blob: b377658b9c8113717365c23ed5e2193d49021e60 [file] [log] [blame]
//===-- SparcInstrSelection.cpp -------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// BURS instruction selection for SPARC V9 architecture.
//
//===----------------------------------------------------------------------===//
#include "SparcInstrSelectionSupport.h"
#include "SparcInternals.h"
#include "SparcRegClassInfo.h"
#include "llvm/Constants.h"
#include "llvm/ConstantHandling.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrAnnot.h"
#include "Support/MathExtras.h"
#include <algorithm>
#include <cmath>
static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node,
std::vector<MachineInstr*>& mvec) {
mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue())
.addReg(Node->rightChild()->getValue())
.addRegDef(Node->getValue()));
}
//---------------------------------------------------------------------------
// Function: FoldGetElemChain
//
// Purpose:
// Fold a chain of GetElementPtr instructions containing only
// constant offsets into an equivalent (Pointer, IndexVector) pair.
// Returns the pointer Value, and stores the resulting IndexVector
// in argument chainIdxVec. This is a helper function for
// FoldConstantIndices that does the actual folding.
//---------------------------------------------------------------------------
// Check for a constant 0.
inline bool
IsZero(Value* idx)
{
return (idx == ConstantSInt::getNullValue(idx->getType()));
}
static Value*
FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec,
bool lastInstHasLeadingNonZero)
{
InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode);
GetElementPtrInst* gepInst =
dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0);
// ptr value is not computed in this tree or ptr value does not come from GEP
// instruction
if (gepInst == NULL)
return NULL;
// Return NULL if we don't fold any instructions in.
Value* ptrVal = NULL;
// Now chase the chain of getElementInstr instructions, if any.
// Check for any non-constant indices and stop there.
// Also, stop if the first index of child is a non-zero array index
// and the last index of the current node is a non-array index:
// in that case, a non-array declared type is being accessed as an array
// which is not type-safe, but could be legal.
//
InstructionNode* ptrChild = gepNode;
while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
ptrChild->getOpLabel() == GetElemPtrIdx))
{
// Child is a GetElemPtr instruction
gepInst = cast<GetElementPtrInst>(ptrChild->getValue());
User::op_iterator OI, firstIdx = gepInst->idx_begin();
User::op_iterator lastIdx = gepInst->idx_end();
bool allConstantOffsets = true;
// The first index of every GEP must be an array index.
assert((*firstIdx)->getType() == Type::LongTy &&
"INTERNAL ERROR: Structure index for a pointer type!");
// If the last instruction had a leading non-zero index, check if the
// current one references a sequential (i.e., indexable) type.
// If not, the code is not type-safe and we would create an illegal GEP
// by folding them, so don't fold any more instructions.
//
if (lastInstHasLeadingNonZero)
if (! isa<SequentialType>(gepInst->getType()->getElementType()))
break; // cannot fold in any preceding getElementPtr instrs.
// Check that all offsets are constant for this instruction
for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI)
allConstantOffsets = isa<ConstantInt>(*OI);
if (allConstantOffsets) {
// Get pointer value out of ptrChild.
ptrVal = gepInst->getPointerOperand();
// Insert its index vector at the start, skipping any leading [0]
// Remember the old size to check if anything was inserted.
unsigned oldSize = chainIdxVec.size();
int firstIsZero = IsZero(*firstIdx);
chainIdxVec.insert(chainIdxVec.begin(), firstIdx + firstIsZero, lastIdx);
// Remember if it has leading zero index: it will be discarded later.
if (oldSize < chainIdxVec.size())
lastInstHasLeadingNonZero = !firstIsZero;
// Mark the folded node so no code is generated for it.
((InstructionNode*) ptrChild)->markFoldedIntoParent();
// Get the previous GEP instruction and continue trying to fold
ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild());
} else // cannot fold this getElementPtr instr. or any preceding ones
break;
}
// If the first getElementPtr instruction had a leading [0], add it back.
// Note that this instruction is the *last* one that was successfully
// folded *and* contributed any indices, in the loop above.
//
if (ptrVal && ! lastInstHasLeadingNonZero)
chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0));
return ptrVal;
}
//---------------------------------------------------------------------------
// Function: GetGEPInstArgs
//
// Purpose:
// Helper function for GetMemInstArgs that handles the final getElementPtr
// instruction used by (or same as) the memory operation.
// Extracts the indices of the current instruction and tries to fold in
// preceding ones if all indices of the current one are constant.
//---------------------------------------------------------------------------
static Value *
GetGEPInstArgs(InstructionNode* gepNode,
std::vector<Value*>& idxVec,
bool& allConstantIndices)
{
allConstantIndices = true;
GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction());
// Default pointer is the one from the current instruction.
Value* ptrVal = gepI->getPointerOperand();
InstrTreeNode* ptrChild = gepNode->leftChild();
// Extract the index vector of the GEP instruction.
// If all indices are constant and first index is zero, try to fold
// in preceding GEPs with all constant indices.
for (User::op_iterator OI=gepI->idx_begin(), OE=gepI->idx_end();
allConstantIndices && OI != OE; ++OI)
if (! isa<Constant>(*OI))
allConstantIndices = false; // note: this also terminates loop!
// If we have only constant indices, fold chains of constant indices
// in this and any preceding GetElemPtr instructions.
bool foldedGEPs = false;
bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin());
if (allConstantIndices)
if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) {
ptrVal = newPtr;
foldedGEPs = true;
}
// Append the index vector of the current instruction.
// Skip the leading [0] index if preceding GEPs were folded into this.
idxVec.insert(idxVec.end(),
gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx),
gepI->idx_end());
return ptrVal;
}
//---------------------------------------------------------------------------
// Function: GetMemInstArgs
//
// Purpose:
// Get the pointer value and the index vector for a memory operation
// (GetElementPtr, Load, or Store). If all indices of the given memory
// operation are constant, fold in constant indices in a chain of
// preceding GetElementPtr instructions (if any), and return the
// pointer value of the first instruction in the chain.
// All folded instructions are marked so no code is generated for them.
//
// Return values:
// Returns the pointer Value to use.
// Returns the resulting IndexVector in idxVec.
// Returns true/false in allConstantIndices if all indices are/aren't const.
//---------------------------------------------------------------------------
static Value*
GetMemInstArgs(InstructionNode* memInstrNode,
std::vector<Value*>& idxVec,
bool& allConstantIndices)
{
allConstantIndices = false;
Instruction* memInst = memInstrNode->getInstruction();
assert(idxVec.size() == 0 && "Need empty vector to return indices");
// If there is a GetElemPtr instruction to fold in to this instr,
// it must be in the left child for Load and GetElemPtr, and in the
// right child for Store instructions.
InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store
? memInstrNode->rightChild()
: memInstrNode->leftChild());
// Default pointer is the one from the current instruction.
Value* ptrVal = ptrChild->getValue();
// Find the "last" GetElemPtr instruction: this one or the immediate child.
// There will be none if this is a load or a store from a scalar pointer.
InstructionNode* gepNode = NULL;
if (isa<GetElementPtrInst>(memInst))
gepNode = memInstrNode;
else if (isa<InstructionNode>(ptrChild) && isa<GetElementPtrInst>(ptrVal)) {
// Child of load/store is a GEP and memInst is its only use.
// Use its indices and mark it as folded.
gepNode = cast<InstructionNode>(ptrChild);
gepNode->markFoldedIntoParent();
}
// If there are no indices, return the current pointer.
// Else extract the pointer from the GEP and fold the indices.
return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices)
: ptrVal;
}
//************************ Internal Functions ******************************/
static inline MachineOpCode
ChooseBprInstruction(const InstructionNode* instrNode)
{
MachineOpCode opCode;
Instruction* setCCInstr =
((InstructionNode*) instrNode->leftChild())->getInstruction();
switch(setCCInstr->getOpcode())
{
case Instruction::SetEQ: opCode = V9::BRZ; break;
case Instruction::SetNE: opCode = V9::BRNZ; break;
case Instruction::SetLE: opCode = V9::BRLEZ; break;
case Instruction::SetGE: opCode = V9::BRGEZ; break;
case Instruction::SetLT: opCode = V9::BRLZ; break;
case Instruction::SetGT: opCode = V9::BRGZ; break;
default:
assert(0 && "Unrecognized VM instruction!");
opCode = V9::INVALID_OPCODE;
break;
}
return opCode;
}
static inline MachineOpCode
ChooseBpccInstruction(const InstructionNode* instrNode,
const BinaryOperator* setCCInstr)
{
MachineOpCode opCode = V9::INVALID_OPCODE;
bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
if (isSigned) {
switch(setCCInstr->getOpcode())
{
case Instruction::SetEQ: opCode = V9::BE; break;
case Instruction::SetNE: opCode = V9::BNE; break;
case Instruction::SetLE: opCode = V9::BLE; break;
case Instruction::SetGE: opCode = V9::BGE; break;
case Instruction::SetLT: opCode = V9::BL; break;
case Instruction::SetGT: opCode = V9::BG; break;
default:
assert(0 && "Unrecognized VM instruction!");
break;
}
} else {
switch(setCCInstr->getOpcode())
{
case Instruction::SetEQ: opCode = V9::BE; break;
case Instruction::SetNE: opCode = V9::BNE; break;
case Instruction::SetLE: opCode = V9::BLEU; break;
case Instruction::SetGE: opCode = V9::BCC; break;
case Instruction::SetLT: opCode = V9::BCS; break;
case Instruction::SetGT: opCode = V9::BGU; break;
default:
assert(0 && "Unrecognized VM instruction!");
break;
}
}
return opCode;
}
static inline MachineOpCode
ChooseBFpccInstruction(const InstructionNode* instrNode,
const BinaryOperator* setCCInstr)
{
MachineOpCode opCode = V9::INVALID_OPCODE;
switch(setCCInstr->getOpcode())
{
case Instruction::SetEQ: opCode = V9::FBE; break;
case Instruction::SetNE: opCode = V9::FBNE; break;
case Instruction::SetLE: opCode = V9::FBLE; break;
case Instruction::SetGE: opCode = V9::FBGE; break;
case Instruction::SetLT: opCode = V9::FBL; break;
case Instruction::SetGT: opCode = V9::FBG; break;
default:
assert(0 && "Unrecognized VM instruction!");
break;
}
return opCode;
}
// Create a unique TmpInstruction for a boolean value,
// representing the CC register used by a branch on that value.
// For now, hack this using a little static cache of TmpInstructions.
// Eventually the entire BURG instruction selection should be put
// into a separate class that can hold such information.
// The static cache is not too bad because the memory for these
// TmpInstructions will be freed along with the rest of the Function anyway.
//
static TmpInstruction*
GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType,
MachineCodeForInstruction& mcfi)
{
typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction*
static const Function *lastFunction = 0;// Use to flush cache between funcs
assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert");
if (lastFunction != F) {
lastFunction = F;
boolToTmpCache.clear();
}
// Look for tmpI and create a new one otherwise. The new value is
// directly written to map using the ref returned by operator[].
TmpInstruction*& tmpI = boolToTmpCache[boolVal];
if (tmpI == NULL)
tmpI = new TmpInstruction(mcfi, ccType, boolVal);
return tmpI;
}
static inline MachineOpCode
ChooseBccInstruction(const InstructionNode* instrNode,
const Type*& setCCType)
{
InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
assert(setCCNode->getOpLabel() == SetCCOp);
BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction());
setCCType = setCCInstr->getOperand(0)->getType();
if (setCCType->isFloatingPoint())
return ChooseBFpccInstruction(instrNode, setCCInstr);
else
return ChooseBpccInstruction(instrNode, setCCInstr);
}
// WARNING: since this function has only one caller, it always returns
// the opcode that expects an immediate and a register. If this function
// is ever used in cases where an opcode that takes two registers is required,
// then modify this function and use convertOpcodeFromRegToImm() where required.
