//===----------------------------------------------------------------------===//
// Static 'Type' data
//===----------------------------------------------------------------------===//
namespace {
struct PrimType : public Type {
PrimType(const char *S, TypeID ID) : Type(S, ID) {}
};
}
static PrimType TheVoidTy ("void" , Type::VoidTyID);
static PrimType TheBoolTy ("bool" , Type::BoolTyID);
static PrimType TheSByteTy ("sbyte" , Type::SByteTyID);
static PrimType TheUByteTy ("ubyte" , Type::UByteTyID);
static PrimType TheShortTy ("short" , Type::ShortTyID);
static PrimType TheUShortTy("ushort", Type::UShortTyID);
static PrimType TheIntTy ("int" , Type::IntTyID);
static PrimType TheUIntTy ("uint" , Type::UIntTyID);
static PrimType TheLongTy ("long" , Type::LongTyID);
static PrimType TheULongTy ("ulong" , Type::ULongTyID);
static PrimType TheFloatTy ("float" , Type::FloatTyID);
static PrimType TheDoubleTy("double", Type::DoubleTyID);
static PrimType TheLabelTy ("label" , Type::LabelTyID);
Type *Type::VoidTy = &TheVoidTy;
Type *Type::BoolTy = &TheBoolTy;
Type *Type::SByteTy = &TheSByteTy;
Type *Type::UByteTy = &TheUByteTy;
Type *Type::ShortTy = &TheShortTy;
Type *Type::UShortTy = &TheUShortTy;
Type *Type::IntTy = &TheIntTy;
Type *Type::UIntTy = &TheUIntTy;
Type *Type::LongTy = &TheLongTy;
Type *Type::ULongTy = &TheULongTy;
Type *Type::FloatTy = &TheFloatTy;
Type *Type::DoubleTy = &TheDoubleTy;
Type *Type::LabelTy = &TheLabelTy;
//===----------------------------------------------------------------------===//
// Derived Type Constructors
//===----------------------------------------------------------------------===//
FunctionType::FunctionType(const Type *Result,
const std::vector<const Type*> &Params,
bool IsVarArgs) : DerivedType(FunctionTyID),
isVarArgs(IsVarArgs) {
assert((Result->isFirstClassType() || Result == Type::VoidTy ||
isa<OpaqueType>(Result)) &&
"LLVM functions cannot return aggregates");
bool isAbstract = Result->isAbstract();
ContainedTys.reserve(Params.size()+1);
ContainedTys.push_back(PATypeHandle(Result, this));
for (unsigned i = 0; i != Params.size(); ++i) {
assert((Params[i]->isFirstClassType() || isa<OpaqueType>(Params[i])) &&
"Function arguments must be value types!");
ContainedTys.push_back(PATypeHandle(Params[i], this));
isAbstract |= Params[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
StructType::StructType(const std::vector<const Type*> &Types)
: CompositeType(StructTyID) {
ContainedTys.reserve(Types.size());
bool isAbstract = false;
for (unsigned i = 0; i < Types.size(); ++i) {
assert(Types[i] != Type::VoidTy && "Void type for structure field!!");
ContainedTys.push_back(PATypeHandle(Types[i], this));
isAbstract |= Types[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
ArrayType::ArrayType(const Type *ElType, uint64_t NumEl)
: SequentialType(ArrayTyID, ElType) {
NumElements = NumEl;
// Calculate whether or not this type is abstract
setAbstract(ElType->isAbstract());
}
PackedType::PackedType(const Type *ElType, unsigned NumEl)
: SequentialType(PackedTyID, ElType) {
NumElements = NumEl;
assert(NumEl > 0 && "NumEl of a PackedType must be greater than 0");
assert((ElType->isIntegral() || ElType->isFloatingPoint()) &&
"Elements of a PackedType must be a primitive type");
}
PointerType::PointerType(const Type *E) : SequentialType(PointerTyID, E) {
// Calculate whether or not this type is abstract
setAbstract(E->isAbstract());
}
OpaqueType::OpaqueType() : DerivedType(OpaqueTyID) {
setAbstract(true);
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *this << "\n";
#endif
}
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
void DerivedType::dropAllTypeUses() {
if (!ContainedTys.empty()) {
while (ContainedTys.size() > 1)
ContainedTys.pop_back();
// The type must stay abstract. To do this, we insert a pointer to a type
// that will never get resolved, thus will always be abstract.
