blob: b92c5dcaf5457e513b1f3d8bad4ded4b4a4b65b6 [file] [log] [blame]
//===-- Type.cpp - Implement the Type class -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Type class for the VMCore library.
//
//===----------------------------------------------------------------------===//
#include "llvm/DerivedTypes.h"
#include "llvm/SymbolTable.h"
#include "llvm/Constants.h"
#include "Support/StringExtras.h"
#include "Support/STLExtras.h"
#include <algorithm>
// DEBUG_MERGE_TYPES - Enable this #define to see how and when derived types are
// created and later destroyed, all in an effort to make sure that there is only
// a single canonical version of a type.
//
//#define DEBUG_MERGE_TYPES 1
//===----------------------------------------------------------------------===//
// Type Class Implementation
//===----------------------------------------------------------------------===//
static unsigned CurUID = 0;
static std::vector<const Type *> UIDMappings;
// Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions
// for types as they are needed. Because resolution of types must invalidate
// all of the abstract type descriptions, we keep them in a seperate map to make
// this easy.
static std::map<const Type*, std::string> ConcreteTypeDescriptions;
static std::map<const Type*, std::string> AbstractTypeDescriptions;
Type::Type(const std::string &name, PrimitiveID id)
: Value(Type::TypeTy, Value::TypeVal), ForwardType(0) {
if (!name.empty())
ConcreteTypeDescriptions[this] = name;
ID = id;
Abstract = false;
UID = CurUID++; // Assign types UID's as they are created
UIDMappings.push_back(this);
}
void Type::setName(const std::string &Name, SymbolTable *ST) {
assert(ST && "Type::setName - Must provide symbol table argument!");
if (Name.size()) ST->insert(Name, this);
}
const Type *Type::getUniqueIDType(unsigned UID) {
assert(UID < UIDMappings.size() &&
"Type::getPrimitiveType: UID out of range!");
return UIDMappings[UID];
}
const Type *Type::getPrimitiveType(PrimitiveID IDNumber) {
switch (IDNumber) {
case VoidTyID : return VoidTy;
case BoolTyID : return BoolTy;
case UByteTyID : return UByteTy;
case SByteTyID : return SByteTy;
case UShortTyID: return UShortTy;
case ShortTyID : return ShortTy;
case UIntTyID : return UIntTy;
case IntTyID : return IntTy;
case ULongTyID : return ULongTy;
case LongTyID : return LongTy;
case FloatTyID : return FloatTy;
case DoubleTyID: return DoubleTy;
case TypeTyID : return TypeTy;
case LabelTyID : return LabelTy;
default:
return 0;
}
}
// isLosslesslyConvertibleTo - Return true if this type can be converted to
// 'Ty' without any reinterpretation of bits. For example, uint to int.
//
bool Type::isLosslesslyConvertibleTo(const Type *Ty) const {
if (this == Ty) return true;
if ((!isPrimitiveType() && !isa<PointerType>(this)) ||
(!isa<PointerType>(Ty) && !Ty->isPrimitiveType())) return false;
if (getPrimitiveID() == Ty->getPrimitiveID())
return true; // Handles identity cast, and cast of differing pointer types
// Now we know that they are two differing primitive or pointer types
switch (getPrimitiveID()) {
case Type::UByteTyID: return Ty == Type::SByteTy;
case Type::SByteTyID: return Ty == Type::UByteTy;
case Type::UShortTyID: return Ty == Type::ShortTy;
case Type::ShortTyID: return Ty == Type::UShortTy;
case Type::UIntTyID: return Ty == Type::IntTy;
case Type::IntTyID: return Ty == Type::UIntTy;
case Type::ULongTyID:
case Type::LongTyID:
case Type::PointerTyID:
return Ty == Type::ULongTy || Ty == Type::LongTy || isa<PointerType>(Ty);
default:
return false; // Other types have no identity values
}
}
// getPrimitiveSize - Return the basic size of this type if it is a primitive
// type. These are fixed by LLVM and are not target dependent. This will
// return zero if the type does not have a size or is not a primitive type.
