blob: 1a48d9cf20e22c95492ace2cf1b11192f6fa5dd5 [file] [log] [blame]
//===-- SparcRegInfo.cpp - Sparc Target Register Information --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains implementation of Sparc specific helper methods
// used for register allocation.
//
//===----------------------------------------------------------------------===//
#include "SparcInternals.h"
#include "SparcRegClassInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineInstrAnnot.h"
#include "../../CodeGen/RegAlloc/LiveRangeInfo.h" // FIXME!!
#include "../../CodeGen/RegAlloc/LiveRange.h" // FIXME!!
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/Function.h"
#include "llvm/DerivedTypes.h"
enum {
BadRegClass = ~0
};
UltraSparcRegInfo::UltraSparcRegInfo(const UltraSparc &tgt)
: TargetRegInfo(tgt), NumOfIntArgRegs(6), NumOfFloatArgRegs(32)
{
MachineRegClassArr.push_back(new SparcIntRegClass(IntRegClassID));
MachineRegClassArr.push_back(new SparcFloatRegClass(FloatRegClassID));
MachineRegClassArr.push_back(new SparcIntCCRegClass(IntCCRegClassID));
MachineRegClassArr.push_back(new SparcFloatCCRegClass(FloatCCRegClassID));
MachineRegClassArr.push_back(new SparcSpecialRegClass(SpecialRegClassID));
assert(SparcFloatRegClass::StartOfNonVolatileRegs == 32 &&
"32 Float regs are used for float arg passing");
}
// getZeroRegNum - returns the register that contains always zero.
// this is the unified register number
//
int UltraSparcRegInfo::getZeroRegNum() const {
return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
SparcIntRegClass::g0);
}
// getCallAddressReg - returns the reg used for pushing the address when a
// method is called. This can be used for other purposes between calls
//
unsigned UltraSparcRegInfo::getCallAddressReg() const {
return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
SparcIntRegClass::o7);
}
// Returns the register containing the return address.
// It should be made sure that this register contains the return
// value when a return instruction is reached.
//
unsigned UltraSparcRegInfo::getReturnAddressReg() const {
return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
SparcIntRegClass::i7);
}
// Register get name implementations...
// Int register names in same order as enum in class SparcIntRegClass
static const char * const IntRegNames[] = {
"o0", "o1", "o2", "o3", "o4", "o5", "o7",
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
"i0", "i1", "i2", "i3", "i4", "i5",
"i6", "i7",
"g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
"o6"
};
const char * const SparcIntRegClass::getRegName(unsigned reg) const {
assert(reg < NumOfAllRegs);
return IntRegNames[reg];
}
static const char * const FloatRegNames[] = {
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9",
"f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19",
"f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29",
"f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
"f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49",
"f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59",
"f60", "f61", "f62", "f63"
};
const char * const SparcFloatRegClass::getRegName(unsigned reg) const {
assert (reg < NumOfAllRegs);
return FloatRegNames[reg];
}
static const char * const IntCCRegNames[] = {
"xcc", "icc", "ccr"
};
const char * const SparcIntCCRegClass::getRegName(unsigned reg) const {
assert(reg < 3);
return IntCCRegNames[reg];
}
static const char * const FloatCCRegNames[] = {
"fcc0", "fcc1", "fcc2", "fcc3"
};
const char * const SparcFloatCCRegClass::getRegName(unsigned reg) const {
assert (reg < 5);
return FloatCCRegNames[reg];
}
static const char * const SpecialRegNames[] = {
"fsr"
};
const char * const SparcSpecialRegClass::getRegName(unsigned reg) const {
assert (reg < 1);
return SpecialRegNames[reg];
}
// Get unified reg number for frame pointer
unsigned UltraSparcRegInfo::getFramePointer() const {
return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
SparcIntRegClass::i6);
}
// Get unified reg number for stack pointer
unsigned UltraSparcRegInfo::getStackPointer() const {
return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
SparcIntRegClass::o6);
}
//---------------------------------------------------------------------------
// Finds whether a call is an indirect call
//---------------------------------------------------------------------------
inline bool
isVarArgsFunction(const Type *funcType) {
return cast<FunctionType>(cast<PointerType>(funcType)
->getElementType())->isVarArg();
}
inline bool
isVarArgsCall(const MachineInstr *CallMI) {
Value* callee = CallMI->getOperand(0).getVRegValue();
// const Type* funcType = isa<Function>(callee)? callee->getType()
// : cast<PointerType>(callee->getType())->getElementType();
const Type* funcType = callee->getType();
return isVarArgsFunction(funcType);
}
// Get the register number for the specified argument #argNo,
//
// Return value:
// getInvalidRegNum(), if there is no int register available for the arg.