static Type *AlwaysOpaqueTy = OpaqueType::get();
static PATypeHolder Holder(AlwaysOpaqueTy);
ContainedTys[0] = AlwaysOpaqueTy;
}
}
/// TypePromotionGraph and graph traits - this is designed to allow us to do
/// efficient SCC processing of type graphs. This is the exact same as
/// GraphTraits<Type*>, except that we pretend that concrete types have no
/// children to avoid processing them.
struct TypePromotionGraph {
Type *Ty;
TypePromotionGraph(Type *T) : Ty(T) {}
};
namespace llvm {
template <> struct GraphTraits<TypePromotionGraph> {
typedef Type NodeType;
typedef Type::subtype_iterator ChildIteratorType;
static inline NodeType *getEntryNode(TypePromotionGraph G) { return G.Ty; }
static inline ChildIteratorType child_begin(NodeType *N) {
if (N->isAbstract())
return N->subtype_begin();
else // No need to process children of concrete types.
return N->subtype_end();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->subtype_end();
}
};
}
// PromoteAbstractToConcrete - This is a recursive function that walks a type
// graph calculating whether or not a type is abstract.
//
void Type::PromoteAbstractToConcrete() {
if (!isAbstract()) return;
scc_iterator<TypePromotionGraph> SI = scc_begin(TypePromotionGraph(this));
scc_iterator<TypePromotionGraph> SE = scc_end (TypePromotionGraph(this));
for (; SI != SE; ++SI) {
std::vector<Type*> &SCC = *SI;
// Concrete types are leaves in the tree. Since an SCC will either be all
// abstract or all concrete, we only need to check one type.
if (SCC[0]->isAbstract()) {
if (isa<OpaqueType>(SCC[0]))
return; // Not going to be concrete, sorry.
// If all of the children of all of the types in this SCC are concrete,
// then this SCC is now concrete as well. If not, neither this SCC, nor
// any parent SCCs will be concrete, so we might as well just exit.
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
for (Type::subtype_iterator CI = SCC[i]->subtype_begin(),
E = SCC[i]->subtype_end(); CI != E; ++CI)
if ((*CI)->isAbstract())
// If the child type is in our SCC, it doesn't make the entire SCC
// abstract unless there is a non-SCC abstract type.
if (std::find(SCC.begin(), SCC.end(), *CI) == SCC.end())
return; // Not going to be concrete, sorry.
// Okay, we just discovered this whole SCC is now concrete, mark it as
// such!
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
assert(SCC[i]->isAbstract() && "Why are we processing concrete types?");
SCC[i]->setAbstract(false);
}
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
assert(!SCC[i]->isAbstract() && "Concrete type became abstract?");
// The type just became concrete, notify all users!
cast<DerivedType>(SCC[i])->notifyUsesThatTypeBecameConcrete();
}
}
}
}
//===----------------------------------------------------------------------===//
// Type Structural Equality Testing
//===----------------------------------------------------------------------===//
// TypesEqual - Two types are considered structurally equal if they have the
// same "shape": Every level and element of the types have identical primitive
// ID's, and the graphs have the same edges/nodes in them. Nodes do not have to
// be pointer equals to be equivalent though. This uses an optimistic algorithm
// that assumes that two graphs are the same until proven otherwise.
//
static bool TypesEqual(const Type *Ty, const Type *Ty2,
std::map<const Type *, const Type *> &EqTypes) {
if (Ty == Ty2) return true;
if (Ty->getTypeID() != Ty2->getTypeID()) return false;
if (isa<OpaqueType>(Ty))
return false; // Two unequal opaque types are never equal
std::map<const Type*, const Type*>::iterator It = EqTypes.lower_bound(Ty);
if (It != EqTypes.end() && It->first == Ty)
return It->second == Ty2; // Looping back on a type, check for equality
// Otherwise, add the mapping to the table to make sure we don't get
// recursion on the types...