//
unsigned Type::getPrimitiveSize() const {
switch (getPrimitiveID()) {
#define HANDLE_PRIM_TYPE(TY,SIZE) case TY##TyID: return SIZE;
#include "llvm/Type.def"
default: return 0;
}
}
/// getForwardedTypeInternal - This method is used to implement the union-find
/// algorithm for when a type is being forwarded to another type.
const Type *Type::getForwardedTypeInternal() const {
assert(ForwardType && "This type is not being forwarded to another type!");
// Check to see if the forwarded type has been forwarded on. If so, collapse
// the forwarding links.
const Type *RealForwardedType = ForwardType->getForwardedType();
if (!RealForwardedType)
return ForwardType; // No it's not forwarded again
// Yes, it is forwarded again. First thing, add the reference to the new
// forward type.
if (RealForwardedType->isAbstract())
cast<DerivedType>(RealForwardedType)->addRef();
// Now drop the old reference. This could cause ForwardType to get deleted.
cast<DerivedType>(ForwardType)->dropRef();
// Return the updated type.
ForwardType = RealForwardedType;
return ForwardType;
}
// getTypeDescription - This is a recursive function that walks a type hierarchy
// calculating the description for a type.
//
static std::string getTypeDescription(const Type *Ty,
std::vector<const Type *> &TypeStack) {
if (isa<OpaqueType>(Ty)) { // Base case for the recursion
std::map<const Type*, std::string>::iterator I =
AbstractTypeDescriptions.lower_bound(Ty);
if (I != AbstractTypeDescriptions.end() && I->first == Ty)
return I->second;
std::string Desc = "opaque"+utostr(Ty->getUniqueID());
AbstractTypeDescriptions.insert(std::make_pair(Ty, Desc));
return Desc;
}
if (!Ty->isAbstract()) { // Base case for the recursion
std::map<const Type*, std::string>::iterator I =
ConcreteTypeDescriptions.find(Ty);
if (I != ConcreteTypeDescriptions.end()) return I->second;
}
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
//
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot); // Here's the upreference
// Recursive case: derived types...
std::string Result;
TypeStack.push_back(Ty); // Add us to the stack..
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
Result = getTypeDescription(FTy->getReturnType(), TypeStack) + " (";
for (FunctionType::ParamTypes::const_iterator
I = FTy->getParamTypes().begin(),
E = FTy->getParamTypes().end(); I != E; ++I) {
if (I != FTy->getParamTypes().begin())
Result += ", ";
Result += getTypeDescription(*I, TypeStack);
}
if (FTy->isVarArg()) {
if (!FTy->getParamTypes().empty()) Result += ", ";
Result += "...";
}
Result += ")";
break;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
Result = "{ ";
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
if (I != STy->getElementTypes().begin())
Result += ", ";
Result += getTypeDescription(*I, TypeStack);
}
Result += " }";
break;
}
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(Ty);
Result = getTypeDescription(PTy->getElementType(), TypeStack) + " *";
break;
}
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
unsigned NumElements = ATy->getNumElements();
Result = "[";
Result += utostr(NumElements) + " x ";
Result += getTypeDescription(ATy->getElementType(), TypeStack) + "]";
break;
}
default:
Result = "<error>";
assert(0 && "Unhandled type in getTypeDescription!");
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
static const std::string &getOrCreateDesc(std::map<const Type*,std::string>&Map,
const Type *Ty) {
std::map<const Type*, std::string>::iterator I = Map.find(Ty);
if (I != Map.end()) return I->second;
std::vector<const Type *> TypeStack;
return Map[Ty] = getTypeDescription(Ty, TypeStack);
}
const std::string &Type::getDescription() const {
if (isAbstract())
return getOrCreateDesc(AbstractTypeDescriptions, this);
else
return getOrCreateDesc(ConcreteTypeDescriptions, this);
}
bool StructType::indexValid(const Value *V) const {
if (!isa<Constant>(V)) return false;
if (V->getType() != Type::UByteTy) return false;
unsigned Idx = cast<ConstantUInt>(V)->getValue();
return Idx < ETypes.size();
}
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For a structure type, this must be a constant value...
//
const Type *StructType::getTypeAtIndex(const Value *V) const {
assert(isa<Constant>(V) && "Structure index must be a constant!!");
assert(V->getType() == Type::UByteTy && "Structure index must be ubyte!");
unsigned Idx = cast<ConstantUInt>(V)->getValue();
assert(Idx < ETypes.size() && "Structure index out of range!");
assert(indexValid(V) && "Invalid structure index!"); // Duplicate check
return ETypes[Idx];
}
//===----------------------------------------------------------------------===//
// Auxiliary classes
//===----------------------------------------------------------------------===//
//
// These classes are used to implement specialized behavior for each different
// type.
