blob: 2dec366d70e264a6887730348f5762c2e5d77355 [file] [log] [blame]
//===- LowerTypeTests.cpp - type metadata lowering pass -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass lowers type metadata and calls to the llvm.type.test intrinsic.
// It also ensures that globals are properly laid out for the
// llvm.icall.branch.funnel intrinsic.
// See http://llvm.org/docs/TypeMetadata.html for more information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/ModuleSummaryIndexYAML.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TrailingObjects.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <set>
#include <string>
#include <system_error>
#include <utility>
#include <vector>
using namespace llvm;
using namespace lowertypetests;
#define DEBUG_TYPE "lowertypetests"
STATISTIC(ByteArraySizeBits, "Byte array size in bits");
STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
STATISTIC(NumTypeTestCallsLowered, "Number of type test calls lowered");
STATISTIC(NumTypeIdDisjointSets, "Number of disjoint sets of type identifiers");
static cl::opt<bool> AvoidReuse(
"lowertypetests-avoid-reuse",
cl::desc("Try to avoid reuse of byte array addresses using aliases"),
cl::Hidden, cl::init(true));
static cl::opt<PassSummaryAction> ClSummaryAction(
"lowertypetests-summary-action",
cl::desc("What to do with the summary when running this pass"),
cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
clEnumValN(PassSummaryAction::Import, "import",
"Import typeid resolutions from summary and globals"),
clEnumValN(PassSummaryAction::Export, "export",
"Export typeid resolutions to summary and globals")),
cl::Hidden);
static cl::opt<std::string> ClReadSummary(
"lowertypetests-read-summary",
cl::desc("Read summary from given YAML file before running pass"),
cl::Hidden);
static cl::opt<std::string> ClWriteSummary(
"lowertypetests-write-summary",
cl::desc("Write summary to given YAML file after running pass"),
cl::Hidden);
bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
if (Offset < ByteOffset)
return false;
if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
return false;
uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
if (BitOffset >= BitSize)
return false;
return Bits.count(BitOffset);
}
void BitSetInfo::print(raw_ostream &OS) const {
OS << "offset " << ByteOffset << " size " << BitSize << " align "
<< (1 << AlignLog2);
if (isAllOnes()) {
OS << " all-ones\n";
return;
}
OS << " { ";
for (uint64_t B : Bits)
OS << B << ' ';
OS << "}\n";
}
BitSetInfo BitSetBuilder::build() {
if (Min > Max)
Min = 0;
// Normalize each offset against the minimum observed offset, and compute
// the bitwise OR of each of the offsets. The number of trailing zeros
// in the mask gives us the log2 of the alignment of all offsets, which
// allows us to compress the bitset by only storing one bit per aligned
// address.
uint64_t Mask = 0;
for (uint64_t &Offset : Offsets) {
Offset -= Min;
Mask |= Offset;
}
BitSetInfo BSI;
BSI.ByteOffset = Min;
BSI.AlignLog2 = 0;
if (Mask != 0)
BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
// Build the compressed bitset while normalizing the offsets against the
// computed alignment.
BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
for (uint64_t Offset : Offsets) {
Offset >>= BSI.AlignLog2;
BSI.Bits.insert(Offset);
}
return BSI;
}
void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
// Create a new fragment to hold the layout for F.
Fragments.emplace_back();
std::vector<uint64_t> &Fragment = Fragments.back();
uint64_t FragmentIndex = Fragments.size() - 1;
for (auto ObjIndex : F) {
uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
if (OldFragmentIndex == 0) {
// We haven't seen this object index before, so just add it to the current
// fragment.