EqTypes.insert(It, std::make_pair(Ty, Ty2));
// Two really annoying special cases that breaks an otherwise nice simple
// algorithm is the fact that arraytypes have sizes that differentiates types,
// and that function types can be varargs or not. Consider this now.
//
if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
return TypesEqual(PTy->getElementType(),
cast<PointerType>(Ty2)->getElementType(), EqTypes);
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructType *STy2 = cast<StructType>(Ty2);
if (STy->getNumElements() != STy2->getNumElements()) return false;
for (unsigned i = 0, e = STy2->getNumElements(); i != e; ++i)
if (!TypesEqual(STy->getElementType(i), STy2->getElementType(i), EqTypes))
return false;
return true;
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
const ArrayType *ATy2 = cast<ArrayType>(Ty2);
return ATy->getNumElements() == ATy2->getNumElements() &&
TypesEqual(ATy->getElementType(), ATy2->getElementType(), EqTypes);
} else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
const PackedType *PTy2 = cast<PackedType>(Ty2);
return PTy->getNumElements() == PTy2->getNumElements() &&
TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes);
} else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
if (FTy->isVarArg() != FTy2->isVarArg() ||
FTy->getNumParams() != FTy2->getNumParams() ||
!TypesEqual(FTy->getReturnType(), FTy2->getReturnType(), EqTypes))
return false;
for (unsigned i = 0, e = FTy2->getNumParams(); i != e; ++i)
if (!TypesEqual(FTy->getParamType(i), FTy2->getParamType(i), EqTypes))
return false;
return true;
} else {
assert(0 && "Unknown derived type!");
return false;
}
}
static bool TypesEqual(const Type *Ty, const Type *Ty2) {
std::map<const Type *, const Type *> EqTypes;
return TypesEqual(Ty, Ty2, EqTypes);
}
// AbstractTypeHasCycleThrough - Return true there is a path from CurTy to
// TargetTy in the type graph. We know that Ty is an abstract type, so if we
// ever reach a non-abstract type, we know that we don't need to search the
// subgraph.
static bool AbstractTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
std::set<const Type*> &VisitedTypes) {
if (TargetTy == CurTy) return true;
if (!CurTy->isAbstract()) return false;
if (!VisitedTypes.insert(CurTy).second)
return false; // Already been here.
for (Type::subtype_iterator I = CurTy->subtype_begin(),
E = CurTy->subtype_end(); I != E; ++I)
if (AbstractTypeHasCycleThrough(TargetTy, *I, VisitedTypes))
return true;
return false;
}
static bool ConcreteTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
std::set<const Type*> &VisitedTypes) {
if (TargetTy == CurTy) return true;
if (!VisitedTypes.insert(CurTy).second)
return false; // Already been here.
for (Type::subtype_iterator I = CurTy->subtype_begin(),
E = CurTy->subtype_end(); I != E; ++I)
if (ConcreteTypeHasCycleThrough(TargetTy, *I, VisitedTypes))
return true;
return false;
}
/// TypeHasCycleThroughItself - Return true if the specified type has a cycle
/// back to itself.
static bool TypeHasCycleThroughItself(const Type *Ty) {
std::set<const Type*> VisitedTypes;
if (Ty->isAbstract()) { // Optimized case for abstract types.
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
if (AbstractTypeHasCycleThrough(Ty, *I, VisitedTypes))
return true;
} else {
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
if (ConcreteTypeHasCycleThrough(Ty, *I, VisitedTypes))
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Derived Type Factory Functions
//===----------------------------------------------------------------------===//
// TypeMap - Make sure that only one instance of a particular type may be
// created on any given run of the compiler... note that this involves updating
// our map if an abstract type gets refined somehow.
//
namespace llvm {
template<class ValType, class TypeClass>
class TypeMap {
std::map<ValType, PATypeHolder> Map;
/// TypesByHash - Keep track of types by their structure hash value. Note
/// that we only keep track of types that have cycles through themselves in
/// this map.