// regNum, otherwise (this is NOT the unified reg. num).
// regClassId is set to the register class ID.
//
int
UltraSparcRegInfo::regNumForIntArg(bool inCallee, bool isVarArgsCall,
unsigned argNo, unsigned& regClassId) const
{
regClassId = IntRegClassID;
if (argNo >= NumOfIntArgRegs)
return getInvalidRegNum();
else
return argNo + (inCallee? SparcIntRegClass::i0 : SparcIntRegClass::o0);
}
// Get the register number for the specified FP argument #argNo,
// Use INT regs for FP args if this is a varargs call.
//
// Return value:
// getInvalidRegNum(), if there is no int register available for the arg.
// regNum, otherwise (this is NOT the unified reg. num).
// regClassId is set to the register class ID.
//
int
UltraSparcRegInfo::regNumForFPArg(unsigned regType,
bool inCallee, bool isVarArgsCall,
unsigned argNo, unsigned& regClassId) const
{
if (isVarArgsCall)
return regNumForIntArg(inCallee, isVarArgsCall, argNo, regClassId);
else
{
regClassId = FloatRegClassID;
if (regType == FPSingleRegType)
return (argNo*2+1 >= NumOfFloatArgRegs)?
getInvalidRegNum() : SparcFloatRegClass::f0 + (argNo * 2 + 1);
else if (regType == FPDoubleRegType)
return (argNo*2 >= NumOfFloatArgRegs)?
getInvalidRegNum() : SparcFloatRegClass::f0 + (argNo * 2);
else
assert(0 && "Illegal FP register type");
return 0;
}
}
//---------------------------------------------------------------------------
// Finds the return address of a call sparc specific call instruction
//---------------------------------------------------------------------------
// The following 4 methods are used to find the RegType (SparcInternals.h)
// of a LiveRange, a Value, and for a given register unified reg number.
//
int UltraSparcRegInfo::getRegTypeForClassAndType(unsigned regClassID,
const Type* type) const
{
switch (regClassID) {
case IntRegClassID: return IntRegType;
case FloatRegClassID:
if (type == Type::FloatTy) return FPSingleRegType;
else if (type == Type::DoubleTy) return FPDoubleRegType;
assert(0 && "Unknown type in FloatRegClass"); return 0;
case IntCCRegClassID: return IntCCRegType;
case FloatCCRegClassID: return FloatCCRegType;
case SpecialRegClassID: return SpecialRegType;
default: assert( 0 && "Unknown reg class ID"); return 0;
}
}
int UltraSparcRegInfo::getRegTypeForDataType(const Type* type) const
{
return getRegTypeForClassAndType(getRegClassIDOfType(type), type);
}
int UltraSparcRegInfo::getRegTypeForLR(const LiveRange *LR) const
{
return getRegTypeForClassAndType(LR->getRegClassID(), LR->getType());
}
int UltraSparcRegInfo::getRegType(int unifiedRegNum) const
{
if (unifiedRegNum < 32)
return IntRegType;
else if (unifiedRegNum < (32 + 32))
return FPSingleRegType;
else if (unifiedRegNum < (64 + 32))
return FPDoubleRegType;
else if (unifiedRegNum < (64+32+4))
return FloatCCRegType;
else if (unifiedRegNum < (64+32+4+2))
return IntCCRegType;
else
assert(0 && "Invalid unified register number in getRegType");
return 0;
}
// To find the register class used for a specified Type
//
unsigned UltraSparcRegInfo::getRegClassIDOfType(const Type *type,
bool isCCReg) const {
Type::PrimitiveID ty = type->getPrimitiveID();
unsigned res;
// FIXME: Comparing types like this isn't very safe...