Fragment.push_back(ObjIndex);
} else {
// This index belongs to an existing fragment. Copy the elements of the
// old fragment into this one and clear the old fragment. We don't update
// the fragment map just yet, this ensures that any further references to
// indices from the old fragment in this fragment do not insert any more
// indices.
std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
OldFragment.clear();
}
}
// Update the fragment map to point our object indices to this fragment.
for (uint64_t ObjIndex : Fragment)
FragmentMap[ObjIndex] = FragmentIndex;
}
void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
uint64_t BitSize, uint64_t &AllocByteOffset,
uint8_t &AllocMask) {
// Find the smallest current allocation.
unsigned Bit = 0;
for (unsigned I = 1; I != BitsPerByte; ++I)
if (BitAllocs[I] < BitAllocs[Bit])
Bit = I;
AllocByteOffset = BitAllocs[Bit];
// Add our size to it.
unsigned ReqSize = AllocByteOffset + BitSize;
BitAllocs[Bit] = ReqSize;
if (Bytes.size() < ReqSize)
Bytes.resize(ReqSize);
// Set our bits.
AllocMask = 1 << Bit;
for (uint64_t B : Bits)
Bytes[AllocByteOffset + B] |= AllocMask;
}
bool lowertypetests::isJumpTableCanonical(Function *F) {
if (F->isDeclarationForLinker())
return false;
auto *CI = mdconst::extract_or_null<ConstantInt>(
F->getParent()->getModuleFlag("CFI Canonical Jump Tables"));
if (!CI || CI->getZExtValue() != 0)
return true;
return F->hasFnAttribute("cfi-canonical-jump-table");
}
namespace {
struct ByteArrayInfo {
std::set<uint64_t> Bits;
uint64_t BitSize;
GlobalVariable *ByteArray;
GlobalVariable *MaskGlobal;
uint8_t *MaskPtr = nullptr;
};
/// A POD-like structure that we use to store a global reference together with
/// its metadata types. In this pass we frequently need to query the set of
/// metadata types referenced by a global, which at the IR level is an expensive
/// operation involving a map lookup; this data structure helps to reduce the
/// number of times we need to do this lookup.
class GlobalTypeMember final : TrailingObjects<GlobalTypeMember, MDNode *> {
friend TrailingObjects;
GlobalObject *GO;
size_t NTypes;
// For functions: true if the jump table is canonical. This essentially means
// whether the canonical address (i.e. the symbol table entry) of the function
// is provided by the local jump table. This is normally the same as whether
// the function is defined locally, but if canonical jump tables are disabled
// by the user then the jump table never provides a canonical definition.
bool IsJumpTableCanonical;
// For functions: true if this function is either defined or used in a thinlto
// module and its jumptable entry needs to be exported to thinlto backends.
bool IsExported;
size_t numTrailingObjects(OverloadToken<MDNode *>) const { return NTypes; }
public:
static GlobalTypeMember *create(BumpPtrAllocator &Alloc, GlobalObject *GO,
bool IsJumpTableCanonical, bool IsExported,
ArrayRef<MDNode *> Types) {
auto *GTM = static_cast<GlobalTypeMember *>(Alloc.Allocate(
totalSizeToAlloc<MDNode *>(Types.size()), alignof(GlobalTypeMember)));
GTM->GO = GO;
GTM->NTypes = Types.size();
GTM->IsJumpTableCanonical = IsJumpTableCanonical;
GTM->IsExported = IsExported;
std::uninitialized_copy(Types.begin(), Types.end(),
GTM->getTrailingObjects<MDNode *>());
return GTM;
}
GlobalObject *getGlobal() const {
return GO;
}
bool isJumpTableCanonical() const {
return IsJumpTableCanonical;
}
bool isExported() const {
return IsExported;
}
ArrayRef<MDNode *> types() const {
return makeArrayRef(getTrailingObjects<MDNode *>(), NTypes);
}
};
struct ICallBranchFunnel final
: TrailingObjects<ICallBranchFunnel, GlobalTypeMember *> {
static ICallBranchFunnel *create(BumpPtrAllocator &Alloc, CallInst *CI,
ArrayRef<GlobalTypeMember *> Targets,
unsigned UniqueId) {
auto *Call = static_cast<ICallBranchFunnel *>(
Alloc.Allocate(totalSizeToAlloc<GlobalTypeMember *>(Targets.size()),
alignof(ICallBranchFunnel)));
Call->CI = CI;
Call->UniqueId = UniqueId;
Call->NTargets = Targets.size();
std::uninitialized_copy(Targets.begin(), Targets.end(),
Call->getTrailingObjects<GlobalTypeMember *>());
return Call;
}
CallInst *CI;
ArrayRef<GlobalTypeMember *> targets() const {
return makeArrayRef(getTrailingObjects<GlobalTypeMember *>(), NTargets);
}
unsigned UniqueId;
private:
size_t NTargets;
};
struct ScopedSaveAliaseesAndUsed {
Module &M;
SmallPtrSet<GlobalValue *, 16> Used, CompilerUsed;
std::vector<std::pair<GlobalIndirectSymbol *, Function *>> FunctionAliases;
ScopedSaveAliaseesAndUsed(Module &M) : M(M) {
// The users of this class want to replace all function references except
// for aliases and llvm.used/llvm.compiler.used with references to a jump
// table. We avoid replacing aliases in order to avoid introducing a double
// indirection (or an alias pointing to a declaration in ThinLTO mode), and
// we avoid replacing llvm.used/llvm.compiler.used because these global
// variables describe properties of the global, not the jump table (besides,
// offseted references to the jump table in llvm.used are invalid).