//
// It will be necessary to expand convertOpcodeFromRegToImm() to handle the
// new cases of opcodes.
static inline MachineOpCode
ChooseMovFpcciInstruction(const InstructionNode* instrNode)
{
MachineOpCode opCode = V9::INVALID_OPCODE;
switch(instrNode->getInstruction()->getOpcode())
{
case Instruction::SetEQ: opCode = V9::MOVFEi; break;
case Instruction::SetNE: opCode = V9::MOVFNEi; break;
case Instruction::SetLE: opCode = V9::MOVFLEi; break;
case Instruction::SetGE: opCode = V9::MOVFGEi; break;
case Instruction::SetLT: opCode = V9::MOVFLi; break;
case Instruction::SetGT: opCode = V9::MOVFGi; break;
default:
assert(0 && "Unrecognized VM instruction!");
break;
}
return opCode;
}
// ChooseMovpcciForSetCC -- Choose a conditional-move instruction
// based on the type of SetCC operation.
//
// WARNING: since this function has only one caller, it always returns
// the opcode that expects an immediate and a register. If this function
// is ever used in cases where an opcode that takes two registers is required,
// then modify this function and use convertOpcodeFromRegToImm() where required.
//
// It will be necessary to expand convertOpcodeFromRegToImm() to handle the
// new cases of opcodes.
//
static MachineOpCode
ChooseMovpcciForSetCC(const InstructionNode* instrNode)
{
MachineOpCode opCode = V9::INVALID_OPCODE;
const Type* opType = instrNode->leftChild()->getValue()->getType();
assert(opType->isIntegral() || isa<PointerType>(opType));
bool noSign = opType->isUnsigned() || isa<PointerType>(opType);
switch(instrNode->getInstruction()->getOpcode())
{
case Instruction::SetEQ: opCode = V9::MOVEi; break;
case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break;
case Instruction::SetGE: opCode = noSign? V9::MOVCCi : V9::MOVGEi; break;
case Instruction::SetLT: opCode = noSign? V9::MOVCSi : V9::MOVLi; break;
case Instruction::SetGT: opCode = noSign? V9::MOVGUi : V9::MOVGi; break;
case Instruction::SetNE: opCode = V9::MOVNEi; break;
default: assert(0 && "Unrecognized LLVM instr!"); break;
}
return opCode;
}
// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value
// instruction based on the type of SetCC operation. These instructions
// compare a register with 0 and perform the move is the comparison is true.
//
// WARNING: like the previous function, this function it always returns
// the opcode that expects an immediate and a register. See above.
//
static MachineOpCode
ChooseMovpregiForSetCC(const InstructionNode* instrNode)
{
MachineOpCode opCode = V9::INVALID_OPCODE;
switch(instrNode->getInstruction()->getOpcode())
{
case Instruction::SetEQ: opCode = V9::MOVRZi; break;
case Instruction::SetLE: opCode = V9::MOVRLEZi; break;
case Instruction::SetGE: opCode = V9::MOVRGEZi; break;
case Instruction::SetLT: opCode = V9::MOVRLZi; break;
case Instruction::SetGT: opCode = V9::MOVRGZi; break;
case Instruction::SetNE: opCode = V9::MOVRNZi; break;
default: assert(0 && "Unrecognized VM instr!"); break;
}
return opCode;
}
static inline MachineOpCode
ChooseConvertToFloatInstr(const TargetMachine& target,
OpLabel vopCode, const Type* opType)
{
assert((vopCode == ToFloatTy || vopCode == ToDoubleTy) &&
"Unrecognized convert-to-float opcode!");
assert((opType->isIntegral() || opType->isFloatingPoint() ||
isa<PointerType>(opType))
&& "Trying to convert a non-scalar type to FLOAT/DOUBLE?");
MachineOpCode opCode = V9::INVALID_OPCODE;
unsigned opSize = target.getTargetData().getTypeSize(opType);
if (opType == Type::FloatTy)
opCode = (vopCode == ToFloatTy? V9::NOP : V9::FSTOD);
else if (opType == Type::DoubleTy)
opCode = (vopCode == ToFloatTy? V9::FDTOS : V9::NOP);
else if (opSize <= 4)
opCode = (vopCode == ToFloatTy? V9::FITOS : V9::FITOD);
else {
assert(opSize == 8 && "Unrecognized type size > 4 and < 8!");
opCode = (vopCode == ToFloatTy? V9::FXTOS : V9::FXTOD);
}
return opCode;
}
static inline MachineOpCode
ChooseConvertFPToIntInstr(const TargetMachine& target,
const Type* destType, const Type* opType)
{
assert((opType == Type::FloatTy || opType == Type::DoubleTy)
&& "This function should only be called for FLOAT or DOUBLE");
assert((destType->isIntegral() || isa<PointerType>(destType))
&& "Trying to convert FLOAT/DOUBLE to a non-scalar type?");
MachineOpCode opCode = V9::INVALID_OPCODE;
unsigned destSize = target.getTargetData().getTypeSize(destType);
if (destType == Type::UIntTy)
assert(destType != Type::UIntTy && "Expand FP-to-uint beforehand.");
else if (destSize <= 4)
opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI;
else {
assert(destSize == 8 && "Unrecognized type size > 4 and < 8!");
opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX;
}
return opCode;
}
static MachineInstr*
CreateConvertFPToIntInstr(const TargetMachine& target,
Value* srcVal,
Value* destVal,
const Type* destType)
{
MachineOpCode opCode = ChooseConvertFPToIntInstr(target, destType,
srcVal->getType());
assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!");
return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal);
}
// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned integer
// The FP value must be converted to the dest type in an FP register,
// and the result is then copied from FP to int register via memory.
// SPARC does not have a float-to-uint conversion, only a float-to-int (fdtoi).
// Since fdtoi converts to signed integers, any FP value V between MAXINT+1
// and MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly.
// Therefore, for converting an FP value to uint32_t, we first need to convert
// to uint64_t and then to uint32_t.
//
static void
CreateCodeToConvertFloatToInt(const TargetMachine& target,
Value* opVal,
Instruction* destI,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi)
{
Function* F = destI->getParent()->getParent();
// Create a temporary to represent the FP register into which the
// int value will placed after conversion. The type of this temporary
// depends on the type of FP register to use: single-prec for a 32-bit
// int or smaller; double-prec for a 64-bit int.
//
size_t destSize = target.getTargetData().getTypeSize(destI->getType());
const Type* castDestType = destI->getType(); // type for the cast instr result
const Type* castDestRegType; // type for cast instruction result reg
TmpInstruction* destForCast; // dest for cast instruction
Instruction* fpToIntCopyDest = destI; // dest for fp-reg-to-int-reg copy instr
// For converting an FP value to uint32_t, we first need to convert to
// uint64_t and then to uint32_t, as explained above.
if (destI->getType() == Type::UIntTy) {
castDestType = Type::ULongTy; // use this instead of type of destI
castDestRegType = Type::DoubleTy; // uint64_t needs 64-bit FP register.
destForCast = new TmpInstruction(mcfi, castDestRegType, opVal);
fpToIntCopyDest = new TmpInstruction(mcfi, castDestType, destForCast);
}
else {
castDestRegType = (destSize > 4)? Type::DoubleTy : Type::FloatTy;
destForCast = new TmpInstruction(mcfi, castDestRegType, opVal);
}
// Create the fp-to-int conversion instruction (src and dest regs are FP regs)
mvec.push_back(CreateConvertFPToIntInstr(target, opVal, destForCast,
castDestType));
// Create the fpreg-to-intreg copy code
target.getInstrInfo().CreateCodeToCopyFloatToInt(target, F, destForCast,
fpToIntCopyDest, mvec, mcfi);
// Create the uint64_t to uint32_t conversion, if needed
if (destI->getType() == Type::UIntTy)
target.getInstrInfo().
CreateZeroExtensionInstructions(target, F, fpToIntCopyDest, destI,
/*numLowBits*/ 32, mvec, mcfi);
}
static inline MachineOpCode
ChooseAddInstruction(const InstructionNode* instrNode)
{
return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
}
static inline MachineInstr*
CreateMovFloatInstruction(const InstructionNode* instrNode,
const Type* resultType)
{
return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2)
.addReg(instrNode->leftChild()->getValue())
.addRegDef(instrNode->getValue());
}
static inline MachineInstr*
CreateAddConstInstruction(const InstructionNode* instrNode)
{
MachineInstr* minstr = NULL;
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
assert(isa<Constant>(constOp));
// Cases worth optimizing are:
// (1) Add with 0 for float or double: use an FMOV of appropriate type,
// instead of an FADD (1 vs 3 cycles). There is no integer MOV.
//
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
double dval = FPC->getValue();
if (dval == 0.0)
minstr = CreateMovFloatInstruction(instrNode,
instrNode->getInstruction()->getType());
}
return minstr;
}
static inline MachineOpCode
ChooseSubInstructionByType(const Type* resultType)
{
MachineOpCode opCode = V9::INVALID_OPCODE;
if (resultType->isInteger() || isa<PointerType>(resultType)) {
opCode = V9::SUBr;
} else {
switch(resultType->getPrimitiveID())
{
case Type::FloatTyID: opCode = V9::FSUBS; break;
case Type::DoubleTyID: opCode = V9::FSUBD; break;
default: assert(0 && "Invalid type for SUB instruction"); break;
}
}
return opCode;
}
static inline MachineInstr*
CreateSubConstInstruction(const InstructionNode* instrNode)
{
MachineInstr* minstr = NULL;
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
assert(isa<Constant>(constOp));
// Cases worth optimizing are:
// (1) Sub with 0 for float or double: use an FMOV of appropriate type,
// instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
//
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
double dval = FPC->getValue();
if (dval == 0.0)
minstr = CreateMovFloatInstruction(instrNode,
instrNode->getInstruction()->getType());
}
return minstr;
}
static inline MachineOpCode
ChooseFcmpInstruction(const InstructionNode* instrNode)
{
MachineOpCode opCode = V9::INVALID_OPCODE;
Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
switch(operand->getType()->getPrimitiveID()) {
case Type::FloatTyID: opCode = V9::FCMPS; break;
case Type::DoubleTyID: opCode = V9::FCMPD; break;
default: assert(0 && "Invalid type for FCMP instruction"); break;
}
return opCode;
}
// Assumes that leftArg and rightArg are both cast instructions.
//
static inline bool
BothFloatToDouble(const InstructionNode* instrNode)
{
InstrTreeNode* leftArg = instrNode->leftChild();
InstrTreeNode* rightArg = instrNode->rightChild();
InstrTreeNode* leftArgArg = leftArg->leftChild();
InstrTreeNode* rightArgArg = rightArg->leftChild();
assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
// Check if both arguments are floats cast to double
return (leftArg->getValue()->getType() == Type::DoubleTy &&
leftArgArg->getValue()->getType() == Type::FloatTy &&
rightArgArg->getValue()->getType() == Type::FloatTy);
}
static inline MachineOpCode
ChooseMulInstructionByType(const Type* resultType)
{
MachineOpCode opCode = V9::INVALID_OPCODE;
if (resultType->isInteger())
opCode = V9::MULXr;
else
switch(resultType->getPrimitiveID())
{
case Type::FloatTyID: opCode = V9::FMULS; break;
case Type::DoubleTyID: opCode = V9::FMULD; break;
default: assert(0 && "Invalid type for MUL instruction"); break;
}
return opCode;
}
static inline MachineInstr*
CreateIntNegInstruction(const TargetMachine& target,
Value* vreg)
{
return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo().getZeroRegNum())
.addReg(vreg).addRegDef(vreg);
}
// Create instruction sequence for any shift operation.
// SLL or SLLX on an operand smaller than the integer reg. size (64bits)
// requires a second instruction for explicit sign-extension.
// Note that we only have to worry about a sign-bit appearing in the
// most significant bit of the operand after shifting (e.g., bit 32 of
// Int or bit 16 of Short), so we do not have to worry about results
// that are as large as a normal integer register.
//
static inline void
CreateShiftInstructions(const TargetMachine& target,
Function* F,
MachineOpCode shiftOpCode,
Value* argVal1,
Value* optArgVal2, /* Use optArgVal2 if not NULL */
unsigned optShiftNum, /* else use optShiftNum */
Instruction* destVal,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi)
{
assert((optArgVal2 != NULL || optShiftNum <= 64) &&
"Large shift sizes unexpected, but can be handled below: "
"You need to check whether or not it fits in immed field below");
// If this is a logical left shift of a type smaller than the standard
// integer reg. size, we have to extend the sign-bit into upper bits
// of dest, so we need to put the result of the SLL into a temporary.