if ((ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
(ty == Type::FunctionTyID) || (ty == Type::PointerTyID) )
res = IntRegClassID; // sparc int reg (ty=0: void)
else if (ty <= Type::DoubleTyID)
res = FloatRegClassID; // sparc float reg class
else {
//std::cerr << "TypeID: " << ty << "\n";
assert(0 && "Cannot resolve register class for type");
return 0;
}
if (isCCReg)
return res + 2; // corresponding condition code register
else
return res;
}
unsigned UltraSparcRegInfo::getRegClassIDOfRegType(int regType) const {
switch(regType) {
case IntRegType: return IntRegClassID;
case FPSingleRegType:
case FPDoubleRegType: return FloatRegClassID;
case IntCCRegType: return IntCCRegClassID;
case FloatCCRegType: return FloatCCRegClassID;
default:
assert(0 && "Invalid register type in getRegClassIDOfRegType");
return 0;
}
}
//---------------------------------------------------------------------------
// Suggests a register for the ret address in the RET machine instruction.
// We always suggest %i7 by convention.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestReg4RetAddr(MachineInstr *RetMI,
LiveRangeInfo& LRI) const {
assert(target.getInstrInfo().isReturn(RetMI->getOpCode()));
// return address is always mapped to i7 so set it immediately
RetMI->SetRegForOperand(0, getUnifiedRegNum(IntRegClassID,
SparcIntRegClass::i7));
// Possible Optimization:
// Instead of setting the color, we can suggest one. In that case,
// we have to test later whether it received the suggested color.
// In that case, a LR has to be created at the start of method.
// It has to be done as follows (remove the setRegVal above):
// MachineOperand & MO = RetMI->getOperand(0);
// const Value *RetAddrVal = MO.getVRegValue();
// assert( RetAddrVal && "LR for ret address must be created at start");
// LiveRange * RetAddrLR = LRI.getLiveRangeForValue( RetAddrVal);
// RetAddrLR->setSuggestedColor(getUnifiedRegNum( IntRegClassID,
// SparcIntRegOrdr::i7) );
}
//---------------------------------------------------------------------------
// Suggests a register for the ret address in the JMPL/CALL machine instr.
// Sparc ABI dictates that %o7 be used for this purpose.
//---------------------------------------------------------------------------
void
UltraSparcRegInfo::suggestReg4CallAddr(MachineInstr * CallMI,
LiveRangeInfo& LRI) const
{
CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
const Value *RetAddrVal = argDesc->getReturnAddrReg();
assert(RetAddrVal && "INTERNAL ERROR: Return address value is required");
// A LR must already exist for the return address.
LiveRange *RetAddrLR = LRI.getLiveRangeForValue(RetAddrVal);
assert(RetAddrLR && "INTERNAL ERROR: No LR for return address of call!");
unsigned RegClassID = RetAddrLR->getRegClassID();
RetAddrLR->setColor(getUnifiedRegNum(IntRegClassID, SparcIntRegClass::o7));
}
//---------------------------------------------------------------------------
// This method will suggest colors to incoming args to a method.
// According to the Sparc ABI, the first 6 incoming args are in
// %i0 - %i5 (if they are integer) OR in %f0 - %f31 (if they are float).
// If the arg is passed on stack due to the lack of regs, NOTHING will be
// done - it will be colored (or spilled) as a normal live range.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestRegs4MethodArgs(const Function *Meth,
LiveRangeInfo& LRI) const
{
// Check if this is a varArgs function. needed for choosing regs.
bool isVarArgs = isVarArgsFunction(Meth->getType());
// Count the arguments, *ignoring* whether they are int or FP args.
// Use this common arg numbering to pick the right int or fp register.
unsigned argNo=0;
for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
I != E; ++I, ++argNo) {
LiveRange *LR = LRI.getLiveRangeForValue(I);
assert(LR && "No live range found for method arg");
unsigned regType = getRegTypeForLR(LR);
unsigned regClassIDOfArgReg = BadRegClass; // for chosen reg (unused)
int regNum = (regType == IntRegType)
? regNumForIntArg(/*inCallee*/ true, isVarArgs, argNo, regClassIDOfArgReg)
: regNumForFPArg(regType, /*inCallee*/ true, isVarArgs, argNo,
regClassIDOfArgReg);
if (regNum != getInvalidRegNum())
LR->setSuggestedColor(regNum);
}
}
//---------------------------------------------------------------------------
// This method is called after graph coloring to move incoming args to
// the correct hardware registers if they did not receive the correct
// (suggested) color through graph coloring.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::colorMethodArgs(const Function *Meth,
LiveRangeInfo &LRI,
std::vector<MachineInstr*>& InstrnsBefore,
std::vector<MachineInstr*>& InstrnsAfter) const {
// check if this is a varArgs function. needed for choosing regs.
