blob: 1744fe41b2df4b1dad83da77c42fedeea2328c2a [file] [log] [blame]
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Guarantees that all loops with identifiable, linear, induction variables will
// be transformed to have a single, canonical, induction variable. After this
// pass runs, it guarantees the the first PHI node of the header block in the
// loop is the canonical induction variable if there is one.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Analysis/InductionVariable.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Support/CFG.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
namespace {
Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
Statistic<> NumInserted("indvars", "Number of canonical indvars added");
}
// InsertCast - Cast Val to Ty, setting a useful name on the cast if Val has a
// name...
//
static Instruction *InsertCast(Value *Val, const Type *Ty,
Instruction *InsertBefore) {
return new CastInst(Val, Ty, Val->getName()+"-casted", InsertBefore);
}
static bool TransformLoop(LoopInfo *Loops, Loop *Loop) {
// Transform all subloops before this loop...
bool Changed = reduce_apply_bool(Loop->getSubLoops().begin(),
Loop->getSubLoops().end(),
std::bind1st(std::ptr_fun(TransformLoop), Loops));
// Get the header node for this loop. All of the phi nodes that could be
// induction variables must live in this basic block.
//
BasicBlock *Header = Loop->getHeader();
// Loop over all of the PHI nodes in the basic block, calculating the
// induction variables that they represent... stuffing the induction variable
// info into a vector...
//
std::vector<InductionVariable> IndVars; // Induction variables for block
BasicBlock::iterator AfterPHIIt = Header->begin();
for (; PHINode *PN = dyn_cast<PHINode>(AfterPHIIt); ++AfterPHIIt)
IndVars.push_back(InductionVariable(PN, Loops));
// AfterPHIIt now points to first non-phi instruction...
// If there are no phi nodes in this basic block, there can't be indvars...
if (IndVars.empty()) return Changed;
// Loop over the induction variables, looking for a canonical induction
// variable, and checking to make sure they are not all unknown induction
// variables.
//
bool FoundIndVars = false;
InductionVariable *Canonical = 0;
for (unsigned i = 0; i < IndVars.size(); ++i) {
if (IndVars[i].InductionType == InductionVariable::Canonical &&
!isa<PointerType>(IndVars[i].Phi->getType()))
Canonical = &IndVars[i];
if (IndVars[i].InductionType != InductionVariable::Unknown)
FoundIndVars = true;
}
// No induction variables, bail early... don't add a canonical indvar
if (!FoundIndVars) return Changed;
// Okay, we want to convert other induction variables to use a canonical
// indvar. If we don't have one, add one now...
if (!Canonical) {
// Create the PHI node for the new induction variable, and insert the phi
// node at the start of the PHI nodes...
PHINode *PN = new PHINode(Type::UIntTy, "cann-indvar", Header->begin());
// Create the increment instruction to add one to the counter...
Instruction *Add = BinaryOperator::create(Instruction::Add, PN,
ConstantUInt::get(Type::UIntTy,1),
"add1-indvar", AfterPHIIt);
// Figure out which block is incoming and which is the backedge for the loop
BasicBlock *Incoming, *BackEdgeBlock;
pred_iterator PI = pred_begin(Header);
assert(PI != pred_end(Header) && "Loop headers should have 2 preds!");
if (Loop->contains(*PI)) { // First pred is back edge...
BackEdgeBlock = *PI++;
Incoming = *PI++;
} else {
Incoming = *PI++;
BackEdgeBlock = *PI++;
}
assert(PI == pred_end(Header) && "Loop headers should have 2 preds!");
// Add incoming values for the PHI node...
PN->addIncoming(Constant::getNullValue(Type::UIntTy), Incoming);
PN->addIncoming(Add, BackEdgeBlock);
// Analyze the new induction variable...
IndVars.push_back(InductionVariable(PN, Loops));
assert(IndVars.back().InductionType == InductionVariable::Canonical &&
"Just inserted canonical indvar that is not canonical!");
Canonical = &IndVars.back();
++NumInserted;
Changed = true;
} else {
// If we have a canonical induction variable, make sure that it is the first
// one in the basic block.
if (&Header->front() != Canonical->Phi)
Header->getInstList().splice(Header->begin(), Header->getInstList(),
Canonical->Phi);
}
DEBUG(std::cerr << "Induction variables:\n");
// Get the current loop iteration count, which is always the value of the
// canonical phi node...
//
PHINode *IterCount = Canonical->Phi;
// Loop through and replace all of the auxiliary induction variables with
// references to the canonical induction variable...
//
for (unsigned i = 0; i < IndVars.size(); ++i) {
InductionVariable *IV = &IndVars[i];
DEBUG(IV->print(std::cerr));
// Don't do math with pointers...
const Type *IVTy = IV->Phi->getType();
if (isa<PointerType>(IVTy)) IVTy = Type::ULongTy;
// Don't modify the canonical indvar or unrecognized indvars...
if (IV != Canonical && IV->InductionType != InductionVariable::Unknown) {
Instruction *Val = IterCount;
if (!isa<ConstantInt>(IV->Step) || // If the step != 1
!cast<ConstantInt>(IV->Step)->equalsInt(1)) {
// If the types are not compatible, insert a cast now...
if (Val->getType() != IVTy)
Val = InsertCast(Val, IVTy, AfterPHIIt);
if (IV->Step->getType() != IVTy)
IV->Step = InsertCast(IV->Step, IVTy, AfterPHIIt);
Val = BinaryOperator::create(Instruction::Mul, Val, IV->Step,
IV->Phi->getName()+"-scale", AfterPHIIt);
}
// If the start != 0
if (IV->Start != Constant::getNullValue(IV->Start->getType())) {
// If the types are not compatible, insert a cast now...
if (Val->getType() != IVTy)
Val = InsertCast(Val, IVTy, AfterPHIIt);
if (IV->Start->getType() != IVTy)
IV->Start = InsertCast(IV->Start, IVTy, AfterPHIIt);
// Insert the instruction after the phi nodes...
Val = BinaryOperator::create(Instruction::Add, Val, IV->Start,
IV->Phi->getName()+"-offset", AfterPHIIt);
}
// If the PHI node has a different type than val is, insert a cast now...
if (Val->getType() != IV->Phi->getType())
Val = InsertCast(Val, IV->Phi->getType(), AfterPHIIt);
// Replace all uses of the old PHI node with the new computed value...
IV->Phi->replaceAllUsesWith(Val);
// Move the PHI name to it's new equivalent value...
std::string OldName = IV->Phi->getName();
IV->Phi->setName("");
Val->setName(OldName);
// Delete the old, now unused, phi node...
Header->getInstList().erase(IV->Phi);
Changed = true;
++NumRemoved;
}
}
return Changed;
}
namespace {
struct InductionVariableSimplify : public FunctionPass {
virtual bool runOnFunction(Function &) {
LoopInfo &LI = getAnalysis<LoopInfo>();
// Induction Variables live in the header nodes of loops
return reduce_apply_bool(LI.getTopLevelLoops().begin(),
LI.getTopLevelLoops().end(),
std::bind1st(std::ptr_fun(TransformLoop), &LI));
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.addRequiredID(LoopSimplifyID);
AU.setPreservesCFG();
}
};
RegisterOpt<InductionVariableSimplify> X("indvars",
"Canonicalize Induction Variables");
}
Pass *createIndVarSimplifyPass() {
return new InductionVariableSimplify();
}