//
struct SignedIntType : public Type {
SignedIntType(const std::string &Name, PrimitiveID id) : Type(Name, id) {}
// isSigned - Return whether a numeric type is signed.
virtual bool isSigned() const { return 1; }
// isInteger - Equivalent to isSigned() || isUnsigned, but with only a single
// virtual function invocation.
//
virtual bool isInteger() const { return 1; }
};
struct UnsignedIntType : public Type {
UnsignedIntType(const std::string &N, PrimitiveID id) : Type(N, id) {}
// isUnsigned - Return whether a numeric type is signed.
virtual bool isUnsigned() const { return 1; }
// isInteger - Equivalent to isSigned() || isUnsigned, but with only a single
// virtual function invocation.
//
virtual bool isInteger() const { return 1; }
};
struct OtherType : public Type {
OtherType(const std::string &N, PrimitiveID id) : Type(N, id) {}
};
static struct TypeType : public Type {
TypeType() : Type("type", TypeTyID) {}
} TheTypeTy; // Implement the type that is global.
//===----------------------------------------------------------------------===//
// Static 'Type' data
//===----------------------------------------------------------------------===//
static OtherType TheVoidTy ("void" , Type::VoidTyID);
static OtherType TheBoolTy ("bool" , Type::BoolTyID);
static SignedIntType TheSByteTy ("sbyte" , Type::SByteTyID);
static UnsignedIntType TheUByteTy ("ubyte" , Type::UByteTyID);
static SignedIntType TheShortTy ("short" , Type::ShortTyID);
static UnsignedIntType TheUShortTy("ushort", Type::UShortTyID);
static SignedIntType TheIntTy ("int" , Type::IntTyID);
static UnsignedIntType TheUIntTy ("uint" , Type::UIntTyID);
static SignedIntType TheLongTy ("long" , Type::LongTyID);
static UnsignedIntType TheULongTy ("ulong" , Type::ULongTyID);
static OtherType TheFloatTy ("float" , Type::FloatTyID);
static OtherType TheDoubleTy("double", Type::DoubleTyID);
static OtherType TheLabelTy ("label" , Type::LabelTyID);
Type *Type::VoidTy = &TheVoidTy;
Type *Type::BoolTy = &TheBoolTy;
Type *Type::SByteTy = &TheSByteTy;
Type *Type::UByteTy = &TheUByteTy;
Type *Type::ShortTy = &TheShortTy;
Type *Type::UShortTy = &TheUShortTy;
Type *Type::IntTy = &TheIntTy;
Type *Type::UIntTy = &TheUIntTy;
Type *Type::LongTy = &TheLongTy;
Type *Type::ULongTy = &TheULongTy;
Type *Type::FloatTy = &TheFloatTy;
Type *Type::DoubleTy = &TheDoubleTy;
Type *Type::TypeTy = &TheTypeTy;
Type *Type::LabelTy = &TheLabelTy;
//===----------------------------------------------------------------------===//
// Derived Type Constructors
//===----------------------------------------------------------------------===//
FunctionType::FunctionType(const Type *Result,
const std::vector<const Type*> &Params,
bool IsVarArgs) : DerivedType(FunctionTyID),
ResultType(PATypeHandle(Result, this)),
isVarArgs(IsVarArgs) {
bool isAbstract = Result->isAbstract();
ParamTys.reserve(Params.size());
for (unsigned i = 0; i < Params.size(); ++i) {
ParamTys.push_back(PATypeHandle(Params[i], this));
isAbstract |= Params[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
StructType::StructType(const std::vector<const Type*> &Types)
: CompositeType(StructTyID) {
ETypes.reserve(Types.size());
bool isAbstract = false;
for (unsigned i = 0; i < Types.size(); ++i) {
assert(Types[i] != Type::VoidTy && "Void type in method prototype!!");
ETypes.push_back(PATypeHandle(Types[i], this));
isAbstract |= Types[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
ArrayType::ArrayType(const Type *ElType, unsigned NumEl)
: SequentialType(ArrayTyID, ElType) {
NumElements = NumEl;
// Calculate whether or not this type is abstract
setAbstract(ElType->isAbstract());
}
PointerType::PointerType(const Type *E) : SequentialType(PointerTyID, E) {
// Calculate whether or not this type is abstract
setAbstract(E->isAbstract());
}
OpaqueType::OpaqueType() : DerivedType(OpaqueTyID) {
setAbstract(true);
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *this << "\n";
#endif
}
// getAlwaysOpaqueTy - This function returns an opaque type. It doesn't matter
// _which_ opaque type it is, but the opaque type must never get resolved.