//
Value* shiftDest = destVal;
unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType());
if ((shiftOpCode == V9::SLLr5 || shiftOpCode == V9::SLLXr6) && opSize < 8) {
// put SLL result into a temporary
shiftDest = new TmpInstruction(mcfi, argVal1, optArgVal2, "sllTmp");
}
MachineInstr* M = (optArgVal2 != NULL)
? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2)
.addReg(shiftDest, MOTy::Def)
: BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum)
.addReg(shiftDest, MOTy::Def);
mvec.push_back(M);
if (shiftDest != destVal) {
// extend the sign-bit of the result into all upper bits of dest
assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?");
target.getInstrInfo().
CreateSignExtensionInstructions(target, F, shiftDest, destVal,
8*opSize, mvec, mcfi);
}
}
// Does not create any instructions if we cannot exploit constant to
// create a cheaper instruction.
// This returns the approximate cost of the instructions generated,
// which is used to pick the cheapest when both operands are constant.
static unsigned
CreateMulConstInstruction(const TargetMachine &target, Function* F,
Value* lval, Value* rval, Instruction* destVal,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi)
{
/* Use max. multiply cost, viz., cost of MULX */
unsigned cost = target.getInstrInfo().minLatency(V9::MULXr);
unsigned firstNewInstr = mvec.size();
Value* constOp = rval;
if (! isa<Constant>(constOp))
return cost;
// Cases worth optimizing are:
// (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
// (2) Multiply by 2^x for integer types: replace with Shift
//
const Type* resultType = destVal->getType();
if (resultType->isInteger() || isa<PointerType>(resultType)) {
bool isValidConst;
int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target,
constOp, constOp->getType(), isValidConst);
if (isValidConst) {
unsigned pow;
bool needNeg = false;
if (C < 0) {
needNeg = true;
C = -C;
}
if (C == 0 || C == 1) {
cost = target.getInstrInfo().minLatency(V9::ADDr);
unsigned Zero = target.getRegInfo().getZeroRegNum();
MachineInstr* M;
if (C == 0)
M =BuildMI(V9::ADDr,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal);
else
M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal);
mvec.push_back(M);
} else if (isPowerOf2(C, pow)) {
unsigned opSize = target.getTargetData().getTypeSize(resultType);
MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6;
CreateShiftInstructions(target, F, opCode, lval, NULL, pow,
destVal, mvec, mcfi);
}
if (mvec.size() > 0 && needNeg) {
// insert <reg = SUB 0, reg> after the instr to flip the sign
MachineInstr* M = CreateIntNegInstruction(target, destVal);
mvec.push_back(M);
}
}
} else {
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
double dval = FPC->getValue();
if (fabs(dval) == 1) {
MachineOpCode opCode = (dval < 0)
? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
: (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal));
}
}
}
if (firstNewInstr < mvec.size()) {
cost = 0;
for (unsigned i=firstNewInstr; i < mvec.size(); ++i)
cost += target.getInstrInfo().minLatency(mvec[i]->getOpCode());
}
return cost;
}
// Does not create any instructions if we cannot exploit constant to
// create a cheaper instruction.
//
static inline void
CreateCheapestMulConstInstruction(const TargetMachine &target,
Function* F,
Value* lval, Value* rval,
Instruction* destVal,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi)
{
Value* constOp;
if (isa<Constant>(lval) && isa<Constant>(rval)) {
// both operands are constant: evaluate and "set" in dest
Constant* P = ConstantFoldBinaryInstruction(Instruction::Mul,
cast<Constant>(lval),
cast<Constant>(rval));
target.getInstrInfo().CreateCodeToLoadConst(target,F,P,destVal,mvec,mcfi);
}
else if (isa<Constant>(rval)) // rval is constant, but not lval
CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
else if (isa<Constant>(lval)) // lval is constant, but not rval
CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
// else neither is constant
return;
}
// Return NULL if we cannot exploit constant to create a cheaper instruction
static inline void
CreateMulInstruction(const TargetMachine &target, Function* F,
Value* lval, Value* rval, Instruction* destVal,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi,
MachineOpCode forceMulOp = INVALID_MACHINE_OPCODE)
{
unsigned L = mvec.size();
CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi);
if (mvec.size() == L) {
// no instructions were added so create MUL reg, reg, reg.
// Use FSMULD if both operands are actually floats cast to doubles.
// Otherwise, use the default opcode for the appropriate type.
MachineOpCode mulOp = ((forceMulOp != INVALID_MACHINE_OPCODE)
? forceMulOp
: ChooseMulInstructionByType(destVal->getType()));
mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval)
.addRegDef(destVal));
}
}
// Generate a divide instruction for Div or Rem.
// For Rem, this assumes that the operand type will be signed if the result
// type is signed. This is correct because they must have the same sign.
//
static inline MachineOpCode
ChooseDivInstruction(TargetMachine &target,
const InstructionNode* instrNode)
{
MachineOpCode opCode = V9::INVALID_OPCODE;
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType->isInteger())
opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr;
else
switch(resultType->getPrimitiveID())
{
case Type::FloatTyID: opCode = V9::FDIVS; break;
case Type::DoubleTyID: opCode = V9::FDIVD; break;
default: assert(0 && "Invalid type for DIV instruction"); break;
}
return opCode;
}
// Return if we cannot exploit constant to create a cheaper instruction
static void
CreateDivConstInstruction(TargetMachine &target,
const InstructionNode* instrNode,
std::vector<MachineInstr*>& mvec)
{
Value* LHS = instrNode->leftChild()->getValue();
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
if (!isa<Constant>(constOp))
return;
Instruction* destVal = instrNode->getInstruction();
unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
// Cases worth optimizing are:
// (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
// (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
//
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType->isInteger()) {
unsigned pow;
bool isValidConst;
int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target,
constOp, constOp->getType(), isValidConst);
if (isValidConst) {
bool needNeg = false;
if (C < 0) {
needNeg = true;
C = -C;
}
if (C == 1) {
mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addMReg(ZeroReg)
.addRegDef(destVal));
} else if (isPowerOf2(C, pow)) {
unsigned opCode;
Value* shiftOperand;
unsigned opSize = target.getTargetData().getTypeSize(resultType);
if (resultType->isSigned()) {
// For N / 2^k, if the operand N is negative,
// we need to add (2^k - 1) before right-shifting by k, i.e.,
//
// (N / 2^k) = N >> k, if N >= 0;
// (N + 2^k - 1) >> k, if N < 0
//
// If N is <= 32 bits, use:
// sra N, 31, t1 // t1 = ~0, if N < 0, 0 else
// srl t1, 32-k, t2 // t2 = 2^k - 1, if N < 0, 0 else
// add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else
// sra t3, k, result // result = N / 2^k
//
// If N is 64 bits, use:
// srax N, k-1, t1 // t1 = sign bit in high k positions
// srlx t1, 64-k, t2 // t2 = 2^k - 1, if N < 0, 0 else
// add t2, N, t3 // t3 = N + 2^k -1, if N < 0, N else
// sra t3, k, result // result = N / 2^k
//
TmpInstruction *sraTmp, *srlTmp, *addTmp;
MachineCodeForInstruction& mcfi
= MachineCodeForInstruction::get(destVal);
sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign");
srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1");
addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg");
// Create the SRA or SRAX instruction to get the sign bit
mvec.push_back(BuildMI((opSize > 4)? V9::SRAXi6 : V9::SRAi5, 3)
.addReg(LHS)
.addSImm((resultType==Type::LongTy)? pow-1 : 31)
.addRegDef(sraTmp));
// Create the SRL or SRLX instruction to get the sign bit
mvec.push_back(BuildMI((opSize > 4)? V9::SRLXi6 : V9::SRLi5, 3)
.addReg(sraTmp)
.addSImm((resultType==Type::LongTy)? 64-pow : 32-pow)
.addRegDef(srlTmp));
// Create the ADD instruction to add 2^pow-1 for negative values
mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp)
.addRegDef(addTmp));
// Get the shift operand and "right-shift" opcode to do the divide
shiftOperand = addTmp;
opCode = (opSize > 4)? V9::SRAXi6 : V9::SRAi5;
} else {
// Get the shift operand and "right-shift" opcode to do the divide
shiftOperand = LHS;
opCode = (opSize > 4)? V9::SRLXi6 : V9::SRLi5;
}
// Now do the actual shift!
mvec.push_back(BuildMI(opCode, 3).addReg(shiftOperand).addZImm(pow)
.addRegDef(destVal));
}
if (needNeg && (C == 1 || isPowerOf2(C, pow))) {
// insert <reg = SUB 0, reg> after the instr to flip the sign
mvec.push_back(CreateIntNegInstruction(target, destVal));
}
}
} else {
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
double dval = FPC->getValue();
if (fabs(dval) == 1) {
unsigned opCode =
(dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
: (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(destVal));
}
}
}
}
static void
CreateCodeForVariableSizeAlloca(const TargetMachine& target,
Instruction* result,
unsigned tsize,
Value* numElementsVal,
std::vector<MachineInstr*>& getMvec)
{
Value* totalSizeVal;
MachineInstr* M;
MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result);
Function *F = result->getParent()->getParent();
// Enforce the alignment constraints on the stack pointer at
// compile time if the total size is a known constant.
if (isa<Constant>(numElementsVal)) {
bool isValid;
int64_t numElem = (int64_t) target.getInstrInfo().
ConvertConstantToIntType(target, numElementsVal,
numElementsVal->getType(), isValid);
assert(isValid && "Unexpectedly large array dimension in alloca!");
int64_t total = numElem * tsize;
if (int extra= total % target.getFrameInfo().getStackFrameSizeAlignment())
total += target.getFrameInfo().getStackFrameSizeAlignment() - extra;
totalSizeVal = ConstantSInt::get(Type::IntTy, total);
} else {
// The size is not a constant. Generate code to compute it and
// code to pad the size for stack alignment.
// Create a Value to hold the (constant) element size
Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize);
// Create temporary values to hold the result of MUL, SLL, SRL
// To pad `size' to next smallest multiple of 16:
// size = (size + 15) & (-16 = 0xfffffffffffffff0)
//
TmpInstruction* tmpProd = new TmpInstruction(mcfi,numElementsVal, tsizeVal);
TmpInstruction* tmpAdd15= new TmpInstruction(mcfi,numElementsVal, tmpProd);
TmpInstruction* tmpAndf0= new TmpInstruction(mcfi,numElementsVal, tmpAdd15);
// Instruction 1: mul numElements, typeSize -> tmpProd
// This will optimize the MUL as far as possible.
CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd, getMvec,
mcfi, INVALID_MACHINE_OPCODE);
// Instruction 2: andn tmpProd, 0x0f -> tmpAndn
getMvec.push_back(BuildMI(V9::ADDi, 3).addReg(tmpProd).addSImm(15)
.addReg(tmpAdd15, MOTy::Def));
// Instruction 3: add tmpAndn, 0x10 -> tmpAdd16
getMvec.push_back(BuildMI(V9::ANDi, 3).addReg(tmpAdd15).addSImm(-16)
.addReg(tmpAndf0, MOTy::Def));
totalSizeVal = tmpAndf0;
}
// Get the constant offset from SP for dynamically allocated storage
// and create a temporary Value to hold it.
MachineFunction& mcInfo = MachineFunction::get(F);
bool growUp;
ConstantSInt* dynamicAreaOffset =
ConstantSInt::get(Type::IntTy,
target.getFrameInfo().getDynamicAreaOffset(mcInfo,growUp));
assert(! growUp && "Has SPARC v9 stack frame convention changed?");
unsigned SPReg = target.getRegInfo().getStackPointer();
// Instruction 2: sub %sp, totalSizeVal -> %sp
getMvec.push_back(BuildMI(V9::SUBr, 3).addMReg(SPReg).addReg(totalSizeVal)
.addMReg(SPReg,MOTy::Def));
// Instruction 3: add %sp, frameSizeBelowDynamicArea -> result
getMvec.push_back(BuildMI(V9::ADDr,3).addMReg(SPReg).addReg(dynamicAreaOffset)
.addRegDef(result));
}
static void
CreateCodeForFixedSizeAlloca(const TargetMachine& target,
Instruction* result,
unsigned tsize,
unsigned numElements,
std::vector<MachineInstr*>& getMvec)
{
assert(tsize > 0 && "Illegal (zero) type size for alloca");
assert(result && result->getParent() &&
"Result value is not part of a function?");
Function *F = result->getParent()->getParent();
MachineFunction &mcInfo = MachineFunction::get(F);
// Put the variable in the dynamically sized area of the frame if either:
// (a) The offset is too large to use as an immediate in load/stores
// (check LDX because all load/stores have the same-size immed. field).