///
std::multimap<unsigned, PATypeHolder> TypesByHash;
friend void Type::clearAllTypeMaps();
private:
void clear(std::vector<Type *> &DerivedTypes) {
for (typename std::map<ValType, PATypeHolder>::iterator I = Map.begin(),
E = Map.end(); I != E; ++I)
DerivedTypes.push_back(I->second.get());
TypesByHash.clear();
Map.clear();
}
public:
typedef typename std::map<ValType, PATypeHolder>::iterator iterator;
~TypeMap() { print("ON EXIT"); }
inline TypeClass *get(const ValType &V) {
iterator I = Map.find(V);
return I != Map.end() ? cast<TypeClass>((Type*)I->second.get()) : 0;
}
inline void add(const ValType &V, TypeClass *Ty) {
Map.insert(std::make_pair(V, Ty));
// If this type has a cycle, remember it.
TypesByHash.insert(std::make_pair(ValType::hashTypeStructure(Ty), Ty));
print("add");
}
void RemoveFromTypesByHash(unsigned Hash, const Type *Ty) {
std::multimap<unsigned, PATypeHolder>::iterator I =
TypesByHash.lower_bound(Hash);
while (I->second != Ty) {
++I;
assert(I != TypesByHash.end() && I->first == Hash);
}
TypesByHash.erase(I);
}
/// finishRefinement - This method is called after we have updated an existing
/// type with its new components. We must now either merge the type away with
/// some other type or reinstall it in the map with it's new configuration.
/// The specified iterator tells us what the type USED to look like.
void finishRefinement(TypeClass *Ty, const DerivedType *OldType,
const Type *NewType) {
assert((Ty->isAbstract() || !OldType->isAbstract()) &&
"Refining a non-abstract type!");
#ifdef DEBUG_MERGE_TYPES
std::cerr << "refineAbstractTy(" << (void*)OldType << "[" << *OldType
<< "], " << (void*)NewType << " [" << *NewType << "])\n";
#endif
// Make a temporary type holder for the type so that it doesn't disappear on
// us when we erase the entry from the map.
PATypeHolder TyHolder = Ty;
// The old record is now out-of-date, because one of the children has been
// updated. Remove the obsolete entry from the map.
Map.erase(ValType::get(Ty));
// Remember the structural hash for the type before we start hacking on it,
// in case we need it later.
unsigned OldTypeHash = ValType::hashTypeStructure(Ty);
// Find the type element we are refining... and change it now!
for (unsigned i = 0, e = Ty->ContainedTys.size(); i != e; ++i)
if (Ty->ContainedTys[i] == OldType) {
Ty->ContainedTys[i].removeUserFromConcrete();
Ty->ContainedTys[i] = NewType;
}
unsigned TypeHash = ValType::hashTypeStructure(Ty);
// If there are no cycles going through this node, we can do a simple,
// efficient lookup in the map, instead of an inefficient nasty linear
// lookup.
if (!Ty->isAbstract() || !TypeHasCycleThroughItself(Ty)) {
typename std::map<ValType, PATypeHolder>::iterator I;
bool Inserted;
ValType V = ValType::get(Ty);
tie(I, Inserted) = Map.insert(std::make_pair(V, Ty));
if (!Inserted) {
// Refined to a different type altogether?
RemoveFromTypesByHash(TypeHash, Ty);
// We already have this type in the table. Get rid of the newly refined
// type.
TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get());
Ty->refineAbstractTypeTo(NewTy);
return;
}
} else {
// Now we check to see if there is an existing entry in the table which is
// structurally identical to the newly refined type. If so, this type
// gets refined to the pre-existing type.