// Unfortunately, LLVM doesn't have a "RAUW except for these (possibly
// indirect) users", so what we do is save the list of globals referenced by
// llvm.used/llvm.compiler.used and aliases, erase the used lists, let RAUW
// replace the aliasees and then set them back to their original values at
// the end.
if (GlobalVariable *GV = collectUsedGlobalVariables(M, Used, false))
GV->eraseFromParent();
if (GlobalVariable *GV = collectUsedGlobalVariables(M, CompilerUsed, true))
GV->eraseFromParent();
for (auto &GIS : concat<GlobalIndirectSymbol>(M.aliases(), M.ifuncs())) {
// FIXME: This should look past all aliases not just interposable ones,
// see discussion on D65118.
if (auto *F =
dyn_cast<Function>(GIS.getIndirectSymbol()->stripPointerCasts()))
FunctionAliases.push_back({&GIS, F});
}
}
~ScopedSaveAliaseesAndUsed() {
appendToUsed(M, std::vector<GlobalValue *>(Used.begin(), Used.end()));
appendToCompilerUsed(M, std::vector<GlobalValue *>(CompilerUsed.begin(),
CompilerUsed.end()));
for (auto P : FunctionAliases)
P.first->setIndirectSymbol(
ConstantExpr::getBitCast(P.second, P.first->getType()));
}
};
class LowerTypeTestsModule {
Module &M;
ModuleSummaryIndex *ExportSummary;
const ModuleSummaryIndex *ImportSummary;
Triple::ArchType Arch;
Triple::OSType OS;
Triple::ObjectFormatType ObjectFormat;
IntegerType *Int1Ty = Type::getInt1Ty(M.getContext());
IntegerType *Int8Ty = Type::getInt8Ty(M.getContext());
PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
ArrayType *Int8Arr0Ty = ArrayType::get(Type::getInt8Ty(M.getContext()), 0);
IntegerType *Int32Ty = Type::getInt32Ty(M.getContext());
PointerType *Int32PtrTy = PointerType::getUnqual(Int32Ty);
IntegerType *Int64Ty = Type::getInt64Ty(M.getContext());
IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext(), 0);
// Indirect function call index assignment counter for WebAssembly
uint64_t IndirectIndex = 1;
// Mapping from type identifiers to the call sites that test them, as well as
// whether the type identifier needs to be exported to ThinLTO backends as
// part of the regular LTO phase of the ThinLTO pipeline (see exportTypeId).
struct TypeIdUserInfo {
std::vector<CallInst *> CallSites;
bool IsExported = false;
};
DenseMap<Metadata *, TypeIdUserInfo> TypeIdUsers;
/// This structure describes how to lower type tests for a particular type
/// identifier. It is either built directly from the global analysis (during
/// regular LTO or the regular LTO phase of ThinLTO), or indirectly using type
/// identifier summaries and external symbol references (in ThinLTO backends).
struct TypeIdLowering {
TypeTestResolution::Kind TheKind = TypeTestResolution::Unsat;
/// All except Unsat: the start address within the combined global.