// (b) The object is "large", so it could cause many other locals,
// spills, and temporaries to have large offsets.
// NOTE: We use LARGE = 8 * argSlotSize = 64 bytes.
// You've gotta love having only 13 bits for constant offset values :-|.
//
unsigned paddedSize;
int offsetFromFP = mcInfo.getInfo()->computeOffsetforLocalVar(result,
paddedSize,
tsize * numElements);
if (((int)paddedSize) > 8 * target.getFrameInfo().getSizeOfEachArgOnStack() ||
! target.getInstrInfo().constantFitsInImmedField(V9::LDXi,offsetFromFP)) {
CreateCodeForVariableSizeAlloca(target, result, tsize,
ConstantSInt::get(Type::IntTy,numElements),
getMvec);
return;
}
// else offset fits in immediate field so go ahead and allocate it.
offsetFromFP = mcInfo.getInfo()->allocateLocalVar(result, tsize *numElements);
// Create a temporary Value to hold the constant offset.
// This is needed because it may not fit in the immediate field.
ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP);
// Instruction 1: add %fp, offsetFromFP -> result
unsigned FPReg = target.getRegInfo().getFramePointer();
getMvec.push_back(BuildMI(V9::ADDr, 3).addMReg(FPReg).addReg(offsetVal)
.addRegDef(result));
}
//------------------------------------------------------------------------
// Function SetOperandsForMemInstr
//
// Choose addressing mode for the given load or store instruction.
// Use [reg+reg] if it is an indexed reference, and the index offset is
// not a constant or if it cannot fit in the offset field.
// Use [reg+offset] in all other cases.
//
// This assumes that all array refs are "lowered" to one of these forms:
// %x = load (subarray*) ptr, constant ; single constant offset
// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
// Generally, this should happen via strength reduction + LICM.
// Also, strength reduction should take care of using the same register for
// the loop index variable and an array index, when that is profitable.
//------------------------------------------------------------------------
static void
SetOperandsForMemInstr(unsigned Opcode,
std::vector<MachineInstr*>& mvec,
InstructionNode* vmInstrNode,
const TargetMachine& target)
{
Instruction* memInst = vmInstrNode->getInstruction();
// Index vector, ptr value, and flag if all indices are const.
std::vector<Value*> idxVec;
bool allConstantIndices;
Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices);
// Now create the appropriate operands for the machine instruction.
// First, initialize so we default to storing the offset in a register.
int64_t smallConstOffset = 0;
Value* valueForRegOffset = NULL;
MachineOperand::MachineOperandType offsetOpType =
MachineOperand::MO_VirtualRegister;
// Check if there is an index vector and if so, compute the
// right offset for structures and for arrays
//
if (!idxVec.empty()) {
const PointerType* ptrType = cast<PointerType>(ptrVal->getType());
// If all indices are constant, compute the combined offset directly.
if (allConstantIndices) {
// Compute the offset value using the index vector. Create a
// virtual reg. for it since it may not fit in the immed field.
uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec);
valueForRegOffset = ConstantSInt::get(Type::LongTy, offset);
} else {
// There is at least one non-constant offset. Therefore, this must
// be an array ref, and must have been lowered to a single non-zero
// offset. (An extra leading zero offset, if any, can be ignored.)
// Generate code sequence to compute address from index.
//
bool firstIdxIsZero = IsZero(idxVec[0]);
assert(idxVec.size() == 1U + firstIdxIsZero
&& "Array refs must be lowered before Instruction Selection");
Value* idxVal = idxVec[firstIdxIsZero];
std::vector<MachineInstr*> mulVec;
Instruction* addr =
new TmpInstruction(MachineCodeForInstruction::get(memInst),
Type::ULongTy, memInst);
// Get the array type indexed by idxVal, and compute its element size.
// The call to getTypeSize() will fail if size is not constant.
const Type* vecType = (firstIdxIsZero
? GetElementPtrInst::getIndexedType(ptrType,
std::vector<Value*>(1U, idxVec[0]),
/*AllowCompositeLeaf*/ true)
: ptrType);
const Type* eltType = cast<SequentialType>(vecType)->getElementType();
ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy,
target.getTargetData().getTypeSize(eltType));
// CreateMulInstruction() folds constants intelligently enough.
CreateMulInstruction(target, memInst->getParent()->getParent(),
idxVal, /* lval, not likely to be const*/
eltSizeVal, /* rval, likely to be constant */
addr, /* result */
mulVec, MachineCodeForInstruction::get(memInst),
INVALID_MACHINE_OPCODE);
assert(mulVec.size() > 0 && "No multiply code created?");
mvec.insert(mvec.end(), mulVec.begin(), mulVec.end());
valueForRegOffset = addr;
}
} else {
offsetOpType = MachineOperand::MO_SignExtendedImmed;
smallConstOffset = 0;
}
// For STORE:
// Operand 0 is value, operand 1 is ptr, operand 2 is offset
// For LOAD or GET_ELEMENT_PTR,
// Operand 0 is ptr, operand 1 is offset, operand 2 is result.
//
unsigned offsetOpNum, ptrOpNum;
MachineInstr *MI;
if (memInst->getOpcode() == Instruction::Store) {
if (offsetOpType == MachineOperand::MO_VirtualRegister) {
MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
.addReg(ptrVal).addReg(valueForRegOffset);
} else {
Opcode = convertOpcodeFromRegToImm(Opcode);
MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
.addReg(ptrVal).addSImm(smallConstOffset);
}
} else {
if (offsetOpType == MachineOperand::MO_VirtualRegister) {
MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset)
.addRegDef(memInst);
} else {
Opcode = convertOpcodeFromRegToImm(Opcode);
MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset)
.addRegDef(memInst);
}
}
mvec.push_back(MI);
}
//
// Substitute operand `operandNum' of the instruction in node `treeNode'
// in place of the use(s) of that instruction in node `parent'.
// Check both explicit and implicit operands!
// Also make sure to skip over a parent who:
// (1) is a list node in the Burg tree, or
// (2) itself had its results forwarded to its parent
//
static void
ForwardOperand(InstructionNode* treeNode,
InstrTreeNode* parent,
int operandNum)
{
assert(treeNode && parent && "Invalid invocation of ForwardOperand");
Instruction* unusedOp = treeNode->getInstruction();
Value* fwdOp = unusedOp->getOperand(operandNum);
// The parent itself may be a list node, so find the real parent instruction
while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
{
parent = parent->parent();
assert(parent && "ERROR: Non-instruction node has no parent in tree.");
}
InstructionNode* parentInstrNode = (InstructionNode*) parent;
Instruction* userInstr = parentInstrNode->getInstruction();
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr);
// The parent's mvec would be empty if it was itself forwarded.
// Recursively call ForwardOperand in that case...
//
if (mvec.size() == 0) {
assert(parent->parent() != NULL &&
"Parent could not have been forwarded, yet has no instructions?");
ForwardOperand(treeNode, parent->parent(), operandNum);
} else {
for (unsigned i=0, N=mvec.size(); i < N; i++) {
MachineInstr* minstr = mvec[i];
for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) {
const MachineOperand& mop = minstr->getOperand(i);
if (mop.getType() == MachineOperand::MO_VirtualRegister &&
mop.getVRegValue() == unusedOp)
{
minstr->SetMachineOperandVal(i, MachineOperand::MO_VirtualRegister,
fwdOp);
}
}
for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i)
if (minstr->getImplicitRef(i) == unusedOp)
minstr->setImplicitRef(i, fwdOp);
}
}
}
inline bool
AllUsesAreBranches(const Instruction* setccI)
{
for (Value::use_const_iterator UI=setccI->use_begin(), UE=setccI->use_end();
UI != UE; ++UI)
if (! isa<TmpInstruction>(*UI) // ignore tmp instructions here
&& cast<Instruction>(*UI)->getOpcode() != Instruction::Br)
return false;
return true;
}
// Generate code for any intrinsic that needs a special code sequence
// instead of a regular call. If not that kind of intrinsic, do nothing.
// Returns true if code was generated, otherwise false.
//
bool CodeGenIntrinsic(LLVMIntrinsic::ID iid, CallInst &callInstr,
TargetMachine &target,
std::vector<MachineInstr*>& mvec)
{
switch (iid) {
case LLVMIntrinsic::va_start: {
// Get the address of the first incoming vararg argument on the stack
bool ignore;
Function* func = cast<Function>(callInstr.getParent()->getParent());
int numFixedArgs = func->getFunctionType()->getNumParams();
int fpReg = target.getFrameInfo().getIncomingArgBaseRegNum();
int argSize = target.getFrameInfo().getSizeOfEachArgOnStack();
int firstVarArgOff = numFixedArgs * argSize + target.getFrameInfo().
getFirstIncomingArgOffset(MachineFunction::get(func), ignore);
mvec.push_back(BuildMI(V9::ADDi, 3).addMReg(fpReg).addSImm(firstVarArgOff).
addRegDef(&callInstr));
return true;
}
case LLVMIntrinsic::va_end:
return true; // no-op on Sparc
case LLVMIntrinsic::va_copy:
// Simple copy of current va_list (arg1) to new va_list (result)
mvec.push_back(BuildMI(V9::ORr, 3).
addMReg(target.getRegInfo().getZeroRegNum()).
addReg(callInstr.getOperand(1)).
addRegDef(&callInstr));
return true;
case LLVMIntrinsic::sigsetjmp:
case LLVMIntrinsic::setjmp: {
// act as if we return 0
unsigned g0 = target.getRegInfo().getZeroRegNum();
mvec.push_back(BuildMI(V9::ORr,3).addMReg(g0).addMReg(g0)
.addReg(&callInstr, MOTy::Def));
return true;
}
case LLVMIntrinsic::siglongjmp:
case LLVMIntrinsic::longjmp: {
// call abort()
Module* M = callInstr.getParent()->getParent()->getParent();
const FunctionType *voidvoidFuncTy =
FunctionType::get(Type::VoidTy, std::vector<const Type*>(), false);
Function *F = M->getOrInsertFunction("abort", voidvoidFuncTy);
assert(F && "Unable to get or create `abort' function declaration");
// Create hidden virtual register for return address with type void*
TmpInstruction* retAddrReg =
new TmpInstruction(MachineCodeForInstruction::get(&callInstr),
PointerType::get(Type::VoidTy), &callInstr);
// Use a descriptor to pass information about call arguments
// to the register allocator. This descriptor will be "owned"
// and freed automatically when the MachineCodeForInstruction
// object for the callInstr goes away.
CallArgsDescriptor* argDesc =
new CallArgsDescriptor(&callInstr, retAddrReg, false, false);
MachineInstr* callMI = BuildMI(V9::CALL, 1).addPCDisp(F);
callMI->addImplicitRef(retAddrReg, /*isDef*/ true);
mvec.push_back(callMI);
mvec.push_back(BuildMI(V9::NOP, 0));
return true;
}
default:
return false;
}
}
//******************* Externally Visible Functions *************************/
//------------------------------------------------------------------------
// External Function: ThisIsAChainRule
//
// Purpose:
// Check if a given BURG rule is a chain rule.
//------------------------------------------------------------------------
extern bool
ThisIsAChainRule(int eruleno)
{
switch(eruleno)
{
case 111: // stmt: reg
case 123:
case 124:
case 125:
case 126:
case 127:
case 128:
case 129:
case 130:
case 131:
case 132:
case 133:
case 155:
case 221:
case 222:
case 241:
case 242:
case 243:
case 244:
case 245:
case 321:
return true; break;
default:
return false; break;
}
}
//------------------------------------------------------------------------
// External Function: GetInstructionsByRule
//
// Purpose:
// Choose machine instructions for the SPARC according to the
// patterns chosen by the BURG-generated parser.