bool isVarArgs = isVarArgsFunction(Meth->getType());
MachineInstr *AdMI;
// for each argument
// for each argument. count INT and FP arguments separately.
unsigned argNo=0, intArgNo=0, fpArgNo=0;
for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
I != E; ++I, ++argNo) {
// get the LR of arg
LiveRange *LR = LRI.getLiveRangeForValue(I);
assert( LR && "No live range found for method arg");
unsigned regType = getRegTypeForLR(LR);
unsigned RegClassID = LR->getRegClassID();
// Find whether this argument is coming in a register (if not, on stack)
// Also find the correct register the argument must use (UniArgReg)
//
bool isArgInReg = false;
unsigned UniArgReg = getInvalidRegNum(); // reg that LR MUST be colored with
unsigned regClassIDOfArgReg = BadRegClass; // reg class of chosen reg
int regNum = (regType == IntRegType)
? regNumForIntArg(/*inCallee*/ true, isVarArgs,
argNo, regClassIDOfArgReg)
: regNumForFPArg(regType, /*inCallee*/ true, isVarArgs,
argNo, regClassIDOfArgReg);
if(regNum != getInvalidRegNum()) {
isArgInReg = true;
UniArgReg = getUnifiedRegNum( regClassIDOfArgReg, regNum);
}
if( ! LR->isMarkedForSpill() ) { // if this arg received a register
unsigned UniLRReg = getUnifiedRegNum( RegClassID, LR->getColor() );
// if LR received the correct color, nothing to do
//
if( UniLRReg == UniArgReg )
continue;
// We are here because the LR did not receive the suggested
// but LR received another register.
// Now we have to copy the %i reg (or stack pos of arg)
// to the register the LR was colored with.
// if the arg is coming in UniArgReg register, it MUST go into
// the UniLRReg register
//
if( isArgInReg ) {
if( regClassIDOfArgReg != RegClassID ) {
assert(0 && "This could should work but it is not tested yet");
// It is a variable argument call: the float reg must go in a %o reg.
// We have to move an int reg to a float reg via memory.
//
assert(isVarArgs &&
RegClassID == FloatRegClassID &&
regClassIDOfArgReg == IntRegClassID &&
"This should only be an Int register for an FP argument");
int TmpOff = MachineFunction::get(Meth).getInfo()->pushTempValue(
getSpilledRegSize(regType));
cpReg2MemMI(InstrnsBefore,
UniArgReg, getFramePointer(), TmpOff, IntRegType);
cpMem2RegMI(InstrnsBefore,
getFramePointer(), TmpOff, UniLRReg, regType);
}
else {
cpReg2RegMI(InstrnsBefore, UniArgReg, UniLRReg, regType);
}
}
else {
// Now the arg is coming on stack. Since the LR received a register,
// we just have to load the arg on stack into that register
//
const TargetFrameInfo& frameInfo = target.getFrameInfo();
int offsetFromFP =
frameInfo.getIncomingArgOffset(MachineFunction::get(Meth),
argNo);
// float arguments on stack are right justified so adjust the offset!
// int arguments are also right justified but they are always loaded as
// a full double-word so the offset does not need to be adjusted.
if (regType == FPSingleRegType) {
unsigned argSize = target.getTargetData().getTypeSize(LR->getType());
unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
assert(argSize <= slotSize && "Insufficient slot size!");
offsetFromFP += slotSize - argSize;
}
cpMem2RegMI(InstrnsBefore,
getFramePointer(), offsetFromFP, UniLRReg, regType);
}
} // if LR received a color
else {
// Now, the LR did not receive a color. But it has a stack offset for
// spilling.
// So, if the arg is coming in UniArgReg register, we can just move
// that on to the stack pos of LR
if( isArgInReg ) {
if( regClassIDOfArgReg != RegClassID ) {
assert(0 &&
"FP arguments to a varargs function should be explicitly "
"copied to/from int registers by instruction selection!");
// It must be a float arg for a variable argument call, which
// must come in a %o reg. Move the int reg to the stack.
