blob: f49fde58d205da5c13b0d8580b573fc52f1c670e [file] [log] [blame]
//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the pass that transforms the X86 machine instructions into
// actual executable machine code.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jit"
#include "X86TargetMachine.h"
#include "X86.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Function.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include "Config/alloca.h"
namespace {
Statistic<>
NumEmitted("x86-emitter", "Number of machine instructions emitted");
class JITResolver {
MachineCodeEmitter &MCE;
// LazyCodeGenMap - Keep track of call sites for functions that are to be
// lazily resolved.
std::map<unsigned, Function*> LazyCodeGenMap;
// LazyResolverMap - Keep track of the lazy resolver created for a
// particular function so that we can reuse them if necessary.
std::map<Function*, unsigned> LazyResolverMap;
public:
JITResolver(MachineCodeEmitter &mce) : MCE(mce) {}
unsigned getLazyResolver(Function *F);
unsigned addFunctionReference(unsigned Address, Function *F);
private:
unsigned emitStubForFunction(Function *F);
static void CompilationCallback();
unsigned resolveFunctionReference(unsigned RetAddr);
};
JITResolver *TheJITResolver;
}
/// addFunctionReference - This method is called when we need to emit the
/// address of a function that has not yet been emitted, so we don't know the
/// address. Instead, we emit a call to the CompilationCallback method, and
/// keep track of where we are.
///
unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) {
LazyCodeGenMap[Address] = F;
return (intptr_t)&JITResolver::CompilationCallback;
}
unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) {
std::map<unsigned, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
assert(I != LazyCodeGenMap.end() && "Not in map!");
Function *F = I->second;
LazyCodeGenMap.erase(I);
return MCE.forceCompilationOf(F);
}
unsigned JITResolver::getLazyResolver(Function *F) {
std::map<Function*, unsigned>::iterator I = LazyResolverMap.lower_bound(F);
if (I != LazyResolverMap.end() && I->first == F) return I->second;
//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
unsigned Stub = emitStubForFunction(F);
LazyResolverMap.insert(I, std::make_pair(F, Stub));
return Stub;
}
void JITResolver::CompilationCallback() {
unsigned *StackPtr = (unsigned*)__builtin_frame_address(0);
unsigned RetAddr = (unsigned)(intptr_t)__builtin_return_address(0);
assert(StackPtr[1] == RetAddr &&
"Could not find return address on the stack!");
// It's a stub if there is an interrupt marker after the call...
bool isStub = ((unsigned char*)(intptr_t)RetAddr)[0] == 0xCD;
// FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame
// pointer elimination has been performed. Having a variable sized alloca
// disables frame pointer elimination currently, even if it's dead. This is a
// gross hack.
alloca(10+isStub);
// FIXME FIXME FIXME FIXME
// The call instruction should have pushed the return value onto the stack...
RetAddr -= 4; // Backtrack to the reference itself...
#if 0
DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << RetAddr
<< " ESP=0x" << (unsigned)StackPtr << std::dec
<< ": Resolving call to function: "
<< TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
#endif
// Sanity check to make sure this really is a call instruction...
assert(((unsigned char*)(intptr_t)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
unsigned NewVal = TheJITResolver->resolveFunctionReference(RetAddr);
// Rewrite the call target... so that we don't fault every time we execute
// the call.
*(unsigned*)(intptr_t)RetAddr = NewVal-RetAddr-4;
if (isStub) {
// If this is a stub, rewrite the call into an unconditional branch
// instruction so that two return addresses are not pushed onto the stack
// when the requested function finally gets called. This also makes the
// 0xCD byte (interrupt) dead, so the marker doesn't effect anything.
((unsigned char*)(intptr_t)RetAddr)[-1] = 0xE9;
}
// Change the return address to reexecute the call instruction...
StackPtr[1] -= 5;
}
/// emitStubForFunction - This method is used by the JIT when it needs to emit
/// the address of a function for a function whose code has not yet been
/// generated. In order to do this, it generates a stub which jumps to the lazy
/// function compiler, which will eventually get fixed to call the function
/// directly.