Constant *OffsetedGlobal;
/// ByteArray, Inline, AllOnes: log2 of the required global alignment
/// relative to the start address.
Constant *AlignLog2;
/// ByteArray, Inline, AllOnes: one less than the size of the memory region
/// covering members of this type identifier as a multiple of 2^AlignLog2.
Constant *SizeM1;
/// ByteArray: the byte array to test the address against.
Constant *TheByteArray;
/// ByteArray: the bit mask to apply to bytes loaded from the byte array.
Constant *BitMask;
/// Inline: the bit mask to test the address against.
Constant *InlineBits;
};
std::vector<ByteArrayInfo> ByteArrayInfos;
Function *WeakInitializerFn = nullptr;
bool shouldExportConstantsAsAbsoluteSymbols();
uint8_t *exportTypeId(StringRef TypeId, const TypeIdLowering &TIL);
TypeIdLowering importTypeId(StringRef TypeId);
void importTypeTest(CallInst *CI);
void importFunction(Function *F, bool isJumpTableCanonical,
std::vector<GlobalAlias *> &AliasesToErase);
BitSetInfo
buildBitSet(Metadata *TypeId,
const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
ByteArrayInfo *createByteArray(BitSetInfo &BSI);
void allocateByteArrays();
Value *createBitSetTest(IRBuilder<> &B, const TypeIdLowering &TIL,
Value *BitOffset);
void lowerTypeTestCalls(
ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
Value *lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
const TypeIdLowering &TIL);
void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> TypeIds,
ArrayRef<GlobalTypeMember *> Globals);
unsigned getJumpTableEntrySize();
Type *getJumpTableEntryType();
void createJumpTableEntry(raw_ostream &AsmOS, raw_ostream &ConstraintOS,
Triple::ArchType JumpTableArch,
SmallVectorImpl<Value *> &AsmArgs, Function *Dest);
void verifyTypeMDNode(GlobalObject *GO, MDNode *Type);
void buildBitSetsFromFunctions(ArrayRef<Metadata *> TypeIds,
ArrayRef<GlobalTypeMember *> Functions);
void buildBitSetsFromFunctionsNative(ArrayRef<Metadata *> TypeIds,
ArrayRef<GlobalTypeMember *> Functions);
void buildBitSetsFromFunctionsWASM(ArrayRef<Metadata *> TypeIds,
ArrayRef<GlobalTypeMember *> Functions);
void
buildBitSetsFromDisjointSet(ArrayRef<Metadata *> TypeIds,
ArrayRef<GlobalTypeMember *> Globals,
ArrayRef<ICallBranchFunnel *> ICallBranchFunnels);
void replaceWeakDeclarationWithJumpTablePtr(Function *F, Constant *JT,
bool IsJumpTableCanonical);
void moveInitializerToModuleConstructor(GlobalVariable *GV);
void findGlobalVariableUsersOf(Constant *C,
SmallSetVector<GlobalVariable *, 8> &Out);
void createJumpTable(Function *F, ArrayRef<GlobalTypeMember *> Functions);
/// replaceCfiUses - Go through the uses list for this definition
/// and make each use point to "V" instead of "this" when the use is outside
/// the block. 'This's use list is expected to have at least one element.
/// Unlike replaceAllUsesWith this function skips blockaddr and direct call
/// uses.
void replaceCfiUses(Function *Old, Value *New, bool IsJumpTableCanonical);
/// replaceDirectCalls - Go through the uses list for this definition and
/// replace each use, which is a direct function call.
void replaceDirectCalls(Value *Old, Value *New);
public:
LowerTypeTestsModule(Module &M, ModuleSummaryIndex *ExportSummary,
const ModuleSummaryIndex *ImportSummary);
bool lower();
// Lower the module using the action and summary passed as command line
// arguments. For testing purposes only.