//
assert(isVarArgs && regClassIDOfArgReg == IntRegClassID &&
"This should only be an Int register for an FP argument");
cpReg2MemMI(InstrnsBefore, UniArgReg,
getFramePointer(), LR->getSpillOffFromFP(), IntRegType);
}
else {
cpReg2MemMI(InstrnsBefore, UniArgReg,
getFramePointer(), LR->getSpillOffFromFP(), regType);
}
}
else {
// Now the arg is coming on stack. Since the LR did NOT
// received a register as well, it is allocated a stack position. We
// can simply change the stack position of the LR. We can do this,
// since this method is called before any other method that makes
// uses of the stack pos of the LR (e.g., updateMachineInstr)
//
const TargetFrameInfo& frameInfo = target.getFrameInfo();
int offsetFromFP =
frameInfo.getIncomingArgOffset(MachineFunction::get(Meth),
argNo);
// FP arguments on stack are right justified so adjust offset!
// int arguments are also right justified but they are always loaded as
// a full double-word so the offset does not need to be adjusted.
if (regType == FPSingleRegType) {
unsigned argSize = target.getTargetData().getTypeSize(LR->getType());
unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
assert(argSize <= slotSize && "Insufficient slot size!");
offsetFromFP += slotSize - argSize;
}
LR->modifySpillOffFromFP( offsetFromFP );
}
}
} // for each incoming argument
}
//---------------------------------------------------------------------------
// This method is called before graph coloring to suggest colors to the
// outgoing call args and the return value of the call.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestRegs4CallArgs(MachineInstr *CallMI,
LiveRangeInfo& LRI) const {
assert ( (target.getInstrInfo()).isCall(CallMI->getOpCode()) );
CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
suggestReg4CallAddr(CallMI, LRI);
// First color the return value of the call instruction, if any.
// The return value will be in %o0 if the value is an integer type,
// or in %f0 if the value is a float type.
//
if (const Value *RetVal = argDesc->getReturnValue()) {
LiveRange *RetValLR = LRI.getLiveRangeForValue(RetVal);
assert(RetValLR && "No LR for return Value of call!");
unsigned RegClassID = RetValLR->getRegClassID();
// now suggest a register depending on the register class of ret arg
if( RegClassID == IntRegClassID )
RetValLR->setSuggestedColor(SparcIntRegClass::o0);
else if (RegClassID == FloatRegClassID )
RetValLR->setSuggestedColor(SparcFloatRegClass::f0 );
else assert( 0 && "Unknown reg class for return value of call\n");
}
// Now suggest colors for arguments (operands) of the call instruction.
// Colors are suggested only if the arg number is smaller than the
// the number of registers allocated for argument passing.
// Now, go thru call args - implicit operands of the call MI
unsigned NumOfCallArgs = argDesc->getNumArgs();
for(unsigned argNo=0, i=0, intArgNo=0, fpArgNo=0;
i < NumOfCallArgs; ++i, ++argNo) {
const Value *CallArg = argDesc->getArgInfo(i).getArgVal();
// get the LR of call operand (parameter)
LiveRange *const LR = LRI.getLiveRangeForValue(CallArg);
if (!LR)
continue; // no live ranges for constants and labels
unsigned regType = getRegTypeForLR(LR);
unsigned regClassIDOfArgReg = BadRegClass; // chosen reg class (unused)
// Choose a register for this arg depending on whether it is
// an INT or FP value. Here we ignore whether or not it is a
// varargs calls, because FP arguments will be explicitly copied
// to an integer Value and handled under (argCopy != NULL) below.
int regNum = (regType == IntRegType)
? regNumForIntArg(/*inCallee*/ false, /*isVarArgs*/ false,
argNo, regClassIDOfArgReg)
: regNumForFPArg(regType, /*inCallee*/ false, /*isVarArgs*/ false,
argNo, regClassIDOfArgReg);
// If a register could be allocated, use it.
// If not, do NOTHING as this will be colored as a normal value.
if(regNum != getInvalidRegNum())
LR->setSuggestedColor(regNum);
} // for all call arguments
}
//---------------------------------------------------------------------------
// this method is called for an LLVM return instruction to identify which
// values will be returned from this method and to suggest colors.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::suggestReg4RetValue(MachineInstr *RetMI,
LiveRangeInfo& LRI) const {
assert( (target.getInstrInfo()).isReturn( RetMI->getOpCode() ) );
suggestReg4RetAddr(RetMI, LRI);
// To find the return value (if any), we can get the LLVM return instr.