//
static Type *getAlwaysOpaqueTy() {
static Type *AlwaysOpaqueTy = OpaqueType::get();
static PATypeHolder Holder(AlwaysOpaqueTy);
return AlwaysOpaqueTy;
}
//===----------------------------------------------------------------------===//
// dropAllTypeUses methods - These methods eliminate any possibly recursive type
// references from a derived type. The type must remain abstract, so we make
// sure to use an always opaque type as an argument.
//
void FunctionType::dropAllTypeUses() {
ResultType = getAlwaysOpaqueTy();
ParamTys.clear();
}
void ArrayType::dropAllTypeUses() {
ElementType = getAlwaysOpaqueTy();
}
void StructType::dropAllTypeUses() {
ETypes.clear();
ETypes.push_back(PATypeHandle(getAlwaysOpaqueTy(), this));
}
void PointerType::dropAllTypeUses() {
ElementType = getAlwaysOpaqueTy();
}
// isTypeAbstract - This is a recursive function that walks a type hierarchy
// calculating whether or not a type is abstract. Worst case it will have to do
// a lot of traversing if you have some whacko opaque types, but in most cases,
// it will do some simple stuff when it hits non-abstract types that aren't
// recursive.
//
bool Type::isTypeAbstract() {
if (!isAbstract()) // Base case for the recursion
return false; // Primitive = leaf type
if (isa<OpaqueType>(this)) // Base case for the recursion
return true; // This whole type is abstract!
// We have to guard against recursion. To do this, we temporarily mark this
// type as concrete, so that if we get back to here recursively we will think
// it's not abstract, and thus not scan it again.
setAbstract(false);
// Scan all of the sub-types. If any of them are abstract, than so is this
// one!
for (Type::subtype_iterator I = subtype_begin(), E = subtype_end();
I != E; ++I)
if (const_cast<Type*>(*I)->isTypeAbstract()) {
setAbstract(true); // Restore the abstract bit.
return true; // This type is abstract if subtype is abstract!
}
// Restore the abstract bit.
setAbstract(true);
// Nothing looks abstract here...
return false;
}
//===----------------------------------------------------------------------===//
// Type Structural Equality Testing
//===----------------------------------------------------------------------===//
// TypesEqual - Two types are considered structurally equal if they have the
// same "shape": Every level and element of the types have identical primitive
// ID's, and the graphs have the same edges/nodes in them. Nodes do not have to
// be pointer equals to be equivalent though. This uses an optimistic algorithm
// that assumes that two graphs are the same until proven otherwise.
//
static bool TypesEqual(const Type *Ty, const Type *Ty2,
std::map<const Type *, const Type *> &EqTypes) {
if (Ty == Ty2) return true;
if (Ty->getPrimitiveID() != Ty2->getPrimitiveID()) return false;
if (Ty->isPrimitiveType()) return true;
if (isa<OpaqueType>(Ty))
return false; // Two unequal opaque types are never equal
std::map<const Type*, const Type*>::iterator It = EqTypes.lower_bound(Ty);
if (It != EqTypes.end() && It->first == Ty)
return It->second == Ty2; // Looping back on a type, check for equality
// Otherwise, add the mapping to the table to make sure we don't get
// recursion on the types...
EqTypes.insert(It, std::make_pair(Ty, Ty2));
// Two really annoying special cases that breaks an otherwise nice simple
// algorithm is the fact that arraytypes have sizes that differentiates types,
// and that function types can be varargs or not. Consider this now.
