blob: 072cef2eb5a9895a9f5debbc20d2c4c53f892a8a [file] [log] [blame]
//===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transform is designed to eliminate unreachable internal globals from the
// program. It uses an aggressive algorithm, searching out globals that are
// known to be alive. After it finds all of the globals which are needed, it
// deletes whatever is left over. This allows it to delete recursive chunks of
// the program which are unreachable.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/ADT/Statistic.h"
#include <set>
using namespace llvm;
namespace {
Statistic<> NumFunctions("globaldce","Number of functions removed");
Statistic<> NumVariables("globaldce","Number of global variables removed");
struct GlobalDCE : public ModulePass {
// run - Do the GlobalDCE pass on the specified module, optionally updating
// the specified callgraph to reflect the changes.
//
bool runOnModule(Module &M);
private:
std::set<GlobalValue*> AliveGlobals;
/// MarkGlobalIsNeeded - the specific global value as needed, and
/// recursively mark anything that it uses as also needed.
void GlobalIsNeeded(GlobalValue *GV);
void MarkUsedGlobalsAsNeeded(Constant *C);
bool SafeToDestroyConstant(Constant* C);
bool RemoveUnusedGlobalValue(GlobalValue &GV);
};
RegisterOpt<GlobalDCE> X("globaldce", "Dead Global Elimination");
}
ModulePass *llvm::createGlobalDCEPass() { return new GlobalDCE(); }
bool GlobalDCE::runOnModule(Module &M) {
bool Changed = false;
// Loop over the module, adding globals which are obviously necessary.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
Changed |= RemoveUnusedGlobalValue(*I);
// Functions with external linkage are needed if they have a body
if ((!I->hasInternalLinkage() && !I->hasLinkOnceLinkage()) &&
!I->isExternal())
GlobalIsNeeded(I);
}
for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) {
Changed |= RemoveUnusedGlobalValue(*I);
// Externally visible & appending globals are needed, if they have an
// initializer.
if ((!I->hasInternalLinkage() && !I->hasLinkOnceLinkage()) &&
!I->isExternal())
GlobalIsNeeded(I);
}
// Now that all globals which are needed are in the AliveGlobals set, we loop
// through the program, deleting those which are not alive.
//
// The first pass is to drop initializers of global variables which are dead.
std::vector<GlobalVariable*> DeadGlobalVars; // Keep track of dead globals
for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I)
if (!AliveGlobals.count(I)) {
DeadGlobalVars.push_back(I); // Keep track of dead globals
I->setInitializer(0);
}
// The second pass drops the bodies of functions which are dead...
std::vector<Function*> DeadFunctions;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!AliveGlobals.count(I)) {
DeadFunctions.push_back(I); // Keep track of dead globals
if (!I->isExternal())
I->deleteBody();
}
if (!DeadFunctions.empty()) {
// Now that all interreferences have been dropped, delete the actual objects
// themselves.
for (unsigned i = 0, e = DeadFunctions.size(); i != e; ++i) {
RemoveUnusedGlobalValue(*DeadFunctions[i]);
M.getFunctionList().erase(DeadFunctions[i]);
}
NumFunctions += DeadFunctions.size();
Changed = true;
}
if (!DeadGlobalVars.empty()) {
for (unsigned i = 0, e = DeadGlobalVars.size(); i != e; ++i) {
RemoveUnusedGlobalValue(*DeadGlobalVars[i]);
M.getGlobalList().erase(DeadGlobalVars[i]);
}
NumVariables += DeadGlobalVars.size();
Changed = true;
}
// Make sure that all memory is released
AliveGlobals.clear();
return Changed;
}
/// MarkGlobalIsNeeded - the specific global value as needed, and
/// recursively mark anything that it uses as also needed.
void GlobalDCE::GlobalIsNeeded(GlobalValue *G) {
std::set<GlobalValue*>::iterator I = AliveGlobals.lower_bound(G);
// If the global is already in the set, no need to reprocess it.
if (I != AliveGlobals.end() && *I == G) return;
// Otherwise insert it now, so we do not infinitely recurse
AliveGlobals.insert(I, G);
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G)) {
// If this is a global variable, we must make sure to add any global values
// referenced by the initializer to the alive set.
if (GV->hasInitializer())
MarkUsedGlobalsAsNeeded(GV->getInitializer());
} else {
// Otherwise this must be a function object. We have to scan the body of
// the function looking for constants and global values which are used as
// operands. Any operands of these types must be processed to ensure that
// any globals used will be marked as needed.
Function *F = cast<Function>(G);
// For all basic blocks...
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
// For all instructions...
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
// For all operands...
for (User::op_iterator U = I->op_begin(), E = I->op_end(); U != E; ++U)
if (GlobalValue *GV = dyn_cast<GlobalValue>(*U))
GlobalIsNeeded(GV);
else if (Constant *C = dyn_cast<Constant>(*U))
MarkUsedGlobalsAsNeeded(C);
}
}
void GlobalDCE::MarkUsedGlobalsAsNeeded(Constant *C) {
if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
GlobalIsNeeded(GV);
else {
// Loop over all of the operands of the constant, adding any globals they
// use to the list of needed globals.
for (User::op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I)
MarkUsedGlobalsAsNeeded(cast<Constant>(*I));
}
}
// RemoveUnusedGlobalValue - Loop over all of the uses of the specified
// GlobalValue, looking for the constant pointer ref that may be pointing to it.
// If found, check to see if the constant pointer ref is safe to destroy, and if
// so, nuke it. This will reduce the reference count on the global value, which
// might make it deader.
//
bool GlobalDCE::RemoveUnusedGlobalValue(GlobalValue &GV) {
if (GV.use_empty()) return false;
GV.removeDeadConstantUsers();
return GV.use_empty();
}
// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
// by constants itself. Note that constants cannot be cyclic, so this test is
// pretty easy to implement recursively.
//
bool GlobalDCE::SafeToDestroyConstant(Constant *C) {
for (Value::use_iterator I = C->use_begin(), E = C->use_end(); I != E; ++I)
if (Constant *User = dyn_cast<Constant>(*I)) {
if (!SafeToDestroyConstant(User)) return false;
} else {
return false;
}
return true;
}