///
unsigned JITResolver::emitStubForFunction(Function *F) {
MCE.startFunctionStub(*F, 6);
MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F);
MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub!
return (intptr_t)MCE.finishFunctionStub(*F);
}
namespace {
class Emitter : public MachineFunctionPass {
const X86InstrInfo *II;
MachineCodeEmitter &MCE;
std::map<const BasicBlock*, unsigned> BasicBlockAddrs;
std::vector<std::pair<const BasicBlock*, unsigned> > BBRefs;
public:
Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {}
bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "X86 Machine Code Emitter";
}
private:
void emitBasicBlock(MachineBasicBlock &MBB);
void emitInstruction(MachineInstr &MI);
void emitPCRelativeBlockAddress(BasicBlock *BB);
void emitMaybePCRelativeValue(unsigned Address, bool isPCRelative);
void emitGlobalAddressForCall(GlobalValue *GV);
void emitGlobalAddressForPtr(GlobalValue *GV);
void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
void emitConstant(unsigned Val, unsigned Size);
void emitMemModRMByte(const MachineInstr &MI,
unsigned Op, unsigned RegOpcodeField);
};
}
/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
/// machine code emitted. This uses a MachineCodeEmitter object to handle
/// actually outputting the machine code and resolving things like the address
/// of functions. This method should returns true if machine code emission is
/// not supported.
///
bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
MachineCodeEmitter &MCE) {
PM.add(new Emitter(MCE));
return false;
}
bool Emitter::runOnMachineFunction(MachineFunction &MF) {
II = &((X86TargetMachine&)MF.getTarget()).getInstrInfo();
MCE.startFunction(MF);
MCE.emitConstantPool(MF.getConstantPool());
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
emitBasicBlock(*I);
MCE.finishFunction(MF);
// Resolve all forward branches now...
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
unsigned Location = BasicBlockAddrs[BBRefs[i].first];
unsigned Ref = BBRefs[i].second;
*(unsigned*)(intptr_t)Ref = Location-Ref-4;
}
BBRefs.clear();
BasicBlockAddrs.clear();
return false;
}
void Emitter::emitBasicBlock(MachineBasicBlock &MBB) {
if (uint64_t Addr = MCE.getCurrentPCValue())
BasicBlockAddrs[MBB.getBasicBlock()] = Addr;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
emitInstruction(**I);
}
/// emitPCRelativeBlockAddress - This method emits the PC relative address of
/// the specified basic block, or if the basic block hasn't been emitted yet
/// (because this is a forward branch), it keeps track of the information
/// necessary to resolve this address later (and emits a dummy value).
///
void Emitter::emitPCRelativeBlockAddress(BasicBlock *BB) {
// FIXME: Emit backward branches directly
BBRefs.push_back(std::make_pair(BB, MCE.getCurrentPCValue()));
MCE.emitWord(0); // Emit a dummy value
}
/// emitMaybePCRelativeValue - Emit a 32-bit address which may be PC relative.
///
void Emitter::emitMaybePCRelativeValue(unsigned Address, bool isPCRelative) {
if (isPCRelative)
MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
else
MCE.emitWord(Address);
}
/// emitGlobalAddressForCall - Emit the specified address to the code stream
/// assuming this is part of a function call, which is PC relative.
///
void Emitter::emitGlobalAddressForCall(GlobalValue *GV) {
// Get the address from the backend...
unsigned Address = MCE.getGlobalValueAddress(GV);
if (Address == 0) {
// FIXME: this is JIT specific!
if (TheJITResolver == 0)
TheJITResolver = new JITResolver(MCE);
Address = TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
cast<Function>(GV));
}
emitMaybePCRelativeValue(Address, true);
}
/// emitGlobalAddress - Emit the specified address to the code stream assuming
/// this is part of a "take the address of a global" instruction, which is not
/// PC relative.
///
void Emitter::emitGlobalAddressForPtr(GlobalValue *GV) {
// Get the address from the backend...
unsigned Address = MCE.getGlobalValueAddress(GV);
// If the machine code emitter doesn't know what the address IS yet, we have
// to take special measures.
//
if (Address == 0) {
// FIXME: this is JIT specific!
if (TheJITResolver == 0)
TheJITResolver = new JITResolver(MCE);
Address = TheJITResolver->getLazyResolver((Function*)GV);
}
emitMaybePCRelativeValue(Address, false);
}
/// N86 namespace - Native X86 Register numbers... used by X86 backend.
///
namespace N86 {
enum {
EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
};
}
// getX86RegNum - This function maps LLVM register identifiers to their X86
// specific numbering, which is used in various places encoding instructions.
//
static unsigned getX86RegNum(unsigned RegNo) {
switch(RegNo) {
case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
return RegNo-X86::ST0;
default:
assert(RegNo >= MRegisterInfo::FirstVirtualRegister &&
"Unknown physical register!");
assert(0 && "Register allocator hasn't allocated reg correctly yet!");
return 0;
}
}
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
unsigned RM) {
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
return RM | (RegOpcode << 3) | (Mod << 6);
}
void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
}
void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
// SIB byte is in the same format as the ModRMByte...
