blob: e3fc8de396c9f05616f62a7905519f50a2790b18 [file] [log] [blame]
//===- DCE.cpp - Code to perform dead code elimination --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements dead inst elimination and dead code elimination.
//
// Dead Inst Elimination performs a single pass over the function removing
// instructions that are obviously dead. Dead Code Elimination is similar, but
// it rechecks instructions that were used by removed instructions to see if
// they are newly dead.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Instruction.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstIterator.h"
#include "Support/Statistic.h"
#include <set>
namespace {
Statistic<> DIEEliminated("die", "Number of insts removed");
Statistic<> DCEEliminated("dce", "Number of insts removed");
//===--------------------------------------------------------------------===//
// DeadInstElimination pass implementation
//
struct DeadInstElimination : public BasicBlockPass {
virtual bool runOnBasicBlock(BasicBlock &BB) {
bool Changed = false;
for (BasicBlock::iterator DI = BB.begin(); DI != BB.end(); )
if (dceInstruction(DI)) {
Changed = true;
++DIEEliminated;
} else
++DI;
return Changed;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
}
};
RegisterOpt<DeadInstElimination> X("die", "Dead Instruction Elimination");
}
Pass *createDeadInstEliminationPass() {
return new DeadInstElimination();
}
//===----------------------------------------------------------------------===//
// DeadCodeElimination pass implementation
//
namespace {
struct DCE : public FunctionPass {
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
}
};
RegisterOpt<DCE> Y("dce", "Dead Code Elimination");
}
bool DCE::runOnFunction(Function &F) {
// Start out with all of the instructions in the worklist...
std::vector<Instruction*> WorkList(inst_begin(F), inst_end(F));
std::set<Instruction*> DeadInsts;
// Loop over the worklist finding instructions that are dead. If they are
// dead make them drop all of their uses, making other instructions
// potentially dead, and work until the worklist is empty.
//
while (!WorkList.empty()) {
Instruction *I = WorkList.back();
WorkList.pop_back();
if (isInstructionTriviallyDead(I)) { // If the instruction is dead...
// Loop over all of the values that the instruction uses, if there are
// instructions being used, add them to the worklist, because they might
// go dead after this one is removed.
//
for (User::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI)
if (Instruction *Used = dyn_cast<Instruction>(*UI))
WorkList.push_back(Used);
// Tell the instruction to let go of all of the values it uses...
I->dropAllReferences();
// Keep track of this instruction, because we are going to delete it later
DeadInsts.insert(I);
}
}
// If we found no dead instructions, we haven't changed the function...
if (DeadInsts.empty()) return false;
// Otherwise, loop over the program, removing and deleting the instructions...
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
for (BasicBlock::iterator BI = I->begin(); BI != I->end(); )
if (DeadInsts.count(BI)) { // Is this instruction dead?
BI = I->getInstList().erase(BI); // Yup, remove and delete inst
++DCEEliminated;
} else { // This instruction is not dead
++BI; // Continue on to the next one...
}
return true;
}
Pass *createDeadCodeEliminationPass() {
return new DCE();
}