//------------------------------------------------------------------------
void
GetInstructionsByRule(InstructionNode* subtreeRoot,
int ruleForNode,
short* nts,
TargetMachine &target,
std::vector<MachineInstr*>& mvec)
{
bool checkCast = false; // initialize here to use fall-through
bool maskUnsignedResult = false;
int nextRule;
int forwardOperandNum = -1;
unsigned allocaSize = 0;
MachineInstr* M, *M2;
unsigned L;
bool foldCase = false;
mvec.clear();
// If the code for this instruction was folded into the parent (user),
// then do nothing!
if (subtreeRoot->isFoldedIntoParent())
return;
//
// Let's check for chain rules outside the switch so that we don't have
// to duplicate the list of chain rule production numbers here again
//
if (ThisIsAChainRule(ruleForNode)) {
// Chain rules have a single nonterminal on the RHS.
// Get the rule that matches the RHS non-terminal and use that instead.
//
assert(nts[0] && ! nts[1]
&& "A chain rule should have only one RHS non-terminal!");
nextRule = burm_rule(subtreeRoot->state, nts[0]);
nts = burm_nts[nextRule];
GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec);
} else {
switch(ruleForNode) {
case 1: // stmt: Ret
case 2: // stmt: RetValue(reg)
{ // NOTE: Prepass of register allocation is responsible
// for moving return value to appropriate register.
// Copy the return value to the required return register.
// Mark the return Value as an implicit ref of the RET instr..
// Mark the return-address register as a hidden virtual reg.
// Finally put a NOP in the delay slot.
ReturnInst *returnInstr=cast<ReturnInst>(subtreeRoot->getInstruction());
Value* retVal = returnInstr->getReturnValue();
MachineCodeForInstruction& mcfi =
MachineCodeForInstruction::get(returnInstr);
// Create a hidden virtual reg to represent the return address register
// used by the machine instruction but not represented in LLVM.
//
Instruction* returnAddrTmp = new TmpInstruction(mcfi, returnInstr);
MachineInstr* retMI =
BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8)
.addMReg(target.getRegInfo().getZeroRegNum(), MOTy::Def);
// If there is a value to return, we need to:
// (a) Sign-extend the value if it is smaller than 8 bytes (reg size)
// (b) Insert a copy to copy the return value to the appropriate reg.
// -- For FP values, create a FMOVS or FMOVD instruction
// -- For non-FP values, create an add-with-0 instruction
//
if (retVal != NULL) {
const UltraSparcRegInfo& regInfo =
(UltraSparcRegInfo&) target.getRegInfo();
const Type* retType = retVal->getType();
unsigned regClassID = regInfo.getRegClassIDOfType(retType);
unsigned retRegNum = (retType->isFloatingPoint()
? (unsigned) SparcFloatRegClass::f0
: (unsigned) SparcIntRegClass::i0);
retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum);
// () Insert sign-extension instructions for small signed values.
//
Value* retValToUse = retVal;
if (retType->isIntegral() && retType->isSigned()) {
unsigned retSize = target.getTargetData().getTypeSize(retType);
if (retSize <= 4) {
// create a temporary virtual reg. to hold the sign-extension
retValToUse = new TmpInstruction(mcfi, retVal);
// sign-extend retVal and put the result in the temporary reg.
target.getInstrInfo().CreateSignExtensionInstructions
(target, returnInstr->getParent()->getParent(),
retVal, retValToUse, 8*retSize, mvec, mcfi);
}
}
// (b) Now, insert a copy to to the appropriate register:
// -- For FP values, create a FMOVS or FMOVD instruction
// -- For non-FP values, create an add-with-0 instruction
//
// First, create a virtual register to represent the register and
// mark this vreg as being an implicit operand of the ret MI.
TmpInstruction* retVReg =
new TmpInstruction(mcfi, retValToUse, NULL, "argReg");
retMI->addImplicitRef(retVReg);
if (retType->isFloatingPoint())
M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
.addReg(retValToUse).addReg(retVReg, MOTy::Def));
else
M = (BuildMI(ChooseAddInstructionByType(retType), 3)
.addReg(retValToUse).addSImm((int64_t) 0)
.addReg(retVReg, MOTy::Def));
// Mark the operand with the register it should be assigned
M->SetRegForOperand(M->getNumOperands()-1, retRegNum);
retMI->SetRegForImplicitRef(retMI->getNumImplicitRefs()-1, retRegNum);
mvec.push_back(M);
}
// Now insert the RET instruction and a NOP for the delay slot
mvec.push_back(retMI);
mvec.push_back(BuildMI(V9::NOP, 0));
break;
}
case 3: // stmt: Store(reg,reg)
case 4: // stmt: Store(reg,ptrreg)
SetOperandsForMemInstr(ChooseStoreInstruction(
subtreeRoot->leftChild()->getValue()->getType()),
mvec, subtreeRoot, target);
break;
case 5: // stmt: BrUncond
{
BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0)));
// delay slot
mvec.push_back(BuildMI(V9::NOP, 0));
break;
}
case 206: // stmt: BrCond(setCCconst)
{ // setCCconst => boolean was computed with `%b = setCC type reg1 const'
// If the constant is ZERO, we can use the branch-on-integer-register
// instructions and avoid the SUBcc instruction entirely.
// Otherwise this is just the same as case 5, so just fall through.
//
InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
assert(constNode &&
constNode->getNodeType() ==InstrTreeNode::NTConstNode);
Constant *constVal = cast<Constant>(constNode->getValue());
bool isValidConst;
if ((constVal->getType()->isInteger()
|| isa<PointerType>(constVal->getType()))
&& target.getInstrInfo().ConvertConstantToIntType(target,
constVal, constVal->getType(), isValidConst) == 0
&& isValidConst)
{
// That constant is a zero after all...
// Use the left child of setCC as the first argument!
// Mark the setCC node so that no code is generated for it.
InstructionNode* setCCNode = (InstructionNode*)
subtreeRoot->leftChild();
assert(setCCNode->getOpLabel() == SetCCOp);
setCCNode->markFoldedIntoParent();
BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction());
M = BuildMI(ChooseBprInstruction(subtreeRoot), 2)
.addReg(setCCNode->leftChild()->getValue())
.addPCDisp(brInst->getSuccessor(0));
mvec.push_back(M);
// delay slot
mvec.push_back(BuildMI(V9::NOP, 0));
// false branch
mvec.push_back(BuildMI(V9::BA, 1)
.addPCDisp(brInst->getSuccessor(1)));
// delay slot
mvec.push_back(BuildMI(V9::NOP, 0));
break;
}
// ELSE FALL THROUGH
}
case 6: // stmt: BrCond(setCC)
{ // bool => boolean was computed with SetCC.
// The branch to use depends on whether it is FP, signed, or unsigned.
// If it is an integer CC, we also need to find the unique
// TmpInstruction representing that CC.
//
BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction());
const Type* setCCType;
unsigned Opcode = ChooseBccInstruction(subtreeRoot, setCCType);
Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
brInst->getParent()->getParent(),
setCCType,
MachineCodeForInstruction::get(brInst));
M = BuildMI(Opcode, 2).addCCReg(ccValue)
.addPCDisp(brInst->getSuccessor(0));
mvec.push_back(M);
// delay slot
mvec.push_back(BuildMI(V9::NOP, 0));
// false branch
mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1)));
// delay slot
mvec.push_back(BuildMI(V9::NOP, 0));
break;
}
case 208: // stmt: BrCond(boolconst)
{
// boolconst => boolean is a constant; use BA to first or second label
Constant* constVal =
cast<Constant>(subtreeRoot->leftChild()->getValue());
unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1;
M = BuildMI(V9::BA, 1).addPCDisp(
cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest));
mvec.push_back(M);
// delay slot
mvec.push_back(BuildMI(V9::NOP, 0));
break;
}
case 8: // stmt: BrCond(boolreg)
{ // boolreg => boolean is recorded in an integer register.
// Use branch-on-integer-register instruction.
//
BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue())
.addPCDisp(BI->getSuccessor(0));
mvec.push_back(M);
// delay slot
mvec.push_back(BuildMI(V9::NOP, 0));
// false branch
mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1)));
// delay slot
mvec.push_back(BuildMI(V9::NOP, 0));
break;
}
case 9: // stmt: Switch(reg)
assert(0 && "*** SWITCH instruction is not implemented yet.");
break;
case 10: // reg: VRegList(reg, reg)
assert(0 && "VRegList should never be the topmost non-chain rule");
break;
case 21: // bool: Not(bool,reg): Compute with a conditional-move-on-reg
{ // First find the unary operand. It may be left or right, usually right.
Instruction* notI = subtreeRoot->getInstruction();
Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(subtreeRoot->getInstruction()));
unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
// Unconditionally set register to 0
mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI));
// Now conditionally move 1 into the register.
// Mark the register as a use (as well as a def) because the old
// value will be retained if the condition is false.
mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1)
.addReg(notI, MOTy::UseAndDef));
break;
}
case 421: // reg: BNot(reg,reg): Compute as reg = reg XOR-NOT 0
{ // First find the unary operand. It may be left or right, usually right.
Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(subtreeRoot->getInstruction()));
unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
mvec.push_back(BuildMI(V9::XNORr, 3).addReg(notArg).addMReg(ZeroReg)
.addRegDef(subtreeRoot->getValue()));
break;
}
case 322: // reg: Not(tobool, reg):
// Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool
foldCase = true;
// Just fall through!
case 22: // reg: ToBoolTy(reg):
{
Instruction* castI = subtreeRoot->getInstruction();
Value* opVal = subtreeRoot->leftChild()->getValue();
assert(opVal->getType()->isIntegral() ||
isa<PointerType>(opVal->getType()));
// Unconditionally set register to 0
mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI));
// Now conditionally move 1 into the register.
// Mark the register as a use (as well as a def) because the old
// value will be retained if the condition is false.
MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi;
mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1)
.addReg(castI, MOTy::UseAndDef));
break;
}
case 23: // reg: ToUByteTy(reg)
case 24: // reg: ToSByteTy(reg)
case 25: // reg: ToUShortTy(reg)
case 26: // reg: ToShortTy(reg)
case 27: // reg: ToUIntTy(reg)
case 28: // reg: ToIntTy(reg)
case 29: // reg: ToULongTy(reg)
case 30: // reg: ToLongTy(reg)
{
//======================================================================
// Rules for integer conversions:
//
//--------
// From ISO 1998 C++ Standard, Sec. 4.7:
//
// 2. If the destination type is unsigned, the resulting value is
// the least unsigned integer congruent to the source integer
// (modulo 2n where n is the number of bits used to represent the
// unsigned type). [Note: In a two s complement representation,
// this conversion is conceptual and there is no change in the
// bit pattern (if there is no truncation). ]
//
// 3. If the destination type is signed, the value is unchanged if
// it can be represented in the destination type (and bitfield width);
// otherwise, the value is implementation-defined.
//--------
//
// Since we assume 2s complement representations, this implies:
//
// -- If operand is smaller than destination, zero-extend or sign-extend
// according to the signedness of the *operand*: source decides:
// (1) If operand is signed, sign-extend it.
// If dest is unsigned, zero-ext the result!
// (2) If operand is unsigned, our current invariant is that
// it's high bits are correct, so zero-extension is not needed.
//
// -- If operand is same size as or larger than destination,
// zero-extend or sign-extend according to the signedness of
// the *destination*: destination decides:
// (1) If destination is signed, sign-extend (truncating if needed)
// This choice is implementation defined. We sign-extend the
// operand, which matches both Sun's cc and gcc3.2.