MCE.emitByte(ModRMByte(SS, Index, Base));
}
void Emitter::emitConstant(unsigned Val, unsigned Size) {
// Output the constant in little endian byte order...
for (unsigned i = 0; i != Size; ++i) {
MCE.emitByte(Val & 255);
Val >>= 8;
}
}
static bool isDisp8(int Value) {
return Value == (signed char)Value;
}
void Emitter::emitMemModRMByte(const MachineInstr &MI,
unsigned Op, unsigned RegOpcodeField) {
const MachineOperand &Disp = MI.getOperand(Op+3);
if (MI.getOperand(Op).isConstantPoolIndex()) {
// Emit a direct address reference [disp32] where the displacement of the
// constant pool entry is controlled by the MCE.
MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
unsigned Index = MI.getOperand(Op).getConstantPoolIndex();
unsigned Address = MCE.getConstantPoolEntryAddress(Index);
MCE.emitWord(Address+Disp.getImmedValue());
return;
}
const MachineOperand &BaseReg = MI.getOperand(Op);
const MachineOperand &Scale = MI.getOperand(Op+1);
const MachineOperand &IndexReg = MI.getOperand(Op+2);
// Is a SIB byte needed?
if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) {
if (BaseReg.getReg() == 0) { // Just a displacement?
// Emit special case [disp32] encoding
MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
emitConstant(Disp.getImmedValue(), 4);
} else {
unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) {
// Emit simple indirect register encoding... [EAX] f.e.
MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
} else if (isDisp8(Disp.getImmedValue())) {
// Emit the disp8 encoding... [REG+disp8]
MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
emitConstant(Disp.getImmedValue(), 1);
} else {
// Emit the most general non-SIB encoding: [REG+disp32]
MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
emitConstant(Disp.getImmedValue(), 4);
}
}
} else { // We need a SIB byte, so start by outputting the ModR/M byte first
assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
bool ForceDisp32 = false;
bool ForceDisp8 = false;
if (BaseReg.getReg() == 0) {
// If there is no base register, we emit the special case SIB byte with
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
ForceDisp32 = true;
} else if (Disp.getImmedValue() == 0 && BaseReg.getReg() != X86::EBP) {
// Emit no displacement ModR/M byte
MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
} else if (isDisp8(Disp.getImmedValue())) {
// Emit the disp8 encoding...
MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
} else {
// Emit the normal disp32 encoding...
MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
}
// Calculate what the SS field value should be...
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
unsigned SS = SSTable[Scale.getImmedValue()];
if (BaseReg.getReg() == 0) {
// Handle the SIB byte for the case where there is no base. The
// displacement has already been output.
assert(IndexReg.getReg() && "Index register must be specified!");
emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
} else {
unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
unsigned IndexRegNo;
if (IndexReg.getReg())
IndexRegNo = getX86RegNum(IndexReg.getReg());
else
IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
emitSIBByte(SS, IndexRegNo, BaseRegNo);
}
// Do we need to output a displacement?
if (Disp.getImmedValue() != 0 || ForceDisp32 || ForceDisp8) {
if (!ForceDisp32 && isDisp8(Disp.getImmedValue()))
emitConstant(Disp.getImmedValue(), 1);
else
emitConstant(Disp.getImmedValue(), 4);
}
}
}
static unsigned sizeOfPtr(const TargetInstrDescriptor &Desc) {
switch (Desc.TSFlags & X86II::ArgMask) {
case X86II::Arg8: return 1;
case X86II::Arg16: return 2;
case X86II::Arg32: return 4;
case X86II::ArgF32: return 4;
case X86II::ArgF64: return 8;
case X86II::ArgF80: return 10;
default: assert(0 && "Memory size not set!");
return 0;
}
}
void Emitter::emitInstruction(MachineInstr &MI) {
NumEmitted++; // Keep track of the # of mi's emitted
unsigned Opcode = MI.getOpcode();
const TargetInstrDescriptor &Desc = II->get(Opcode);
// Emit instruction prefixes if necessary
if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size...
switch (Desc.TSFlags & X86II::Op0Mask) {
case X86II::TB:
MCE.emitByte(0x0F); // Two-byte opcode prefix
break;
case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
MCE.emitByte(0xD8+
(((Desc.TSFlags & X86II::Op0Mask)-X86II::D8)
>> X86II::Op0Shift));
break; // Two-byte opcode prefix
default: assert(0 && "Invalid prefix!");
case 0: break; // No prefix!