//
if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
return TypesEqual(PTy->getElementType(),
cast<PointerType>(Ty2)->getElementType(), EqTypes);
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructType::ElementTypes &STyE = STy->getElementTypes();
const StructType::ElementTypes &STyE2 =
cast<StructType>(Ty2)->getElementTypes();
if (STyE.size() != STyE2.size()) return false;
for (unsigned i = 0, e = STyE.size(); i != e; ++i)
if (!TypesEqual(STyE[i], STyE2[i], EqTypes))
return false;
return true;
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
const ArrayType *ATy2 = cast<ArrayType>(Ty2);
return ATy->getNumElements() == ATy2->getNumElements() &&
TypesEqual(ATy->getElementType(), ATy2->getElementType(), EqTypes);
} else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
if (FTy->isVarArg() != FTy2->isVarArg() ||
FTy->getParamTypes().size() != FTy2->getParamTypes().size() ||
!TypesEqual(FTy->getReturnType(), FTy2->getReturnType(), EqTypes))
return false;
const FunctionType::ParamTypes &FTyP = FTy->getParamTypes();
const FunctionType::ParamTypes &FTy2P = FTy2->getParamTypes();
for (unsigned i = 0, e = FTyP.size(); i != e; ++i)
if (!TypesEqual(FTyP[i], FTy2P[i], EqTypes))
return false;
return true;
} else {
assert(0 && "Unknown derived type!");
return false;
}
}
static bool TypesEqual(const Type *Ty, const Type *Ty2) {
std::map<const Type *, const Type *> EqTypes;
return TypesEqual(Ty, Ty2, EqTypes);
}
//===----------------------------------------------------------------------===//
// Derived Type Factory Functions
//===----------------------------------------------------------------------===//
// TypeMap - Make sure that only one instance of a particular type may be
// created on any given run of the compiler... note that this involves updating
// our map if an abstract type gets refined somehow...
//
template<class ValType, class TypeClass>
class TypeMap {
typedef std::map<ValType, TypeClass *> MapTy;
MapTy Map;
public:
typedef typename MapTy::iterator iterator;
~TypeMap() { print("ON EXIT"); }
inline TypeClass *get(const ValType &V) {
iterator I = Map.find(V);
return I != Map.end() ? I->second : 0;
}
inline void add(const ValType &V, TypeClass *T) {
Map.insert(std::make_pair(V, T));
print("add");
}
iterator getEntryForType(TypeClass *Ty) {
iterator I = Map.find(ValType::get(Ty));
if (I == Map.end()) print("ERROR!");
assert(I != Map.end() && "Didn't find type entry!");
assert(I->second == Ty && "Type entry wrong?");
return I;
}
void finishRefinement(iterator TyIt) {
TypeClass *Ty = TyIt->second;
// The old record is now out-of-date, because one of the children has been
// updated. Remove the obsolete entry from the map.
Map.erase(TyIt);
// Now we check to see if there is an existing entry in the table which is
// structurally identical to the newly refined type. If so, this type gets
// refined to the pre-existing type.
//
for (iterator I = Map.begin(), E = Map.end(); I != E; ++I)
if (TypesEqual(Ty, I->second)) {
assert(Ty->isAbstract() && "Replacing a non-abstract type?");
TypeClass *NewTy = I->second;
// Refined to a different type altogether?
Ty->refineAbstractTypeTo(NewTy);
return;
}
// If there is no existing type of the same structure, we reinsert an
// updated record into the map.
Map.insert(std::make_pair(ValType::get(Ty), Ty));
// If the type is currently thought to be abstract, rescan all of our
// subtypes to see if the type has just become concrete!
if (Ty->isAbstract()) {
Ty->setAbstract(Ty->isTypeAbstract());
// If the type just became concrete, notify all users!
if (!Ty->isAbstract())
Ty->notifyUsesThatTypeBecameConcrete();
}
}
void remove(const ValType &OldVal) {
iterator I = Map.find(OldVal);
assert(I != Map.end() && "TypeMap::remove, element not found!");
Map.erase(I);
}
void remove(iterator I) {
assert(I != Map.end() && "Cannot remove invalid iterator pointer!");
Map.erase(I);
}
void print(const char *Arg) const {
#ifdef DEBUG_MERGE_TYPES
std::cerr << "TypeMap<>::" << Arg << " table contents:\n";
unsigned i = 0;
for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
I != E; ++I)
std::cerr << " " << (++i) << ". " << (void*)I->second << " "
<< *I->second << "\n";
#endif
}
void dump() const { print("dump output"); }
};
//===----------------------------------------------------------------------===//
// Function Type Factory and Value Class...
//
// FunctionValType - Define a class to hold the key that goes into the TypeMap
//
class FunctionValType {
const Type *RetTy;
std::vector<const Type*> ArgTypes;
bool isVarArg;
public:
FunctionValType(const Type *ret, const std::vector<const Type*> &args,
bool IVA) : RetTy(ret), isVarArg(IVA) {
for (unsigned i = 0; i < args.size(); ++i)
ArgTypes.push_back(args[i]);
}
static FunctionValType get(const FunctionType *FT);
// Subclass should override this... to update self as usual
void doRefinement(const DerivedType *OldType, const Type *NewType) {
if (RetTy == OldType) RetTy = NewType;
for (unsigned i = 0, e = ArgTypes.size(); i != e; ++i)
if (ArgTypes[i] == OldType) ArgTypes[i] = NewType;
}
inline bool operator<(const FunctionValType &MTV) const {
if (RetTy < MTV.RetTy) return true;
if (RetTy > MTV.RetTy) return false;
if (ArgTypes < MTV.ArgTypes) return true;
return ArgTypes == MTV.ArgTypes && isVarArg < MTV.isVarArg;
}
};
// Define the actual map itself now...