// (2) If destination is unsigned, zero-extend (truncating if needed)
//======================================================================
Instruction* destI = subtreeRoot->getInstruction();
Function* currentFunc = destI->getParent()->getParent();
MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI);
Value* opVal = subtreeRoot->leftChild()->getValue();
const Type* opType = opVal->getType();
const Type* destType = destI->getType();
unsigned opSize = target.getTargetData().getTypeSize(opType);
unsigned destSize = target.getTargetData().getTypeSize(destType);
bool isIntegral = opType->isIntegral() || isa<PointerType>(opType);
if (opType == Type::BoolTy ||
opType == destType ||
isIntegral && opSize == destSize && opSize == 8) {
// nothing to do in all these cases
forwardOperandNum = 0; // forward first operand to user
} else if (opType->isFloatingPoint()) {
CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi);
if (destI->getType()->isUnsigned() && destI->getType() !=Type::UIntTy)
maskUnsignedResult = true; // not handled by fp->int code
} else if (isIntegral) {
bool opSigned = opType->isSigned();
bool destSigned = destType->isSigned();
unsigned extSourceInBits = 8 * std::min<unsigned>(opSize, destSize);
assert(! (opSize == destSize && opSigned == destSigned) &&
"How can different int types have same size and signedness?");
bool signExtend = (opSize < destSize && opSigned ||
opSize >= destSize && destSigned);
bool signAndZeroExtend = (opSize < destSize && destSize < 8u &&
opSigned && !destSigned);
assert(!signAndZeroExtend || signExtend);
bool zeroExtendOnly = opSize >= destSize && !destSigned;
assert(!zeroExtendOnly || !signExtend);
if (signExtend) {
Value* signExtDest = (signAndZeroExtend
? new TmpInstruction(mcfi, destType, opVal)
: destI);
target.getInstrInfo().CreateSignExtensionInstructions
(target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi);
if (signAndZeroExtend)
target.getInstrInfo().CreateZeroExtensionInstructions
(target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi);
}
else if (zeroExtendOnly) {
target.getInstrInfo().CreateZeroExtensionInstructions
(target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi);
}
else
forwardOperandNum = 0; // forward first operand to user
} else
assert(0 && "Unrecognized operand type for convert-to-integer");
break;
}
case 31: // reg: ToFloatTy(reg):
case 32: // reg: ToDoubleTy(reg):
case 232: // reg: ToDoubleTy(Constant):
// If this instruction has a parent (a user) in the tree
// and the user is translated as an FsMULd instruction,
// then the cast is unnecessary. So check that first.
// In the future, we'll want to do the same for the FdMULq instruction,
// so do the check here instead of only for ToFloatTy(reg).
//
if (subtreeRoot->parent() != NULL) {
const MachineCodeForInstruction& mcfi =
MachineCodeForInstruction::get(
cast<InstructionNode>(subtreeRoot->parent())->getInstruction());
if (mcfi.size() == 0 || mcfi.front()->getOpCode() == V9::FSMULD)
forwardOperandNum = 0; // forward first operand to user
}
if (forwardOperandNum != 0) { // we do need the cast
Value* leftVal = subtreeRoot->leftChild()->getValue();
const Type* opType = leftVal->getType();
MachineOpCode opCode=ChooseConvertToFloatInstr(target,
subtreeRoot->getOpLabel(), opType);
if (opCode == V9::NOP) { // no conversion needed
forwardOperandNum = 0; // forward first operand to user
} else {
// If the source operand is a non-FP type it must be
// first copied from int to float register via memory!
Instruction *dest = subtreeRoot->getInstruction();
Value* srcForCast;
int n = 0;
if (! opType->isFloatingPoint()) {
// Create a temporary to represent the FP register
// into which the integer will be copied via memory.
// The type of this temporary will determine the FP
// register used: single-prec for a 32-bit int or smaller,
// double-prec for a 64-bit int.
//
uint64_t srcSize =
target.getTargetData().getTypeSize(leftVal->getType());
Type* tmpTypeToUse =
(srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
MachineCodeForInstruction &destMCFI =
MachineCodeForInstruction::get(dest);
srcForCast = new TmpInstruction(destMCFI, tmpTypeToUse, dest);
target.getInstrInfo().CreateCodeToCopyIntToFloat(target,
dest->getParent()->getParent(),
leftVal, cast<Instruction>(srcForCast),
mvec, destMCFI);
} else
srcForCast = leftVal;
M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest);
mvec.push_back(M);
}
}
break;
case 19: // reg: ToArrayTy(reg):
case 20: // reg: ToPointerTy(reg):
forwardOperandNum = 0; // forward first operand to user
break;
case 233: // reg: Add(reg, Constant)
maskUnsignedResult = true;
M = CreateAddConstInstruction(subtreeRoot);
if (M != NULL) {
mvec.push_back(M);
break;
}
// ELSE FALL THROUGH
case 33: // reg: Add(reg, reg)
maskUnsignedResult = true;
Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec);
break;
case 234: // reg: Sub(reg, Constant)
maskUnsignedResult = true;
M = CreateSubConstInstruction(subtreeRoot);
if (M != NULL) {
mvec.push_back(M);
break;
}
// ELSE FALL THROUGH
case 34: // reg: Sub(reg, reg)
maskUnsignedResult = true;
Add3OperandInstr(ChooseSubInstructionByType(
subtreeRoot->getInstruction()->getType()),
subtreeRoot, mvec);
break;
case 135: // reg: Mul(todouble, todouble)
checkCast = true;
// FALL THROUGH
case 35: // reg: Mul(reg, reg)
{
maskUnsignedResult = true;
MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
? V9::FSMULD
: INVALID_MACHINE_OPCODE);
Instruction* mulInstr = subtreeRoot->getInstruction();
CreateMulInstruction(target, mulInstr->getParent()->getParent(),
subtreeRoot->leftChild()->getValue(),
subtreeRoot->rightChild()->getValue(),
mulInstr, mvec,
MachineCodeForInstruction::get(mulInstr),forceOp);
break;
}
case 335: // reg: Mul(todouble, todoubleConst)
checkCast = true;
// FALL THROUGH
case 235: // reg: Mul(reg, Constant)
{
maskUnsignedResult = true;
MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
? V9::FSMULD
: INVALID_MACHINE_OPCODE);
Instruction* mulInstr = subtreeRoot->getInstruction();
CreateMulInstruction(target, mulInstr->getParent()->getParent(),
subtreeRoot->leftChild()->getValue(),
subtreeRoot->rightChild()->getValue(),
mulInstr, mvec,
MachineCodeForInstruction::get(mulInstr),
forceOp);
break;
}
case 236: // reg: Div(reg, Constant)
maskUnsignedResult = true;
L = mvec.size();
CreateDivConstInstruction(target, subtreeRoot, mvec);
if (mvec.size() > L)
break;
// ELSE FALL THROUGH
case 36: // reg: Div(reg, reg)
{
maskUnsignedResult = true;
// If either operand of divide is smaller than 64 bits, we have
// to make sure the unused top bits are correct because they affect
// the result. These bits are already correct for unsigned values.
// They may be incorrect for signed values, so sign extend to fill in.
Instruction* divI = subtreeRoot->getInstruction();
Value* divOp1 = subtreeRoot->leftChild()->getValue();
Value* divOp2 = subtreeRoot->rightChild()->getValue();
Value* divOp1ToUse = divOp1;
Value* divOp2ToUse = divOp2;
if (divI->getType()->isSigned()) {
unsigned opSize=target.getTargetData().getTypeSize(divI->getType());
if (opSize < 8) {
MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI);
divOp1ToUse = new TmpInstruction(mcfi, divOp1);
divOp2ToUse = new TmpInstruction(mcfi, divOp2);
target.getInstrInfo().
CreateSignExtensionInstructions(target,
divI->getParent()->getParent(),
divOp1, divOp1ToUse,
8*opSize, mvec, mcfi);
target.getInstrInfo().
CreateSignExtensionInstructions(target,
divI->getParent()->getParent(),
divOp2, divOp2ToUse,
8*opSize, mvec, mcfi);
}
}
mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
.addReg(divOp1ToUse)
.addReg(divOp2ToUse)
.addRegDef(divI));
break;
}
case 37: // reg: Rem(reg, reg)
case 237: // reg: Rem(reg, Constant)
{
maskUnsignedResult = true;
Instruction* remI = subtreeRoot->getInstruction();
Value* divOp1 = subtreeRoot->leftChild()->getValue();
Value* divOp2 = subtreeRoot->rightChild()->getValue();
MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI);
// If second operand of divide is smaller than 64 bits, we have
// to make sure the unused top bits are correct because they affect
// the result. These bits are already correct for unsigned values.
// They may be incorrect for signed values, so sign extend to fill in.
//
Value* divOpToUse = divOp2;
if (divOp2->getType()->isSigned()) {
unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType());
if (opSize < 8) {
divOpToUse = new TmpInstruction(mcfi, divOp2);
target.getInstrInfo().
CreateSignExtensionInstructions(target,
remI->getParent()->getParent(),
divOp2, divOpToUse,
8*opSize, mvec, mcfi);
}
}
// Now compute: result = rem V1, V2 as:
// result = V1 - (V1 / signExtend(V2)) * signExtend(V2)
//
TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse);
TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse);
mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
.addReg(divOp1).addReg(divOpToUse).addRegDef(quot));
mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3)
.addReg(quot).addReg(divOpToUse).addRegDef(prod));
mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3)
.addReg(divOp1).addReg(prod).addRegDef(remI));
break;
}
case 38: // bool: And(bool, bool)
case 138: // bool: And(bool, not)
case 238: // bool: And(bool, boolconst)
case 338: // reg : BAnd(reg, reg)
case 538: // reg : BAnd(reg, Constant)
Add3OperandInstr(V9::ANDr, subtreeRoot, mvec);
break;
case 438: // bool: BAnd(bool, bnot)
{ // Use the argument of NOT as the second argument!
// Mark the NOT node so that no code is generated for it.
// If the type is boolean, set 1 or 0 in the result register.
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(notNode->getInstruction()));
notNode->markFoldedIntoParent();
Value *lhs = subtreeRoot->leftChild()->getValue();
Value *dest = subtreeRoot->getValue();
mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg)
.addReg(dest, MOTy::Def));
if (notArg->getType() == Type::BoolTy) {
// set 1 in result register if result of above is non-zero
mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
.addReg(dest, MOTy::UseAndDef));
}
break;
}
case 39: // bool: Or(bool, bool)
case 139: // bool: Or(bool, not)
case 239: // bool: Or(bool, boolconst)
case 339: // reg : BOr(reg, reg)
case 539: // reg : BOr(reg, Constant)
Add3OperandInstr(V9::ORr, subtreeRoot, mvec);
break;
case 439: // bool: BOr(bool, bnot)
{ // Use the argument of NOT as the second argument!
// Mark the NOT node so that no code is generated for it.
// If the type is boolean, set 1 or 0 in the result register.
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(notNode->getInstruction()));
notNode->markFoldedIntoParent();
Value *lhs = subtreeRoot->leftChild()->getValue();
Value *dest = subtreeRoot->getValue();
mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg)
.addReg(dest, MOTy::Def));
if (notArg->getType() == Type::BoolTy) {
// set 1 in result register if result of above is non-zero
mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
.addReg(dest, MOTy::UseAndDef));
}
break;
}
case 40: // bool: Xor(bool, bool)
case 140: // bool: Xor(bool, not)
case 240: // bool: Xor(bool, boolconst)
case 340: // reg : BXor(reg, reg)
case 540: // reg : BXor(reg, Constant)
Add3OperandInstr(V9::XORr, subtreeRoot, mvec);
break;
case 440: // bool: BXor(bool, bnot)
{ // Use the argument of NOT as the second argument!
// Mark the NOT node so that no code is generated for it.
// If the type is boolean, set 1 or 0 in the result register.
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
Value* notArg = BinaryOperator::getNotArgument(
cast<BinaryOperator>(notNode->getInstruction()));
notNode->markFoldedIntoParent();
Value *lhs = subtreeRoot->leftChild()->getValue();
Value *dest = subtreeRoot->getValue();
mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg)
.addReg(dest, MOTy::Def));
if (notArg->getType() == Type::BoolTy) {
// set 1 in result register if result of above is non-zero
mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
.addReg(dest, MOTy::UseAndDef));
}
break;
}
case 41: // setCCconst: SetCC(reg, Constant)
{ // Comparison is with a constant:
//
// If the bool result must be computed into a register (see below),
// and the constant is int ZERO, we can use the MOVR[op] instructions
// and avoid the SUBcc instruction entirely.
// Otherwise this is just the same as case 42, so just fall through.