//
std::multimap<unsigned, PATypeHolder>::iterator I, E, Entry;
tie(I, E) = TypesByHash.equal_range(OldTypeHash);
Entry = E;
for (; I != E; ++I) {
if (I->second != Ty) {
if (TypesEqual(Ty, I->second)) {
assert(Ty->isAbstract() && "Replacing a non-abstract type?");
TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get());
if (Entry == E) {
// Find the location of Ty in the TypesByHash structure.
while (I->second != Ty) {
++I;
assert(I != E && "Structure doesn't contain type??");
}
Entry = I;
}
TypesByHash.erase(Entry);
Ty->refineAbstractTypeTo(NewTy);
return;
}
} else {
// Remember the position of
Entry = I;
}
}
// If there is no existing type of the same structure, we reinsert an
// updated record into the map.
Map.insert(std::make_pair(ValType::get(Ty), Ty));
}
// If the hash codes differ, update TypesByHash
if (TypeHash != OldTypeHash) {
RemoveFromTypesByHash(OldTypeHash, Ty);
TypesByHash.insert(std::make_pair(TypeHash, Ty));
}
// If the type is currently thought to be abstract, rescan all of our
// subtypes to see if the type has just become concrete!
if (Ty->isAbstract())
Ty->PromoteAbstractToConcrete();
}
void print(const char *Arg) const {
#ifdef DEBUG_MERGE_TYPES
std::cerr << "TypeMap<>::" << Arg << " table contents:\n";
unsigned i = 0;
for (typename std::map<ValType, PATypeHolder>::const_iterator I
= Map.begin(), E = Map.end(); I != E; ++I)
std::cerr << " " << (++i) << ". " << (void*)I->second.get() << " "
<< *I->second.get() << "\n";
#endif
}
void dump() const { print("dump output"); }
};
}
//===----------------------------------------------------------------------===//
// Function Type Factory and Value Class...
//
// FunctionValType - Define a class to hold the key that goes into the TypeMap
//
namespace llvm {
class FunctionValType {
const Type *RetTy;
std::vector<const Type*> ArgTypes;
bool isVarArg;
public:
FunctionValType(const Type *ret, const std::vector<const Type*> &args,
bool IVA) : RetTy(ret), isVarArg(IVA) {
for (unsigned i = 0; i < args.size(); ++i)
ArgTypes.push_back(args[i]);
}
static FunctionValType get(const FunctionType *FT);
static unsigned hashTypeStructure(const FunctionType *FT) {
return FT->getNumParams()*2+FT->isVarArg();
}
// Subclass should override this... to update self as usual
void doRefinement(const DerivedType *OldType, const Type *NewType) {
if (RetTy == OldType) RetTy = NewType;
for (unsigned i = 0, e = ArgTypes.size(); i != e; ++i)
if (ArgTypes[i] == OldType) ArgTypes[i] = NewType;
}
inline bool operator<(const FunctionValType &MTV) const {
if (RetTy < MTV.RetTy) return true;
if (RetTy > MTV.RetTy) return false;
if (ArgTypes < MTV.ArgTypes) return true;
return ArgTypes == MTV.ArgTypes && isVarArg < MTV.isVarArg;
}
};
}
// Define the actual map itself now...
static TypeMap<FunctionValType, FunctionType> FunctionTypes;
FunctionValType FunctionValType::get(const FunctionType *FT) {
// Build up a FunctionValType
std::vector<const Type *> ParamTypes;
ParamTypes.reserve(FT->getNumParams());
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
ParamTypes.push_back(FT->getParamType(i));
return FunctionValType(FT->getReturnType(), ParamTypes, FT->isVarArg());
}
// FunctionType::get - The factory function for the FunctionType class...
FunctionType *FunctionType::get(const Type *ReturnType,
const std::vector<const Type*> &Params,
bool isVarArg) {
FunctionValType VT(ReturnType, Params, isVarArg);
FunctionType *MT = FunctionTypes.get(VT);
if (MT) return MT;
FunctionTypes.add(VT, MT = new FunctionType(ReturnType, Params, isVarArg));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << MT << "\n";
#endif
return MT;
}
//===----------------------------------------------------------------------===//
// Array Type Factory...