static TypeMap<FunctionValType, FunctionType> FunctionTypes;
FunctionValType FunctionValType::get(const FunctionType *FT) {
// Build up a FunctionValType
std::vector<const Type *> ParamTypes;
ParamTypes.reserve(FT->getParamTypes().size());
for (unsigned i = 0, e = FT->getParamTypes().size(); i != e; ++i)
ParamTypes.push_back(FT->getParamType(i));
return FunctionValType(FT->getReturnType(), ParamTypes, FT->isVarArg());
}
// FunctionType::get - The factory function for the FunctionType class...
FunctionType *FunctionType::get(const Type *ReturnType,
const std::vector<const Type*> &Params,
bool isVarArg) {
FunctionValType VT(ReturnType, Params, isVarArg);
FunctionType *MT = FunctionTypes.get(VT);
if (MT) return MT;
FunctionTypes.add(VT, MT = new FunctionType(ReturnType, Params, isVarArg));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << MT << "\n";
#endif
return MT;
}
//===----------------------------------------------------------------------===//
// Array Type Factory...
//
class ArrayValType {
const Type *ValTy;
unsigned Size;
public:
ArrayValType(const Type *val, int sz) : ValTy(val), Size(sz) {}
static ArrayValType get(const ArrayType *AT) {
return ArrayValType(AT->getElementType(), AT->getNumElements());
}
// Subclass should override this... to update self as usual
void doRefinement(const DerivedType *OldType, const Type *NewType) {
assert(ValTy == OldType);
ValTy = NewType;
}
inline bool operator<(const ArrayValType &MTV) const {
if (Size < MTV.Size) return true;
return Size == MTV.Size && ValTy < MTV.ValTy;
}
};
static TypeMap<ArrayValType, ArrayType> ArrayTypes;
ArrayType *ArrayType::get(const Type *ElementType, unsigned NumElements) {
assert(ElementType && "Can't get array of null types!");
ArrayValType AVT(ElementType, NumElements);
ArrayType *AT = ArrayTypes.get(AVT);
if (AT) return AT; // Found a match, return it!
// Value not found. Derive a new type!
ArrayTypes.add(AVT, AT = new ArrayType(ElementType, NumElements));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *AT << "\n";
#endif
return AT;
}
//===----------------------------------------------------------------------===//
// Struct Type Factory...
//
// StructValType - Define a class to hold the key that goes into the TypeMap
//
class StructValType {
std::vector<const Type*> ElTypes;
public:
StructValType(const std::vector<const Type*> &args) : ElTypes(args) {}
static StructValType get(const StructType *ST) {
std::vector<const Type *> ElTypes;
ElTypes.reserve(ST->getElementTypes().size());
for (unsigned i = 0, e = ST->getElementTypes().size(); i != e; ++i)
ElTypes.push_back(ST->getElementTypes()[i]);
return StructValType(ElTypes);
}
// Subclass should override this... to update self as usual
void doRefinement(const DerivedType *OldType, const Type *NewType) {
for (unsigned i = 0; i < ElTypes.size(); ++i)
if (ElTypes[i] == OldType) ElTypes[i] = NewType;
}
inline bool operator<(const StructValType &STV) const {
return ElTypes < STV.ElTypes;
}
};
static TypeMap<StructValType, StructType> StructTypes;
StructType *StructType::get(const std::vector<const Type*> &ETypes) {
StructValType STV(ETypes);
StructType *ST = StructTypes.get(STV);
if (ST) return ST;
// Value not found. Derive a new type!
StructTypes.add(STV, ST = new StructType(ETypes));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *ST << "\n";
#endif
return ST;
}
//===----------------------------------------------------------------------===//
// Pointer Type Factory...