//
// The result of the SetCC must be computed and stored in a register if
// it is used outside the current basic block (so it must be computed
// as a boolreg) or it is used by anything other than a branch.
// We will use a conditional move to do this.
//
Instruction* setCCInstr = subtreeRoot->getInstruction();
bool computeBoolVal = (subtreeRoot->parent() == NULL ||
! AllUsesAreBranches(setCCInstr));
if (computeBoolVal) {
InstrTreeNode* constNode = subtreeRoot->rightChild();
assert(constNode &&
constNode->getNodeType() ==InstrTreeNode::NTConstNode);
Constant *constVal = cast<Constant>(constNode->getValue());
bool isValidConst;
if ((constVal->getType()->isInteger()
|| isa<PointerType>(constVal->getType()))
&& target.getInstrInfo().ConvertConstantToIntType(target,
constVal, constVal->getType(), isValidConst) == 0
&& isValidConst)
{
// That constant is an integer zero after all...
// Use a MOVR[op] to compute the boolean result
// Unconditionally set register to 0
mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0)
.addRegDef(setCCInstr));
// Now conditionally move 1 into the register.
// Mark the register as a use (as well as a def) because the old
// value will be retained if the condition is false.
MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot);
mvec.push_back(BuildMI(movOpCode, 3)
.addReg(subtreeRoot->leftChild()->getValue())
.addZImm(1).addReg(setCCInstr, MOTy::UseAndDef));
break;
}
}
// ELSE FALL THROUGH
}
case 42: // bool: SetCC(reg, reg):
{
// This generates a SUBCC instruction, putting the difference in a
// result reg. if needed, and/or setting a condition code if needed.
//
Instruction* setCCInstr = subtreeRoot->getInstruction();
Value* leftVal = subtreeRoot->leftChild()->getValue();
Value* rightVal = subtreeRoot->rightChild()->getValue();
const Type* opType = leftVal->getType();
bool isFPCompare = opType->isFloatingPoint();
// If the boolean result of the SetCC is used outside the current basic
// block (so it must be computed as a boolreg) or is used by anything
// other than a branch, the boolean must be computed and stored
// in a result register. We will use a conditional move to do this.
//
bool computeBoolVal = (subtreeRoot->parent() == NULL ||
! AllUsesAreBranches(setCCInstr));
// A TmpInstruction is created to represent the CC "result".
// Unlike other instances of TmpInstruction, this one is used
// by machine code of multiple LLVM instructions, viz.,
// the SetCC and the branch. Make sure to get the same one!
// Note that we do this even for FP CC registers even though they
// are explicit operands, because the type of the operand
// needs to be a floating point condition code, not an integer
// condition code. Think of this as casting the bool result to
// a FP condition code register.
// Later, we mark the 4th operand as being a CC register, and as a def.
//
TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
setCCInstr->getParent()->getParent(),
leftVal->getType(),
MachineCodeForInstruction::get(setCCInstr));
// If the operands are signed values smaller than 4 bytes, then they
// must be sign-extended in order to do a valid 32-bit comparison
// and get the right result in the 32-bit CC register (%icc).
//
Value* leftOpToUse = leftVal;
Value* rightOpToUse = rightVal;
if (opType->isIntegral() && opType->isSigned()) {
unsigned opSize = target.getTargetData().getTypeSize(opType);
if (opSize < 4) {
MachineCodeForInstruction& mcfi =
MachineCodeForInstruction::get(setCCInstr);
// create temporary virtual regs. to hold the sign-extensions
leftOpToUse = new TmpInstruction(mcfi, leftVal);
rightOpToUse = new TmpInstruction(mcfi, rightVal);
// sign-extend each operand and put the result in the temporary reg.
target.getInstrInfo().CreateSignExtensionInstructions
(target, setCCInstr->getParent()->getParent(),
leftVal, leftOpToUse, 8*opSize, mvec, mcfi);
target.getInstrInfo().CreateSignExtensionInstructions
(target, setCCInstr->getParent()->getParent(),
rightVal, rightOpToUse, 8*opSize, mvec, mcfi);
}
}
if (! isFPCompare) {
// Integer condition: set CC and discard result.
mvec.push_back(BuildMI(V9::SUBccr, 4)
.addReg(leftOpToUse)
.addReg(rightOpToUse)
.addMReg(target.getRegInfo().getZeroRegNum(),MOTy::Def)
.addCCReg(tmpForCC, MOTy::Def));
} else {
// FP condition: dest of FCMP should be some FCCn register
mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3)
.addCCReg(tmpForCC, MOTy::Def)
.addReg(leftOpToUse)
.addReg(rightOpToUse));
}
if (computeBoolVal) {
MachineOpCode movOpCode = (isFPCompare
? ChooseMovFpcciInstruction(subtreeRoot)
: ChooseMovpcciForSetCC(subtreeRoot));
// Unconditionally set register to 0
M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr);
mvec.push_back(M);
// Now conditionally move 1 into the register.
// Mark the register as a use (as well as a def) because the old
// value will be retained if the condition is false.
M = (BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(1)
.addReg(setCCInstr, MOTy::UseAndDef));
mvec.push_back(M);
}
break;
}
case 51: // reg: Load(reg)
case 52: // reg: Load(ptrreg)
SetOperandsForMemInstr(ChooseLoadInstruction(
subtreeRoot->getValue()->getType()),
mvec, subtreeRoot, target);
break;
case 55: // reg: GetElemPtr(reg)
case 56: // reg: GetElemPtrIdx(reg,reg)
// If the GetElemPtr was folded into the user (parent), it will be
// caught above. For other cases, we have to compute the address.
SetOperandsForMemInstr(V9::ADDr, mvec, subtreeRoot, target);
break;
case 57: // reg: Alloca: Implement as 1 instruction:
{ // add %fp, offsetFromFP -> result
AllocationInst* instr =
cast<AllocationInst>(subtreeRoot->getInstruction());
unsigned tsize =
target.getTargetData().getTypeSize(instr->getAllocatedType());
assert(tsize != 0);
CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec);
break;
}
case 58: // reg: Alloca(reg): Implement as 3 instructions:
// mul num, typeSz -> tmp
// sub %sp, tmp -> %sp
{ // add %sp, frameSizeBelowDynamicArea -> result
AllocationInst* instr =
cast<AllocationInst>(subtreeRoot->getInstruction());
const Type* eltType = instr->getAllocatedType();
// If #elements is constant, use simpler code for fixed-size allocas
int tsize = (int) target.getTargetData().getTypeSize(eltType);
Value* numElementsVal = NULL;
bool isArray = instr->isArrayAllocation();
if (!isArray || isa<Constant>(numElementsVal = instr->getArraySize())) {
// total size is constant: generate code for fixed-size alloca
unsigned numElements = isArray?
cast<ConstantUInt>(numElementsVal)->getValue() : 1;
CreateCodeForFixedSizeAlloca(target, instr, tsize,
numElements, mvec);
} else {
// total size is not constant.
CreateCodeForVariableSizeAlloca(target, instr, tsize,
numElementsVal, mvec);
}
break;
}
case 61: // reg: Call
{ // Generate a direct (CALL) or indirect (JMPL) call.
// Mark the return-address register, the indirection
// register (for indirect calls), the operands of the Call,
// and the return value (if any) as implicit operands
// of the machine instruction.
//
// If this is a varargs function, floating point arguments
// have to passed in integer registers so insert
// copy-float-to-int instructions for each float operand.
//
CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
Value *callee = callInstr->getCalledValue();
Function* calledFunc = dyn_cast<Function>(callee);
// Check if this is an intrinsic function that needs a special code
// sequence (e.g., va_start). Indirect calls cannot be special.
//
bool specialIntrinsic = false;
LLVMIntrinsic::ID iid;
if (calledFunc && (iid=(LLVMIntrinsic::ID)calledFunc->getIntrinsicID()))
specialIntrinsic = CodeGenIntrinsic(iid, *callInstr, target, mvec);
// If not, generate the normal call sequence for the function.
// This can also handle any intrinsics that are just function calls.
//
if (! specialIntrinsic) {
Function* currentFunc = callInstr->getParent()->getParent();
MachineFunction& MF = MachineFunction::get(currentFunc);
MachineCodeForInstruction& mcfi =
MachineCodeForInstruction::get(callInstr);
const UltraSparcRegInfo& regInfo =
(UltraSparcRegInfo&) target.getRegInfo();
const TargetFrameInfo& frameInfo = target.getFrameInfo();
// Create hidden virtual register for return address with type void*
TmpInstruction* retAddrReg =
new TmpInstruction(mcfi, PointerType::get(Type::VoidTy), callInstr);
// Generate the machine instruction and its operands.
// Use CALL for direct function calls; this optimistically assumes
// the PC-relative address fits in the CALL address field (22 bits).
// Use JMPL for indirect calls.
// This will be added to mvec later, after operand copies.
//
MachineInstr* callMI;
if (calledFunc) // direct function call
callMI = BuildMI(V9::CALL, 1).addPCDisp(callee);
else // indirect function call
callMI = (BuildMI(V9::JMPLCALLi,3).addReg(callee)
.addSImm((int64_t)0).addRegDef(retAddrReg));
const FunctionType* funcType =
cast<FunctionType>(cast<PointerType>(callee->getType())
->getElementType());
bool isVarArgs = funcType->isVarArg();
bool noPrototype = isVarArgs && funcType->getNumParams() == 0;
// Use a descriptor to pass information about call arguments
// to the register allocator. This descriptor will be "owned"
// and freed automatically when the MachineCodeForInstruction
// object for the callInstr goes away.
CallArgsDescriptor* argDesc =
new CallArgsDescriptor(callInstr, retAddrReg,isVarArgs,noPrototype);
assert(callInstr->getOperand(0) == callee
&& "This is assumed in the loop below!");
// Insert sign-extension instructions for small signed values,
// if this is an unknown function (i.e., called via a funcptr)
// or an external one (i.e., which may not be compiled by llc).
//
if (calledFunc == NULL || calledFunc->isExternal()) {
for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
Value* argVal = callInstr->getOperand(i);
const Type* argType = argVal->getType();
if (argType->isIntegral() && argType->isSigned()) {
unsigned argSize = target.getTargetData().getTypeSize(argType);
if (argSize <= 4) {
// create a temporary virtual reg. to hold the sign-extension
TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal);
// sign-extend argVal and put the result in the temporary reg.
target.getInstrInfo().CreateSignExtensionInstructions
(target, currentFunc, argVal, argExtend,
8*argSize, mvec, mcfi);
// replace argVal with argExtend in CallArgsDescriptor
argDesc->getArgInfo(i-1).replaceArgVal(argExtend);
}
}
}
}
// Insert copy instructions to get all the arguments into
// all the places that they need to be.
//
for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
int argNo = i-1;
CallArgInfo& argInfo = argDesc->getArgInfo(argNo);
Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here
const Type* argType = argVal->getType();
unsigned regType = regInfo.getRegTypeForDataType(argType);
unsigned argSize = target.getTargetData().getTypeSize(argType);
int regNumForArg = TargetRegInfo::getInvalidRegNum();
unsigned regClassIDOfArgReg;
// Check for FP arguments to varargs functions.
// Any such argument in the first $K$ args must be passed in an
// integer register. If there is no prototype, it must also
// be passed as an FP register.
// K = #integer argument registers.
bool isFPArg = argVal->getType()->isFloatingPoint();
if (isVarArgs && isFPArg) {
if (noPrototype) {
// It is a function with no prototype: pass value
// as an FP value as well as a varargs value. The FP value
// may go in a register or on the stack. The copy instruction
// to the outgoing reg/stack is created by the normal argument
// handling code since this is the "normal" passing mode.
//
regNumForArg = regInfo.regNumForFPArg(regType,
false, false, argNo,
regClassIDOfArgReg);
if (regNumForArg == regInfo.getInvalidRegNum())
argInfo.setUseStackSlot();
else
argInfo.setUseFPArgReg();
}
// If this arg. is in the first $K$ regs, add special copy-
// float-to-int instructions to pass the value as an int.
// To check if it is in the first $K$, get the register
// number for the arg #i. These copy instructions are
// generated here because they are extra cases and not needed
// for the normal argument handling (some code reuse is
// possible though -- later).