//
namespace llvm {
class ArrayValType {
const Type *ValTy;
uint64_t Size;
public:
ArrayValType(const Type *val, uint64_t sz) : ValTy(val), Size(sz) {}
static ArrayValType get(const ArrayType *AT) {
return ArrayValType(AT->getElementType(), AT->getNumElements());
}
static unsigned hashTypeStructure(const ArrayType *AT) {
return (unsigned)AT->getNumElements();
}
// Subclass should override this... to update self as usual
void doRefinement(const DerivedType *OldType, const Type *NewType) {
assert(ValTy == OldType);
ValTy = NewType;
}
inline bool operator<(const ArrayValType &MTV) const {
if (Size < MTV.Size) return true;
return Size == MTV.Size && ValTy < MTV.ValTy;
}
};
}
static TypeMap<ArrayValType, ArrayType> ArrayTypes;
ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) {
assert(ElementType && "Can't get array of null types!");
ArrayValType AVT(ElementType, NumElements);
ArrayType *AT = ArrayTypes.get(AVT);
if (AT) return AT; // Found a match, return it!
// Value not found. Derive a new type!
ArrayTypes.add(AVT, AT = new ArrayType(ElementType, NumElements));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *AT << "\n";
#endif
return AT;
}
//===----------------------------------------------------------------------===//
// Packed Type Factory...
//
namespace llvm {
class PackedValType {
const Type *ValTy;
unsigned Size;
public:
PackedValType(const Type *val, int sz) : ValTy(val), Size(sz) {}
static PackedValType get(const PackedType *PT) {
return PackedValType(PT->getElementType(), PT->getNumElements());
}
static unsigned hashTypeStructure(const PackedType *PT) {
return PT->getNumElements();
}
// Subclass should override this... to update self as usual
void doRefinement(const DerivedType *OldType, const Type *NewType) {
assert(ValTy == OldType);
ValTy = NewType;
}
inline bool operator<(const PackedValType &MTV) const {
if (Size < MTV.Size) return true;
return Size == MTV.Size && ValTy < MTV.ValTy;
}
};
}
static TypeMap<PackedValType, PackedType> PackedTypes;
PackedType *PackedType::get(const Type *ElementType, unsigned NumElements) {
assert(ElementType && "Can't get packed of null types!");
PackedValType PVT(ElementType, NumElements);
PackedType *PT = PackedTypes.get(PVT);
if (PT) return PT; // Found a match, return it!
// Value not found. Derive a new type!
PackedTypes.add(PVT, PT = new PackedType(ElementType, NumElements));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *PT << "\n";
#endif
return PT;
}
//===----------------------------------------------------------------------===//
// Struct Type Factory...
//
namespace llvm {
// StructValType - Define a class to hold the key that goes into the TypeMap
//
class StructValType {
std::vector<const Type*> ElTypes;
public:
StructValType(const std::vector<const Type*> &args) : ElTypes(args) {}
static StructValType get(const StructType *ST) {
std::vector<const Type *> ElTypes;
ElTypes.reserve(ST->getNumElements());
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
ElTypes.push_back(ST->getElementType(i));
return StructValType(ElTypes);
}
static unsigned hashTypeStructure(const StructType *ST) {
return ST->getNumElements();
}
// Subclass should override this... to update self as usual
void doRefinement(const DerivedType *OldType, const Type *NewType) {
for (unsigned i = 0; i < ElTypes.size(); ++i)
if (ElTypes[i] == OldType) ElTypes[i] = NewType;
}
inline bool operator<(const StructValType &STV) const {
return ElTypes < STV.ElTypes;
}
};
}
static TypeMap<StructValType, StructType> StructTypes;
StructType *StructType::get(const std::vector<const Type*> &ETypes) {
StructValType STV(ETypes);
StructType *ST = StructTypes.get(STV);
if (ST) return ST;
// Value not found. Derive a new type!
StructTypes.add(STV, ST = new StructType(ETypes));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *ST << "\n";
#endif
return ST;
}
//===----------------------------------------------------------------------===//
// Pointer Type Factory...