static bool runForTesting(Module &M);
};
struct LowerTypeTests : public ModulePass {
static char ID;
bool UseCommandLine = false;
ModuleSummaryIndex *ExportSummary;
const ModuleSummaryIndex *ImportSummary;
LowerTypeTests() : ModulePass(ID), UseCommandLine(true) {
initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
}
LowerTypeTests(ModuleSummaryIndex *ExportSummary,
const ModuleSummaryIndex *ImportSummary)
: ModulePass(ID), ExportSummary(ExportSummary),
ImportSummary(ImportSummary) {
initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
if (UseCommandLine)
return LowerTypeTestsModule::runForTesting(M);
return LowerTypeTestsModule(M, ExportSummary, ImportSummary).lower();
}
};
} // end anonymous namespace
char LowerTypeTests::ID = 0;
INITIALIZE_PASS(LowerTypeTests, "lowertypetests", "Lower type metadata", false,
false)
ModulePass *
llvm::createLowerTypeTestsPass(ModuleSummaryIndex *ExportSummary,
const ModuleSummaryIndex *ImportSummary) {
return new LowerTypeTests(ExportSummary, ImportSummary);
}
/// Build a bit set for TypeId using the object layouts in
/// GlobalLayout.
BitSetInfo LowerTypeTestsModule::buildBitSet(
Metadata *TypeId,
const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
BitSetBuilder BSB;
// Compute the byte offset of each address associated with this type
// identifier.
for (auto &GlobalAndOffset : GlobalLayout) {
for (MDNode *Type : GlobalAndOffset.first->types()) {
if (Type->getOperand(1) != TypeId)
continue;
uint64_t Offset =
cast<ConstantInt>(
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
->getZExtValue();
BSB.addOffset(GlobalAndOffset.second + Offset);
}
}
return BSB.build();
}
/// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
/// Bits. This pattern matches to the bt instruction on x86.
static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
Value *BitOffset) {
auto BitsType = cast<IntegerType>(Bits->getType());
unsigned BitWidth = BitsType->getBitWidth();
BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
Value *BitIndex =
B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
Value *MaskedBits = B.CreateAnd(Bits, BitMask);
return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
}
ByteArrayInfo *LowerTypeTestsModule::createByteArray(BitSetInfo &BSI) {
// Create globals to stand in for byte arrays and masks. These never actually
// get initialized, we RAUW and erase them later in allocateByteArrays() once
// we know the offset and mask to use.
auto ByteArrayGlobal = new GlobalVariable(
M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
auto MaskGlobal = new GlobalVariable(M, Int8Ty, /*isConstant=*/true,
GlobalValue::PrivateLinkage, nullptr);
ByteArrayInfos.emplace_back();
ByteArrayInfo *BAI = &ByteArrayInfos.back();
BAI->Bits = BSI.Bits;
BAI->BitSize = BSI.BitSize;
BAI->ByteArray = ByteArrayGlobal;
BAI->MaskGlobal = MaskGlobal;
return BAI;
}
void LowerTypeTestsModule::allocateByteArrays() {
llvm::stable_sort(ByteArrayInfos,
[](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
return BAI1.BitSize > BAI2.BitSize;
});
std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
ByteArrayBuilder BAB;
for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
ByteArrayInfo *BAI = &ByteArrayInfos[I];
uint8_t Mask;
BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
BAI->MaskGlobal->replaceAllUsesWith(
ConstantExpr::getIntToPtr(ConstantInt::get(Int8Ty, Mask), Int8PtrTy));
BAI->MaskGlobal->eraseFromParent();
if (BAI->MaskPtr)
*BAI->MaskPtr = Mask;
}
Constant *ByteArrayConst = ConstantDataArray::get(M.getContext(), BAB.Bytes);
auto ByteArray =
new GlobalVariable(M, ByteArrayConst->getType(), /*isConstant=*/true,
GlobalValue::PrivateLinkage, ByteArrayConst);
for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
ByteArrayInfo *BAI = &ByteArrayInfos[I];
Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
ByteArrayConst->getType(), ByteArray, Idxs);
// Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
// that the pc-relative displacement is folded into the lea instead of the
// test instruction getting another displacement.