//
int copyRegNum = regInfo.regNumForIntArg(false, false, argNo,
regClassIDOfArgReg);
if (copyRegNum != regInfo.getInvalidRegNum()) {
// Create a virtual register to represent copyReg. Mark
// this vreg as being an implicit operand of the call MI
const Type* loadTy = (argType == Type::FloatTy
? Type::IntTy : Type::LongTy);
TmpInstruction* argVReg = new TmpInstruction(mcfi, loadTy,
argVal, NULL,
"argRegCopy");
callMI->addImplicitRef(argVReg);
// Get a temp stack location to use to copy
// float-to-int via the stack.
//
// FIXME: For now, we allocate permanent space because
// the stack frame manager does not allow locals to be
// allocated (e.g., for alloca) after a temp is
// allocated!
//
// int tmpOffset = MF.getInfo()->pushTempValue(argSize);
int tmpOffset = MF.getInfo()->allocateLocalVar(argVReg);
// Generate the store from FP reg to stack
unsigned StoreOpcode = ChooseStoreInstruction(argType);
M = BuildMI(convertOpcodeFromRegToImm(StoreOpcode), 3)
.addReg(argVal).addMReg(regInfo.getFramePointer())
.addSImm(tmpOffset);
mvec.push_back(M);
// Generate the load from stack to int arg reg
unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
M = BuildMI(convertOpcodeFromRegToImm(LoadOpcode), 3)
.addMReg(regInfo.getFramePointer()).addSImm(tmpOffset)
.addReg(argVReg, MOTy::Def);
// Mark operand with register it should be assigned
// both for copy and for the callMI
M->SetRegForOperand(M->getNumOperands()-1, copyRegNum);
callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
copyRegNum);
mvec.push_back(M);
// Add info about the argument to the CallArgsDescriptor
argInfo.setUseIntArgReg();
argInfo.setArgCopy(copyRegNum);
} else {
// Cannot fit in first $K$ regs so pass arg on stack
argInfo.setUseStackSlot();
}
} else if (isFPArg) {
// Get the outgoing arg reg to see if there is one.
regNumForArg = regInfo.regNumForFPArg(regType, false, false,
argNo, regClassIDOfArgReg);
if (regNumForArg == regInfo.getInvalidRegNum())
argInfo.setUseStackSlot();
else {
argInfo.setUseFPArgReg();
regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg,
regNumForArg);
}
} else {
// Get the outgoing arg reg to see if there is one.
regNumForArg = regInfo.regNumForIntArg(false,false,
argNo, regClassIDOfArgReg);
if (regNumForArg == regInfo.getInvalidRegNum())
argInfo.setUseStackSlot();
else {
argInfo.setUseIntArgReg();
regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg,
regNumForArg);
}
}
//
// Now insert copy instructions to stack slot or arg. register
//
if (argInfo.usesStackSlot()) {
// Get the stack offset for this argument slot.
// FP args on stack are right justified so adjust offset!
// int arguments are also right justified but they are
// always loaded as a full double-word so the offset does
// not need to be adjusted.
int argOffset = frameInfo.getOutgoingArgOffset(MF, argNo);
if (argType->isFloatingPoint()) {
unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
assert(argSize <= slotSize && "Insufficient slot size!");
argOffset += slotSize - argSize;
}
// Now generate instruction to copy argument to stack
MachineOpCode storeOpCode =
(argType->isFloatingPoint()
? ((argSize == 4)? V9::STFi : V9::STDFi) : V9::STXi);
M = BuildMI(storeOpCode, 3).addReg(argVal)
.addMReg(regInfo.getStackPointer()).addSImm(argOffset);
mvec.push_back(M);
}
else if (regNumForArg != regInfo.getInvalidRegNum()) {
// Create a virtual register to represent the arg reg. Mark
// this vreg as being an implicit operand of the call MI.
TmpInstruction* argVReg =
new TmpInstruction(mcfi, argVal, NULL, "argReg");
callMI->addImplicitRef(argVReg);
// Generate the reg-to-reg copy into the outgoing arg reg.
// -- For FP values, create a FMOVS or FMOVD instruction
// -- For non-FP values, create an add-with-0 instruction
if (argType->isFloatingPoint())
M=(BuildMI(argType==Type::FloatTy? V9::FMOVS :V9::FMOVD,2)
.addReg(argVal).addReg(argVReg, MOTy::Def));
else
M = (BuildMI(ChooseAddInstructionByType(argType), 3)
.addReg(argVal).addSImm((int64_t) 0)
.addReg(argVReg, MOTy::Def));
// Mark the operand with the register it should be assigned
M->SetRegForOperand(M->getNumOperands()-1, regNumForArg);
callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
regNumForArg);
mvec.push_back(M);
}
else
assert(argInfo.getArgCopy() != regInfo.getInvalidRegNum() &&
"Arg. not in stack slot, primary or secondary register?");
}
// add call instruction and delay slot before copying return value
mvec.push_back(callMI);
mvec.push_back(BuildMI(V9::NOP, 0));
// Add the return value as an implicit ref. The call operands
// were added above. Also, add code to copy out the return value.
// This is always register-to-register for int or FP return values.
//
if (callInstr->getType() != Type::VoidTy) {
// Get the return value reg.
const Type* retType = callInstr->getType();
int regNum = (retType->isFloatingPoint()
? (unsigned) SparcFloatRegClass::f0
: (unsigned) SparcIntRegClass::o0);
unsigned regClassID = regInfo.getRegClassIDOfType(retType);
regNum = regInfo.getUnifiedRegNum(regClassID, regNum);
// Create a virtual register to represent it and mark
// this vreg as being an implicit operand of the call MI
TmpInstruction* retVReg =
new TmpInstruction(mcfi, callInstr, NULL, "argReg");
callMI->addImplicitRef(retVReg, /*isDef*/ true);
// Generate the reg-to-reg copy from the return value reg.
// -- For FP values, create a FMOVS or FMOVD instruction
// -- For non-FP values, create an add-with-0 instruction
if (retType->isFloatingPoint())
M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
.addReg(retVReg).addReg(callInstr, MOTy::Def));
else
M = (BuildMI(ChooseAddInstructionByType(retType), 3)
.addReg(retVReg).addSImm((int64_t) 0)
.addReg(callInstr, MOTy::Def));
// Mark the operand with the register it should be assigned
// Also mark the implicit ref of the call defining this operand
M->SetRegForOperand(0, regNum);
callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,regNum);
mvec.push_back(M);
}
// For the CALL instruction, the ret. addr. reg. is also implicit
if (isa<Function>(callee))
callMI->addImplicitRef(retAddrReg, /*isDef*/ true);
MF.getInfo()->popAllTempValues(); // free temps used for this inst
}
break;
}
case 62: // reg: Shl(reg, reg)
{
Value* argVal1 = subtreeRoot->leftChild()->getValue();
Value* argVal2 = subtreeRoot->rightChild()->getValue();
Instruction* shlInstr = subtreeRoot->getInstruction();
const Type* opType = argVal1->getType();
assert((opType->isInteger() || isa<PointerType>(opType)) &&
"Shl unsupported for other types");
unsigned opSize = target.getTargetData().getTypeSize(opType);
CreateShiftInstructions(target, shlInstr->getParent()->getParent(),
(opSize > 4)? V9::SLLXr6:V9::SLLr5,
argVal1, argVal2, 0, shlInstr, mvec,
MachineCodeForInstruction::get(shlInstr));
break;
}
case 63: // reg: Shr(reg, reg)
{
const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
assert((opType->isInteger() || isa<PointerType>(opType)) &&
"Shr unsupported for other types");
unsigned opSize = target.getTargetData().getTypeSize(opType);
Add3OperandInstr(opType->isSigned()
? (opSize > 4? V9::SRAXr6 : V9::SRAr5)
: (opSize > 4? V9::SRLXr6 : V9::SRLr5),
subtreeRoot, mvec);
break;
}
case 64: // reg: Phi(reg,reg)
break; // don't forward the value
case 65: // reg: VANext(reg): the va_next(va_list, type) instruction
{ // Increment the va_list pointer register according to the type.
// All LLVM argument types are <= 64 bits, so use one doubleword.
Instruction* vaNextI = subtreeRoot->getInstruction();
assert(target.getTargetData().getTypeSize(vaNextI->getType()) <= 8 &&
"We assumed that all LLVM parameter types <= 8 bytes!");
int argSize = target.getFrameInfo().getSizeOfEachArgOnStack();
mvec.push_back(BuildMI(V9::ADDi, 3).addReg(vaNextI->getOperand(0)).
addSImm(argSize).addRegDef(vaNextI));
break;
}
case 66: // reg: VAArg (reg): the va_arg instruction
{ // Load argument from stack using current va_list pointer value.
// Use 64-bit load for all non-FP args, and LDDF or double for FP.
Instruction* vaArgI = subtreeRoot->getInstruction();
MachineOpCode loadOp = (vaArgI->getType()->isFloatingPoint()
? (vaArgI->getType() == Type::FloatTy
? V9::LDFi : V9::LDDFi)
: V9::LDXi);
mvec.push_back(BuildMI(loadOp, 3).addReg(vaArgI->getOperand(0)).
addSImm(0).addRegDef(vaArgI));
break;
}
case 71: // reg: VReg
case 72: // reg: Constant
break; // don't forward the value
default:
assert(0 && "Unrecognized BURG rule");
break;
}
}
if (forwardOperandNum >= 0) {
// We did not generate a machine instruction but need to use operand.
// If user is in the same tree, replace Value in its machine operand.
// If not, insert a copy instruction which should get coalesced away
// by register allocation.
if (subtreeRoot->parent() != NULL)
ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
else {
std::vector<MachineInstr*> minstrVec;
Instruction* instr = subtreeRoot->getInstruction();
target.getInstrInfo().
CreateCopyInstructionsByType(target,
instr->getParent()->getParent(),
instr->getOperand(forwardOperandNum),
instr, minstrVec,
MachineCodeForInstruction::get(instr));
assert(minstrVec.size() > 0);
mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
}
}
if (maskUnsignedResult) {
// If result is unsigned and smaller than int reg size,
// we need to clear high bits of result value.
assert(forwardOperandNum < 0 && "Need mask but no instruction generated");
Instruction* dest = subtreeRoot->getInstruction();
if (dest->getType()->isUnsigned()) {
unsigned destSize=target.getTargetData().getTypeSize(dest->getType());
if (destSize <= 4) {
// Mask high 64 - N bits, where N = 4*destSize.
// Use a TmpInstruction to represent the
// intermediate result before masking. Since those instructions
// have already been generated, go back and substitute tmpI
// for dest in the result position of each one of them.
//
MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest);
TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(),
dest, NULL, "maskHi");
Value* srlArgToUse = tmpI;
unsigned numSubst = 0;
for (unsigned i=0, N=mvec.size(); i < N; ++i) {
// Make sure we substitute all occurrences of dest in these instrs.
// Otherwise, we will have bogus code.
bool someArgsWereIgnored = false;
// Make sure not to substitute an upwards-exposed use -- that would
// introduce a use of `tmpI' with no preceding def. Therefore,
// substitute a use or def-and-use operand only if a previous def
// operand has already been substituted (i.e., numSusbt > 0).
//
numSubst += mvec[i]->substituteValue(dest, tmpI,
/*defsOnly*/ numSubst == 0,
/*notDefsAndUses*/ numSubst > 0,
someArgsWereIgnored);
assert(!someArgsWereIgnored &&
"Operand `dest' exists but not replaced: probably bogus!");
}
assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!");
// Left shift 32-N if size (N) is less than 32 bits.
// Use another tmp. virtual register to represent this result.
if (destSize < 4) {
srlArgToUse = new TmpInstruction(mcfi, dest->getType(),
tmpI, NULL, "maskHi2");
mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI)
.addZImm(8*(4-destSize))
.addReg(srlArgToUse, MOTy::Def));
}
// Logical right shift 32-N to get zero extension in top 64-N bits.
mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse)
.addZImm(8*(4-destSize)).addReg(dest, MOTy::Def));
} else if (destSize < 8) {
assert(0 && "Unsupported type size: 32 < size < 64 bits");
}
}
}
}