// from the return address register, which is the first operand
Value* tmpI = RetMI->getOperand(0).getVRegValue();
ReturnInst* retI=cast<ReturnInst>(cast<TmpInstruction>(tmpI)->getOperand(0));
if (const Value *RetVal = retI->getReturnValue())
if (LiveRange *const LR = LRI.getLiveRangeForValue(RetVal))
LR->setSuggestedColor(LR->getRegClassID() == IntRegClassID
? (unsigned) SparcIntRegClass::i0
: (unsigned) SparcFloatRegClass::f0);
}
//---------------------------------------------------------------------------
// Check if a specified register type needs a scratch register to be
// copied to/from memory. If it does, the reg. type that must be used
// for scratch registers is returned in scratchRegType.
//
// Only the int CC register needs such a scratch register.
// The FP CC registers can (and must) be copied directly to/from memory.
//---------------------------------------------------------------------------
bool
UltraSparcRegInfo::regTypeNeedsScratchReg(int RegType,
int& scratchRegType) const
{
if (RegType == IntCCRegType)
{
scratchRegType = IntRegType;
return true;
}
return false;
}
//---------------------------------------------------------------------------
// Copy from a register to register. Register number must be the unified
// register number.
//---------------------------------------------------------------------------
void
UltraSparcRegInfo::cpReg2RegMI(std::vector<MachineInstr*>& mvec,
unsigned SrcReg,
unsigned DestReg,
int RegType) const {
assert( ((int)SrcReg != getInvalidRegNum()) &&
((int)DestReg != getInvalidRegNum()) &&
"Invalid Register");
MachineInstr * MI = NULL;
switch( RegType ) {
case IntCCRegType:
if (getRegType(DestReg) == IntRegType) {
// copy intCC reg to int reg
MI = (BuildMI(V9::RDCCR, 2)
.addMReg(getUnifiedRegNum(UltraSparcRegInfo::IntCCRegClassID,
SparcIntCCRegClass::ccr))
.addMReg(DestReg,MOTy::Def));
} else {
// copy int reg to intCC reg
assert(getRegType(SrcReg) == IntRegType
&& "Can only copy CC reg to/from integer reg");
MI = (BuildMI(V9::WRCCRr, 3)
.addMReg(SrcReg)
.addMReg(SparcIntRegClass::g0)
.addMReg(getUnifiedRegNum(UltraSparcRegInfo::IntCCRegClassID,
SparcIntCCRegClass::ccr), MOTy::Def));
}
break;
case FloatCCRegType:
assert(0 && "Cannot copy FPCC register to any other register");
break;
case IntRegType:
MI = BuildMI(V9::ADDr, 3).addMReg(SrcReg).addMReg(getZeroRegNum())
.addMReg(DestReg, MOTy::Def);
break;
case FPSingleRegType:
MI = BuildMI(V9::FMOVS, 2).addMReg(SrcReg).addMReg(DestReg, MOTy::Def);
break;
case FPDoubleRegType:
MI = BuildMI(V9::FMOVD, 2).addMReg(SrcReg).addMReg(DestReg, MOTy::Def);
break;
default:
assert(0 && "Unknown RegType");
break;
}
if (MI)
mvec.push_back(MI);
}
//---------------------------------------------------------------------------
// Copy from a register to memory (i.e., Store). Register number must
// be the unified register number
//---------------------------------------------------------------------------
void
UltraSparcRegInfo::cpReg2MemMI(std::vector<MachineInstr*>& mvec,
unsigned SrcReg,
unsigned PtrReg,
int Offset, int RegType,
int scratchReg) const {
MachineInstr * MI = NULL;
int OffReg = -1;
// If the Offset will not fit in the signed-immediate field, find an
// unused register to hold the offset value. This takes advantage of
// the fact that all the opcodes used below have the same size immed. field.
// Use the register allocator, PRA, to find an unused reg. at this MI.