//
// PointerValType - Define a class to hold the key that goes into the TypeMap
//
class PointerValType {
const Type *ValTy;
public:
PointerValType(const Type *val) : ValTy(val) {}
static PointerValType get(const PointerType *PT) {
return PointerValType(PT->getElementType());
}
// Subclass should override this... to update self as usual
void doRefinement(const DerivedType *OldType, const Type *NewType) {
assert(ValTy == OldType);
ValTy = NewType;
}
bool operator<(const PointerValType &MTV) const {
return ValTy < MTV.ValTy;
}
};
static TypeMap<PointerValType, PointerType> PointerTypes;
PointerType *PointerType::get(const Type *ValueType) {
assert(ValueType && "Can't get a pointer to <null> type!");
PointerValType PVT(ValueType);
PointerType *PT = PointerTypes.get(PVT);
if (PT) return PT;
// Value not found. Derive a new type!
PointerTypes.add(PVT, PT = new PointerType(ValueType));
#ifdef DEBUG_MERGE_TYPES
std::cerr << "Derived new type: " << *PT << "\n";
#endif
return PT;
}
void debug_type_tables() {
FunctionTypes.dump();
ArrayTypes.dump();
StructTypes.dump();
PointerTypes.dump();
}
//===----------------------------------------------------------------------===//
// Derived Type Refinement Functions
//===----------------------------------------------------------------------===//
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
// the PATypeHandle class. When there are no users of the abstract type, it
// is annihilated, because there is no way to get a reference to it ever again.
//
void DerivedType::removeAbstractTypeUser(AbstractTypeUser *U) const {
// Search from back to front because we will notify users from back to
// front. Also, it is likely that there will be a stack like behavior to
// users that register and unregister users.
//
unsigned i;
for (i = AbstractTypeUsers.size(); AbstractTypeUsers[i-1] != U; --i)
assert(i != 0 && "AbstractTypeUser not in user list!");
--i; // Convert to be in range 0 <= i < size()
assert(i < AbstractTypeUsers.size() && "Index out of range!"); // Wraparound?
AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i);
#ifdef DEBUG_MERGE_TYPES
std::cerr << " remAbstractTypeUser[" << (void*)this << ", "
<< *this << "][" << i << "] User = " << U << "\n";
#endif
if (AbstractTypeUsers.empty() && RefCount == 0 && isAbstract()) {
#ifdef DEBUG_MERGE_TYPES
std::cerr << "DELETEing unused abstract type: <" << *this
<< ">[" << (void*)this << "]" << "\n";
#endif
delete this; // No users of this abstract type!
}
}
// refineAbstractTypeTo - This function is used to when it is discovered that
// the 'this' abstract type is actually equivalent to the NewType specified.
// This causes all users of 'this' to switch to reference the more concrete type
// NewType and for 'this' to be deleted.
//
void DerivedType::refineAbstractTypeTo(const Type *NewType) {
assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!");
assert(this != NewType && "Can't refine to myself!");
assert(ForwardType == 0 && "This type has already been refined!");
// The descriptions may be out of date. Conservatively clear them all!
AbstractTypeDescriptions.clear();
#ifdef DEBUG_MERGE_TYPES
std::cerr << "REFINING abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewType << " "
<< *NewType << "]!\n";
#endif
// Make sure to put the type to be refined to into a holder so that if IT gets
// refined, that we will not continue using a dead reference...
//
PATypeHolder NewTy(NewType);
// Any PATypeHolders referring to this type will now automatically forward to
// the type we are resolved to.
ForwardType = NewType;
if (NewType->isAbstract())
cast<DerivedType>(NewType)->addRef();
// Add a self use of the current type so that we don't delete ourself until
// after the function exits.
//
PATypeHolder CurrentTy(this);
// To make the situation simpler, we ask the subclass to remove this type from
// the type map, and to replace any type uses with uses of non-abstract types.
// This dramatically limits the amount of recursive type trouble we can find
// ourselves in.
dropAllTypeUses();
// Iterate over all of the uses of this type, invoking callback. Each user
// should remove itself from our use list automatically. We have to check to
// make sure that NewTy doesn't _become_ 'this'. If it does, resolving types
// will not cause users to drop off of the use list. If we resolve to ourself
// we succeed!
//
while (!AbstractTypeUsers.empty() && NewTy != this) {
AbstractTypeUser *User = AbstractTypeUsers.back();
unsigned OldSize = AbstractTypeUsers.size();
#ifdef DEBUG_MERGE_TYPES
std::cerr << " REFINING user " << OldSize-1 << "[" << (void*)User
<< "] of abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewTy.get() << " "
<< *NewTy << "]!\n";
#endif
User->refineAbstractType(this, NewTy);
assert(AbstractTypeUsers.size() != OldSize &&
"AbsTyUser did not remove self from user list!");
}
// If we were successful removing all users from the type, 'this' will be
// deleted when the last PATypeHolder is destroyed or updated from this type.