//
// PointerValType - Define a class to hold the key that goes into the TypeMap
//
namespace llvm {
class PointerValType {
const Type *ValTy;
public:
PointerValType(const Type *val) : ValTy(val) {}
static PointerValType get(const PointerType *PT) {
return PointerValType(PT->getElementType());
}
static unsigned hashTypeStructure(const PointerType *PT) {
return 0;
}
// Subclass should override this... to update self as usual
void doRefinement(const DerivedType *OldType, const Type *NewType) {
assert(ValTy == OldType);
ValTy = NewType;
}
bool operator<(const PointerValType &MTV) const {
return ValTy < MTV.ValTy;
}
};
}
static TypeMap<PointerValType, PointerType> PointerTypes;
PointerType *PointerType::get(const Type *ValueType) {
assert(ValueType && "Can't get a pointer to <null> type!");
// FIXME: The sparc backend makes void pointers, which is horribly broken.
// "Fix" it, then reenable this assertion.
//assert(ValueType != Type::VoidTy &&
// "Pointer to void is not valid, use sbyte* instead!");
PointerValType PVT(ValueType);
PointerType *PT = PointerTypes.get(PVT);
if (PT) return PT;
// Value not found. Derive a new type!
PointerTypes.add(PVT, PT = new PointerType(ValueType));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *PT << "\n";
#endif
return PT;
}
//===----------------------------------------------------------------------===//
// Derived Type Refinement Functions
//===----------------------------------------------------------------------===//
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
// the PATypeHandle class. When there are no users of the abstract type, it
// is annihilated, because there is no way to get a reference to it ever again.
//
void DerivedType::removeAbstractTypeUser(AbstractTypeUser *U) const {
// Search from back to front because we will notify users from back to
// front. Also, it is likely that there will be a stack like behavior to
// users that register and unregister users.
//
unsigned i;
for (i = AbstractTypeUsers.size(); AbstractTypeUsers[i-1] != U; --i)
assert(i != 0 && "AbstractTypeUser not in user list!");
--i; // Convert to be in range 0 <= i < size()
assert(i < AbstractTypeUsers.size() && "Index out of range!"); // Wraparound?
AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i);
#ifdef DEBUG_MERGE_TYPES
std::cerr << " remAbstractTypeUser[" << (void*)this << ", "
<< *this << "][" << i << "] User = " << U << "\n";
#endif
if (AbstractTypeUsers.empty() && getRefCount() == 0 && isAbstract()) {
#ifdef DEBUG_MERGE_TYPES
std::cerr << "DELETEing unused abstract type: <" << *this
<< ">[" << (void*)this << "]" << "\n";
#endif
delete this; // No users of this abstract type!
}
}
// refineAbstractTypeTo - This function is used to when it is discovered that
// the 'this' abstract type is actually equivalent to the NewType specified.
// This causes all users of 'this' to switch to reference the more concrete type
// NewType and for 'this' to be deleted.
//
void DerivedType::refineAbstractTypeTo(const Type *NewType) {
assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!");
assert(this != NewType && "Can't refine to myself!");
assert(ForwardType == 0 && "This type has already been refined!");
// The descriptions may be out of date. Conservatively clear them all!
AbstractTypeDescriptions.clear();
#ifdef DEBUG_MERGE_TYPES
std::cerr << "REFINING abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewType << " "
<< *NewType << "]!\n";
#endif
// Make sure to put the type to be refined to into a holder so that if IT gets
// refined, that we will not continue using a dead reference...
//
PATypeHolder NewTy(NewType);
// Any PATypeHolders referring to this type will now automatically forward to
// the type we are resolved to.
ForwardType = NewType;
if (NewType->isAbstract())
cast<DerivedType>(NewType)->addRef();
// Add a self use of the current type so that we don't delete ourself until
// after the function exits.
//
PATypeHolder CurrentTy(this);
// To make the situation simpler, we ask the subclass to remove this type from
// the type map, and to replace any type uses with uses of non-abstract types.
// This dramatically limits the amount of recursive type trouble we can find
// ourselves in.
dropAllTypeUses();
// Iterate over all of the uses of this type, invoking callback. Each user
// should remove itself from our use list automatically. We have to check to
// make sure that NewTy doesn't _become_ 'this'. If it does, resolving types
// will not cause users to drop off of the use list. If we resolve to ourself
// we succeed!