//
if (RegType != IntCCRegType) // does not use offset below
if (! target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset)) {
#ifdef CAN_FIND_FREE_REGISTER_TRANSPARENTLY
RegClass* RC = PRA.getRegClassByID(this->getRegClassIDOfRegType(RegType));
OffReg = PRA.getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef);
#else
// Default to using register g2 for holding large offsets
OffReg = getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
SparcIntRegClass::g4);
#endif
assert(OffReg >= 0 && "FIXME: cpReg2MemMI cannot find an unused reg.");
mvec.push_back(BuildMI(V9::SETSW, 2).addZImm(Offset).addReg(OffReg));
}
switch (RegType) {
case IntRegType:
if (target.getInstrInfo().constantFitsInImmedField(V9::STXi, Offset))
MI = BuildMI(V9::STXi,3).addMReg(SrcReg).addMReg(PtrReg).addSImm(Offset);
else
MI = BuildMI(V9::STXr,3).addMReg(SrcReg).addMReg(PtrReg).addMReg(OffReg);
break;
case FPSingleRegType:
if (target.getInstrInfo().constantFitsInImmedField(V9::STFi, Offset))
MI = BuildMI(V9::STFi, 3).addMReg(SrcReg).addMReg(PtrReg).addSImm(Offset);
else
MI = BuildMI(V9::STFr, 3).addMReg(SrcReg).addMReg(PtrReg).addMReg(OffReg);
break;
case FPDoubleRegType:
if (target.getInstrInfo().constantFitsInImmedField(V9::STDFi, Offset))
MI = BuildMI(V9::STDFi,3).addMReg(SrcReg).addMReg(PtrReg).addSImm(Offset);
else
MI = BuildMI(V9::STDFr,3).addMReg(SrcReg).addMReg(PtrReg).addSImm(OffReg);
break;
case IntCCRegType:
assert(scratchReg >= 0 && "Need scratch reg to store %ccr to memory");
assert(getRegType(scratchReg) ==IntRegType && "Invalid scratch reg");
MI = (BuildMI(V9::RDCCR, 2)
.addMReg(getUnifiedRegNum(UltraSparcRegInfo::IntCCRegClassID,
SparcIntCCRegClass::ccr))
.addMReg(scratchReg, MOTy::Def));
mvec.push_back(MI);
cpReg2MemMI(mvec, scratchReg, PtrReg, Offset, IntRegType);
return;
case FloatCCRegType: {
unsigned fsrReg = getUnifiedRegNum(UltraSparcRegInfo::SpecialRegClassID,
SparcSpecialRegClass::fsr);
if (target.getInstrInfo().constantFitsInImmedField(V9::STXFSRi, Offset))
MI=BuildMI(V9::STXFSRi,3).addMReg(fsrReg).addMReg(PtrReg).addSImm(Offset);
else
MI=BuildMI(V9::STXFSRr,3).addMReg(fsrReg).addMReg(PtrReg).addMReg(OffReg);
break;
}
default:
assert(0 && "Unknown RegType in cpReg2MemMI");
}
mvec.push_back(MI);
}
//---------------------------------------------------------------------------
// Copy from memory to a reg (i.e., Load) Register number must be the unified
// register number
//---------------------------------------------------------------------------
void
UltraSparcRegInfo::cpMem2RegMI(std::vector<MachineInstr*>& mvec,
unsigned PtrReg,
int Offset,
unsigned DestReg,
int RegType,
int scratchReg) const {
MachineInstr * MI = NULL;
int OffReg = -1;
// If the Offset will not fit in the signed-immediate field, find an
// unused register to hold the offset value. This takes advantage of
// the fact that all the opcodes used below have the same size immed. field.
// Use the register allocator, PRA, to find an unused reg. at this MI.
