blob: 8eb138a16784c68097127c9daddb0f640a1b1827 [file] [log] [blame]
//===-- ReaderInternals.h - Definitions internal to the reader --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file defines various stuff that is used by the bytecode reader.
//
//===----------------------------------------------------------------------===//
#ifndef READER_INTERNALS_H
#define READER_INTERNALS_H
#include "llvm/Constant.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/ModuleProvider.h"
#include "llvm/Bytecode/Primitives.h"
#include <utility>
#include <map>
// Enable to trace to figure out what the heck is going on when parsing fails
//#define TRACE_LEVEL 10
#if TRACE_LEVEL // ByteCodeReading_TRACEr
#define BCR_TRACE(n, X) \
if (n < TRACE_LEVEL) std::cerr << std::string(n*2, ' ') << X
#else
#define BCR_TRACE(n, X)
#endif
struct LazyFunctionInfo {
const unsigned char *Buf, *EndBuf;
unsigned FunctionSlot;
};
class BytecodeParser : public ModuleProvider {
BytecodeParser(const BytecodeParser &); // DO NOT IMPLEMENT
void operator=(const BytecodeParser &); // DO NOT IMPLEMENT
public:
BytecodeParser() {
// Define this in case we don't see a ModuleGlobalInfo block.
FirstDerivedTyID = Type::FirstDerivedTyID;
}
~BytecodeParser() {
freeState();
}
void freeState() {
freeTable(Values);
freeTable(ModuleValues);
}
Module* releaseModule() {
// Since we're losing control of this Module, we must hand it back complete
Module *M = ModuleProvider::releaseModule();
freeState();
return M;
}
void ParseBytecode(const unsigned char *Buf, unsigned Length,
const std::string &ModuleID);
void dump() const {
std::cerr << "BytecodeParser instance!\n";
}
private:
struct ValueList : public User {
ValueList() : User(Type::TypeTy, Value::TypeVal) {}
// vector compatibility methods
unsigned size() const { return getNumOperands(); }
void push_back(Value *V) { Operands.push_back(Use(V, this)); }
Value *back() const { return Operands.back(); }
void pop_back() { Operands.pop_back(); }
bool empty() const { return Operands.empty(); }
virtual void print(std::ostream& OS) const {
OS << "Bytecode Reader UseHandle!";
}
};
// Information about the module, extracted from the bytecode revision number.
unsigned char RevisionNum; // The rev # itself
unsigned char FirstDerivedTyID; // First variable index to use for type
bool hasInternalMarkerOnly; // Only types of linkage are intern/external
bool hasExtendedLinkageSpecs; // Supports more than 4 linkage types
bool hasOldStyleVarargs; // Has old version of varargs intrinsics?
bool hasVarArgCallPadding; // Bytecode has extra padding in vararg call
bool usesOldStyleVarargs; // Does this module USE old style varargs?
typedef std::vector<ValueList*> ValueTable;
ValueTable Values;
ValueTable ModuleValues;
std::map<std::pair<unsigned,unsigned>, Value*> ForwardReferences;
std::vector<BasicBlock*> ParsedBasicBlocks;
// GlobalRefs - This maintains a mapping between <Type, Slot #>'s and forward
// references to global values or constants. Such values may be referenced
// before they are defined, and if so, the temporary object that they
// represent is held here.
//
typedef std::map<std::pair<const Type *, unsigned>, Value*> GlobalRefsType;
GlobalRefsType GlobalRefs;
// TypesLoaded - This vector mirrors the Values[TypeTyID] plane. It is used
// to deal with forward references to types.
//
typedef std::vector<PATypeHolder> TypeValuesListTy;
TypeValuesListTy ModuleTypeValues;
TypeValuesListTy FunctionTypeValues;
// When the ModuleGlobalInfo section is read, we create a function object for
// each function in the module. When the function is loaded, this function is
// filled in.
//
std::vector<std::pair<Function*, unsigned> > FunctionSignatureList;
// Constant values are read in after global variables. Because of this, we
// must defer setting the initializers on global variables until after module
// level constants have been read. In the mean time, this list keeps track of
// what we must do.
//
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
// For lazy reading-in of functions, we need to save away several pieces of
// information about each function: its begin and end pointer in the buffer
// and its FunctionSlot.
//
std::map<Function*, LazyFunctionInfo*> LazyFunctionLoadMap;
private:
void freeTable(ValueTable &Tab) {
while (!Tab.empty()) {
delete Tab.back();
Tab.pop_back();
}
}
public:
void ParseModule(const unsigned char * Buf, const unsigned char *End);
void materializeFunction(Function *F);
private:
void ParseVersionInfo (const unsigned char *&Buf, const unsigned char *End);
void ParseModuleGlobalInfo(const unsigned char *&Buf, const unsigned char *E);
void ParseSymbolTable(const unsigned char *&Buf, const unsigned char *End,
SymbolTable *, Function *CurrentFunction);
void ParseFunction(const unsigned char *&Buf, const unsigned char *End);
void ParseGlobalTypes(const unsigned char *&Buf, const unsigned char *EndBuf);
BasicBlock *ParseBasicBlock(const unsigned char *&Buf,
const unsigned char *End,
unsigned BlockNo);
void ParseInstruction(const unsigned char *&Buf, const unsigned char *End,
std::vector<unsigned> &Args, BasicBlock *BB);
void ParseConstantPool(const unsigned char *&Buf, const unsigned char *EndBuf,
ValueTable &Tab, TypeValuesListTy &TypeTab);
Constant *parseConstantValue(const unsigned char *&Buf,
const unsigned char *End,
const Type *Ty);
void parseTypeConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
TypeValuesListTy &Tab, unsigned NumEntries);
const Type *parseTypeConstant(const unsigned char *&Buf,
const unsigned char *EndBuf);
Value *getValue(const Type *Ty, unsigned num, bool Create = true);
Value *getValue(unsigned TypeID, unsigned num, bool Create = true);
const Type *getType(unsigned ID);
BasicBlock *getBasicBlock(unsigned ID);
Constant *getConstantValue(const Type *Ty, unsigned num);
unsigned insertValue(Value *V, ValueTable &Table);
unsigned insertValue(Value *V, unsigned Type, ValueTable &Table);
unsigned getTypeSlot(const Type *Ty);
// resolve all references to the placeholder (if any) for the given value
void ResolveReferencesToValue(Value *Val, unsigned Slot);
};
template<class SuperType>
class PlaceholderDef : public SuperType {
unsigned ID;
PlaceholderDef(); // DO NOT IMPLEMENT
void operator=(const PlaceholderDef &); // DO NOT IMPLEMENT
public:
PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {}
unsigned getID() { return ID; }
};
struct ConstantPlaceHolderHelper : public Constant {
ConstantPlaceHolderHelper(const Type *Ty)
: Constant(Ty) {}
virtual bool isNullValue() const { return false; }
};
typedef PlaceholderDef<ConstantPlaceHolderHelper> ConstPHolder;
// Some common errors we find
static const std::string Error_readvbr = "read_vbr(): error reading.";
static const std::string Error_read = "read(): error reading.";
static const std::string Error_inputdata = "input_data(): error reading.";
static const std::string Error_DestSlot = "No destination slot found.";
static inline void readBlock(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned &Type, unsigned &Size) {
#if DEBUG_OUTPUT
bool Result = read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size);
std::cerr << "StartLoc = " << ((unsigned)Buf & 4095)
<< " Type = " << Type << " Size = " << Size << endl;
if (Result) throw Error_read;
#else
if (read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size)) throw Error_read;
#endif
}
#endif