}
unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode);
switch (Desc.TSFlags & X86II::FormMask) {
default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
case X86II::Pseudo:
if (Opcode != X86::IMPLICIT_USE && Opcode != X86::IMPLICIT_DEF)
std::cerr << "X86 Machine Code Emitter: No 'form', not emitting: " << MI;
break;
case X86II::RawFrm:
MCE.emitByte(BaseOpcode);
if (MI.getNumOperands() == 1) {
MachineOperand &MO = MI.getOperand(0);
if (MO.isPCRelativeDisp()) {
// Conditional branch... FIXME: this should use an MBB destination!
emitPCRelativeBlockAddress(cast<BasicBlock>(MO.getVRegValue()));
} else if (MO.isGlobalAddress()) {
assert(MO.isPCRelative() && "Call target is not PC Relative?");
emitGlobalAddressForCall(MO.getGlobal());
} else if (MO.isExternalSymbol()) {
unsigned Address = MCE.getGlobalValueAddress(MO.getSymbolName());
assert(Address && "Unknown external symbol!");
emitMaybePCRelativeValue(Address, MO.isPCRelative());
} else {
assert(0 && "Unknown RawFrm operand!");
}
}
break;
case X86II::AddRegFrm:
MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg()));
if (MI.getNumOperands() == 2) {
MachineOperand &MO1 = MI.getOperand(1);
if (MO1.isImmediate() || MO1.getVRegValueOrNull() ||
MO1.isGlobalAddress() || MO1.isExternalSymbol()) {
unsigned Size = sizeOfPtr(Desc);
if (Value *V = MO1.getVRegValueOrNull()) {
assert(Size == 4 && "Don't know how to emit non-pointer values!");
emitGlobalAddressForPtr(cast<GlobalValue>(V));
} else if (MO1.isGlobalAddress()) {
assert(Size == 4 && "Don't know how to emit non-pointer values!");
assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?");
emitGlobalAddressForPtr(MO1.getGlobal());
} else if (MO1.isExternalSymbol()) {
assert(Size == 4 && "Don't know how to emit non-pointer values!");
unsigned Address = MCE.getGlobalValueAddress(MO1.getSymbolName());
assert(Address && "Unknown external symbol!");
emitMaybePCRelativeValue(Address, MO1.isPCRelative());
} else {
emitConstant(MO1.getImmedValue(), Size);
}
}
}
break;
case X86II::MRMDestReg: {
MCE.emitByte(BaseOpcode);
MachineOperand &SrcOp = MI.getOperand(1+II->isTwoAddrInstr(Opcode));
emitRegModRMByte(MI.getOperand(0).getReg(), getX86RegNum(SrcOp.getReg()));
if (MI.getNumOperands() == 4)
emitConstant(MI.getOperand(3).getImmedValue(), sizeOfPtr(Desc));
break;
}
case X86II::MRMDestMem:
MCE.emitByte(BaseOpcode);
emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg()));
break;
case X86II::MRMSrcReg:
MCE.emitByte(BaseOpcode);
if (MI.getNumOperands() == 2) {
emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(),
getX86RegNum(MI.getOperand(0).getReg()));
} else if (MI.getOperand(2).isImmediate()) {
emitRegModRMByte(MI.getOperand(1).getReg(),
getX86RegNum(MI.getOperand(0).getReg()));
emitConstant(MI.getOperand(2).getImmedValue(), sizeOfPtr(Desc));
} else {
emitRegModRMByte(MI.getOperand(2).getReg(),
getX86RegNum(MI.getOperand(0).getReg()));
}
break;
case X86II::MRMSrcMem:
MCE.emitByte(BaseOpcode);
emitMemModRMByte(MI, MI.getNumOperands()-4,
getX86RegNum(MI.getOperand(0).getReg()));
break;
case X86II::MRMS0r: case X86II::MRMS1r:
case X86II::MRMS2r: case X86II::MRMS3r:
case X86II::MRMS4r: case X86II::MRMS5r:
case X86II::MRMS6r: case X86II::MRMS7r:
MCE.emitByte(BaseOpcode);
emitRegModRMByte(MI.getOperand(0).getReg(),
(Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r);
if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) {
unsigned Size = sizeOfPtr(Desc);
emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), Size);
}
break;
case X86II::MRMS0m: case X86II::MRMS1m:
case X86II::MRMS2m: case X86II::MRMS3m:
case X86II::MRMS4m: case X86II::MRMS5m:
case X86II::MRMS6m: case X86II::MRMS7m:
MCE.emitByte(BaseOpcode);
emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0m);
if (MI.getNumOperands() == 5) {
unsigned Size = sizeOfPtr(Desc);
emitConstant(MI.getOperand(4).getImmedValue(), Size);
}
break;
}
}