//
if (RegType != IntCCRegType) // does not use offset below
if (! target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset)) {
#ifdef CAN_FIND_FREE_REGISTER_TRANSPARENTLY
RegClass* RC = PRA.getRegClassByID(this->getRegClassIDOfRegType(RegType));
OffReg = PRA.getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef);
#else
// Default to using register g2 for holding large offsets
OffReg = getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
SparcIntRegClass::g4);
#endif
assert(OffReg >= 0 && "FIXME: cpReg2MemMI cannot find an unused reg.");
mvec.push_back(BuildMI(V9::SETSW, 2).addZImm(Offset).addReg(OffReg));
}
switch (RegType) {
case IntRegType:
if (target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset))
MI = BuildMI(V9::LDXi, 3).addMReg(PtrReg).addSImm(Offset).addMReg(DestReg,
MOTy::Def);
else
MI = BuildMI(V9::LDXr, 3).addMReg(PtrReg).addMReg(OffReg).addMReg(DestReg,
MOTy::Def);
break;
case FPSingleRegType:
if (target.getInstrInfo().constantFitsInImmedField(V9::LDFi, Offset))
MI = BuildMI(V9::LDFi, 3).addMReg(PtrReg).addSImm(Offset).addMReg(DestReg,
MOTy::Def);
else
MI = BuildMI(V9::LDFr, 3).addMReg(PtrReg).addMReg(OffReg).addMReg(DestReg,
MOTy::Def);
break;
case FPDoubleRegType:
if (target.getInstrInfo().constantFitsInImmedField(V9::LDDFi, Offset))
MI= BuildMI(V9::LDDFi, 3).addMReg(PtrReg).addSImm(Offset).addMReg(DestReg,
MOTy::Def);
else
MI= BuildMI(V9::LDDFr, 3).addMReg(PtrReg).addMReg(OffReg).addMReg(DestReg,
MOTy::Def);
break;
case IntCCRegType:
assert(scratchReg >= 0 && "Need scratch reg to load %ccr from memory");
assert(getRegType(scratchReg) ==IntRegType && "Invalid scratch reg");
cpMem2RegMI(mvec, PtrReg, Offset, scratchReg, IntRegType);
MI = (BuildMI(V9::WRCCRr, 3)
.addMReg(scratchReg)
.addMReg(SparcIntRegClass::g0)
.addMReg(getUnifiedRegNum(UltraSparcRegInfo::IntCCRegClassID,
SparcIntCCRegClass::ccr), MOTy::Def));
break;
case FloatCCRegType: {
unsigned fsrRegNum = getUnifiedRegNum(UltraSparcRegInfo::SpecialRegClassID,
SparcSpecialRegClass::fsr);
if (target.getInstrInfo().constantFitsInImmedField(V9::LDXFSRi, Offset))
MI = BuildMI(V9::LDXFSRi, 3).addMReg(PtrReg).addSImm(Offset)
.addMReg(fsrRegNum, MOTy::UseAndDef);
else
MI = BuildMI(V9::LDXFSRr, 3).addMReg(PtrReg).addMReg(OffReg)
.addMReg(fsrRegNum, MOTy::UseAndDef);
break;
}
default:
assert(0 && "Unknown RegType in cpMem2RegMI");
}
mvec.push_back(MI);
}
//---------------------------------------------------------------------------
// Generate a copy instruction to copy a value to another. Temporarily
// used by PhiElimination code.
//---------------------------------------------------------------------------
void
UltraSparcRegInfo::cpValue2Value(Value *Src, Value *Dest,
std::vector<MachineInstr*>& mvec) const {
int RegType = getRegTypeForDataType(Src->getType());
MachineInstr * MI = NULL;
switch( RegType ) {
case IntRegType:
MI = BuildMI(V9::ADDr, 3).addReg(Src).addMReg(getZeroRegNum())
.addRegDef(Dest);
break;
case FPSingleRegType:
MI = BuildMI(V9::FMOVS, 2).addReg(Src).addRegDef(Dest);
break;
case FPDoubleRegType:
MI = BuildMI(V9::FMOVD, 2).addReg(Src).addRegDef(Dest);
break;
default:
assert(0 && "Unknow RegType in CpValu2Value");
}
mvec.push_back(MI);
}
//---------------------------------------------------------------------------
// Print the register assigned to a LR
//---------------------------------------------------------------------------
void UltraSparcRegInfo::printReg(const LiveRange *LR) const {
unsigned RegClassID = LR->getRegClassID();
std::cerr << " Node ";
if (!LR->hasColor()) {
std::cerr << " - could not find a color\n";
return;
}
// if a color is found
std::cerr << " colored with color "<< LR->getColor();
unsigned uRegName = getUnifiedRegNum(RegClassID, LR->getColor());
std::cerr << "[";
std::cerr<< getUnifiedRegName(uRegName);
if (RegClassID == FloatRegClassID && LR->getType() == Type::DoubleTy)
std::cerr << "+" << getUnifiedRegName(uRegName+1);
std::cerr << "]\n";
}