// This may occur on exit of this function, as the CurrentTy object is
// destroyed.
}
// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type that
// the current type has transitioned from being abstract to being concrete.
//
void DerivedType::notifyUsesThatTypeBecameConcrete() {
#ifdef DEBUG_MERGE_TYPES
std::cerr << "typeIsREFINED type: " << (void*)this << " " << *this << "\n";
#endif
unsigned OldSize = AbstractTypeUsers.size();
while (!AbstractTypeUsers.empty()) {
AbstractTypeUser *ATU = AbstractTypeUsers.back();
ATU->typeBecameConcrete(this);
assert(AbstractTypeUsers.size() < OldSize-- &&
"AbstractTypeUser did not remove itself from the use list!");
}
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void FunctionType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
assert((isAbstract() || !OldType->isAbstract()) &&
"Refining a non-abstract type!");
#ifdef DEBUG_MERGE_TYPES
std::cerr << "FunctionTy::refineAbstractTy(" << (void*)OldType << "["
<< *OldType << "], " << (void*)NewType << " ["
<< *NewType << "])\n";
#endif
// Look up our current type map entry..
TypeMap<FunctionValType, FunctionType>::iterator TMI =
FunctionTypes.getEntryForType(this);
// Find the type element we are refining...
if (ResultType == OldType) {
ResultType.removeUserFromConcrete();
ResultType = NewType;
}
for (unsigned i = 0, e = ParamTys.size(); i != e; ++i)
if (ParamTys[i] == OldType) {
ParamTys[i].removeUserFromConcrete();
ParamTys[i] = NewType;
}
FunctionTypes.finishRefinement(TMI);
}
void FunctionType::typeBecameConcrete(const DerivedType *AbsTy) {
refineAbstractType(AbsTy, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void ArrayType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
assert((isAbstract() || !OldType->isAbstract()) &&
"Refining a non-abstract type!");
#ifdef DEBUG_MERGE_TYPES
std::cerr << "ArrayTy::refineAbstractTy(" << (void*)OldType << "["
<< *OldType << "], " << (void*)NewType << " ["
<< *NewType << "])\n";
#endif
// Look up our current type map entry..
TypeMap<ArrayValType, ArrayType>::iterator TMI =
ArrayTypes.getEntryForType(this);
assert(getElementType() == OldType);
ElementType.removeUserFromConcrete();
ElementType = NewType;
ArrayTypes.finishRefinement(TMI);
}
void ArrayType::typeBecameConcrete(const DerivedType *AbsTy) {
refineAbstractType(AbsTy, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void StructType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
assert((isAbstract() || !OldType->isAbstract()) &&
"Refining a non-abstract type!");
#ifdef DEBUG_MERGE_TYPES
std::cerr << "StructTy::refineAbstractTy(" << (void*)OldType << "["
<< *OldType << "], " << (void*)NewType << " ["
<< *NewType << "])\n";
#endif
// Look up our current type map entry..
TypeMap<StructValType, StructType>::iterator TMI =
StructTypes.getEntryForType(this);
for (int i = ETypes.size()-1; i >= 0; --i)
if (ETypes[i] == OldType) {
ETypes[i].removeUserFromConcrete();
// Update old type to new type in the array...
ETypes[i] = NewType;
}
StructTypes.finishRefinement(TMI);
}
void StructType::typeBecameConcrete(const DerivedType *AbsTy) {
refineAbstractType(AbsTy, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void PointerType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
assert((isAbstract() || !OldType->isAbstract()) &&
"Refining a non-abstract type!");
#ifdef DEBUG_MERGE_TYPES
std::cerr << "PointerTy::refineAbstractTy(" << (void*)OldType << "["
<< *OldType << "], " << (void*)NewType << " ["
<< *NewType << "])\n";
#endif
// Look up our current type map entry..
TypeMap<PointerValType, PointerType>::iterator TMI =
PointerTypes.getEntryForType(this);
assert(ElementType == OldType);
ElementType.removeUserFromConcrete();
ElementType = NewType;
PointerTypes.finishRefinement(TMI);
}
void PointerType::typeBecameConcrete(const DerivedType *AbsTy) {
refineAbstractType(AbsTy, AbsTy);
}