//
while (!AbstractTypeUsers.empty() && NewTy != this) {
AbstractTypeUser *User = AbstractTypeUsers.back();
unsigned OldSize = AbstractTypeUsers.size();
#ifdef DEBUG_MERGE_TYPES
std::cerr << " REFINING user " << OldSize-1 << "[" << (void*)User
<< "] of abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewTy.get() << " "
<< *NewTy << "]!\n";
#endif
User->refineAbstractType(this, NewTy);
assert(AbstractTypeUsers.size() != OldSize &&
"AbsTyUser did not remove self from user list!");
}
// If we were successful removing all users from the type, 'this' will be
// deleted when the last PATypeHolder is destroyed or updated from this type.
// This may occur on exit of this function, as the CurrentTy object is
// destroyed.
}
// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type that
// the current type has transitioned from being abstract to being concrete.
//
void DerivedType::notifyUsesThatTypeBecameConcrete() {
#ifdef DEBUG_MERGE_TYPES
std::cerr << "typeIsREFINED type: " << (void*)this << " " << *this << "\n";
#endif
unsigned OldSize = AbstractTypeUsers.size();
while (!AbstractTypeUsers.empty()) {
AbstractTypeUser *ATU = AbstractTypeUsers.back();
ATU->typeBecameConcrete(this);
assert(AbstractTypeUsers.size() < OldSize-- &&
"AbstractTypeUser did not remove itself from the use list!");
}
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void FunctionType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
FunctionTypes.finishRefinement(this, OldType, NewType);
}
void FunctionType::typeBecameConcrete(const DerivedType *AbsTy) {
refineAbstractType(AbsTy, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void ArrayType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
ArrayTypes.finishRefinement(this, OldType, NewType);
}
void ArrayType::typeBecameConcrete(const DerivedType *AbsTy) {
refineAbstractType(AbsTy, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void PackedType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
PackedTypes.finishRefinement(this, OldType, NewType);
}
void PackedType::typeBecameConcrete(const DerivedType *AbsTy) {
refineAbstractType(AbsTy, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void StructType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
StructTypes.finishRefinement(this, OldType, NewType);
}
void StructType::typeBecameConcrete(const DerivedType *AbsTy) {
refineAbstractType(AbsTy, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void PointerType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
PointerTypes.finishRefinement(this, OldType, NewType);
}
void PointerType::typeBecameConcrete(const DerivedType *AbsTy) {
refineAbstractType(AbsTy, AbsTy);
}
bool SequentialType::indexValid(const Value *V) const {
const Type *Ty = V->getType();
switch (Ty->getTypeID()) {
case Type::IntTyID:
case Type::UIntTyID:
case Type::LongTyID:
case Type::ULongTyID:
return true;
default:
return false;
}
}
namespace llvm {
std::ostream &operator<<(std::ostream &OS, const Type *T) {
if (T == 0)
OS << "<null> value!\n";
else
T->print(OS);
return OS;
}
std::ostream &operator<<(std::ostream &OS, const Type &T) {
T.print(OS);
return OS;
}
}
/// clearAllTypeMaps - This method frees all internal memory used by the
/// type subsystem, which can be used in environments where this memory is
/// otherwise reported as a leak.
void Type::clearAllTypeMaps() {
std::vector<Type *> DerivedTypes;
FunctionTypes.clear(DerivedTypes);
PointerTypes.clear(DerivedTypes);
StructTypes.clear(DerivedTypes);
ArrayTypes.clear(DerivedTypes);
PackedTypes.clear(DerivedTypes);
for(std::vector<Type *>::iterator I = DerivedTypes.begin(),
E = DerivedTypes.end(); I != E; ++I)
(*I)->ContainedTys.clear();
for(std::vector<Type *>::iterator I = DerivedTypes.begin(),
E = DerivedTypes.end(); I != E; ++I)
delete *I;
DerivedTypes.clear();
}
// vim: sw=2