GlobalAlias *Alias = GlobalAlias::create(
Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, &M);
BAI->ByteArray->replaceAllUsesWith(Alias);
BAI->ByteArray->eraseFromParent();
}
ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
BAB.BitAllocs[6] + BAB.BitAllocs[7];
ByteArraySizeBytes = BAB.Bytes.size();
}
/// Build a test that bit BitOffset is set in the type identifier that was
/// lowered to TIL, which must be either an Inline or a ByteArray.
Value *LowerTypeTestsModule::createBitSetTest(IRBuilder<> &B,
const TypeIdLowering &TIL,
Value *BitOffset) {
if (TIL.TheKind == TypeTestResolution::Inline) {
// If the bit set is sufficiently small, we can avoid a load by bit testing
// a constant.
return createMaskedBitTest(B, TIL.InlineBits, BitOffset);
} else {
Constant *ByteArray = TIL.TheByteArray;
if (AvoidReuse && !ImportSummary) {
// Each use of the byte array uses a different alias. This makes the
// backend less likely to reuse previously computed byte array addresses,
// improving the security of the CFI mechanism based on this pass.
// This won't work when importing because TheByteArray is external.
ByteArray = GlobalAlias::create(Int8Ty, 0, GlobalValue::PrivateLinkage,
"bits_use", ByteArray, &M);
}
Value *ByteAddr = B.CreateGEP(Int8Ty, ByteArray, BitOffset);
Value *Byte = B.CreateLoad(Int8Ty, ByteAddr);
Value *ByteAndMask =
B.CreateAnd(Byte, ConstantExpr::getPtrToInt(TIL.BitMask, Int8Ty));
return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
}
}
static bool isKnownTypeIdMember(Metadata *TypeId, const DataLayout &DL,
Value *V, uint64_t COffset) {
if (auto GV = dyn_cast<GlobalObject>(V)) {
SmallVector<MDNode *, 2> Types;
GV->getMetadata(LLVMContext::MD_type, Types);
for (MDNode *Type : Types) {
if (Type->getOperand(1) != TypeId)
continue;
uint64_t Offset =
cast<ConstantInt>(
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
->getZExtValue();
if (COffset == Offset)
return true;
}
return false;
}
if (auto GEP = dyn_cast<GEPOperator>(V)) {
APInt APOffset(DL.getPointerSizeInBits(0), 0);
bool Result = GEP->accumulateConstantOffset(DL, APOffset);
if (!Result)
return false;
COffset += APOffset.getZExtValue();
return isKnownTypeIdMember(TypeId, DL, GEP->getPointerOperand(), COffset);
}
if (auto Op = dyn_cast<Operator>(V)) {
if (Op->getOpcode() == Instruction::BitCast)
return isKnownTypeIdMember(TypeId, DL, Op->getOperand(0), COffset);
if (Op->getOpcode() == Instruction::Select)
return isKnownTypeIdMember(TypeId, DL, Op->getOperand(1), COffset) &&
isKnownTypeIdMember(TypeId, DL, Op->getOperand(2), COffset);
}
return false;
}
/// Lower a llvm.type.test call to its implementation. Returns the value to
/// replace the call with.
Value *LowerTypeTestsModule::lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
const TypeIdLowering &TIL) {
if (TIL.TheKind == TypeTestResolution::Unsat)
return ConstantInt::getFalse(M.getContext());
Value *Ptr = CI->getArgOperand(0);
const DataLayout &DL = M.getDataLayout();
if (isKnownTypeIdMember(TypeId, DL, Ptr, 0))
return ConstantInt::getTrue(M.getContext());
BasicBlock *InitialBB = CI->getParent();
IRBuilder<> B(CI);
Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
Constant *OffsetedGlobalAsInt =
ConstantExpr::getPtrToInt(TIL.OffsetedGlobal, IntPtrTy);
if (TIL.TheKind == TypeTestResolution::Single)
return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
// We need to check that the offset both falls within our range and is
// suitably aligned. We can check both properties at the same time by
// performing a right rotate by log2(alignment) followed by an integer
// comparison against the bitset size. The rotate will move the lower
// order bits that need to be zero into the higher order bits of the
// result, causing the comparison to fail if they are nonzero. The rotate
// also conveniently gives us a bit offset to use during the load from
// the bitset.
Value *OffsetSHR =
B.CreateLShr(PtrOffset, ConstantExpr::getZExt(TIL.AlignLog2, IntPtrTy));
Value *OffsetSHL = B.CreateShl(
PtrOffset, ConstantExpr::getZExt(
ConstantExpr::getSub(
ConstantInt::get(Int8Ty, DL.getPointerSizeInBits(0)),
TIL.AlignLog2),
IntPtrTy));
Value *BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
Value *OffsetInRange = B.CreateICmpULE(BitOffset, TIL.SizeM1);
// If the bit set is all ones, testing against it is unnecessary.
if (TIL.TheKind == TypeTestResolution::AllOnes)
return OffsetInRange;
// See if the intrinsic is used in the following common pattern:
// br(llvm.type.test(...), thenbb, elsebb)
// where nothing happens between the type test and the br.
// If so, create slightly simpler IR.
if (CI->hasOneUse())
if (auto *Br = dyn_cast<BranchInst>(*CI->user_begin()))
if (CI->getNextNode() == Br) {
BasicBlock *Then = InitialBB->splitBasicBlock(CI->getIterator());
BasicBlock *Else = Br->getSuccessor(1);
BranchInst *NewBr = BranchInst::Create(Then, Else, OffsetInRange);
NewBr->setMetadata(LLVMContext::MD_prof,
Br->getMetadata(LLVMContext::MD_prof));
ReplaceInstWithInst(InitialBB->getTerminator(), NewBr);
// Update phis in Else resulting from InitialBB being split
for (auto &Phi : Else->phis())
Phi.addIncoming(Phi.getIncomingValueForBlock(Then), InitialBB);
IRBuilder<> ThenB(CI);
return createBitSetTest(ThenB, TIL, BitOffset);
}
IRBuilder<> ThenB(SplitBlockAndInsertIfThen(OffsetInRange, CI, false));
// Now that we know that the offset is in range and aligned, load the
// appropriate bit from the bitset.
Value *Bit = createBitSetTest(ThenB, TIL, BitOffset);
// The value we want is 0 if we came directly from the initial block
// (having failed the range or alignment checks), or the loaded bit if
// we came from the block in which we loaded it.
B.SetInsertPoint(CI);
PHINode *P = B.CreatePHI(Int1Ty, 2);
P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
P->addIncoming(Bit, ThenB.GetInsertBlock());
return P;
}
/// Given a disjoint set of type identifiers and globals, lay out the globals,
/// build the bit sets and lower the llvm.type.test calls.
void LowerTypeTestsModule::buildBitSetsFromGlobalVariables(
ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals) {
// Build a new global with the combined contents of the referenced globals.
// This global is a struct whose even-indexed elements contain the original
// contents of the referenced globals and whose odd-indexed elements contain
// any padding required to align the next element to the next power of 2 plus
// any additional padding required to meet its alignment requirements.
std::vector<Constant *> GlobalInits;
const DataLayout &DL = M.getDataLayout();
DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
Align MaxAlign;
uint64_t CurOffset = 0;
uint64_t DesiredPadding = 0;
for (GlobalTypeMember *G : Globals) {
auto *GV = cast<GlobalVariable>(G->getGlobal());
MaybeAlign Alignment(GV->getAlignment());
if (!Alignment)
Alignment = Align(DL.getABITypeAlignment(GV->getValueType()));
MaxAlign = std::max(MaxAlign, *Alignment);
uint64_t GVOffset = alignTo(CurOffset + DesiredPadding, *Alignment);
GlobalLayout[G] = GVOffset;
if (GVOffset != 0) {
uint64_t Padding = GVOffset - CurOffset;
GlobalInits.push_back(
ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
}
GlobalInits.push_back(GV->getInitializer());
uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
CurOffset = GVOffset + InitSize;
// Compute the amount of padding that we'd like for the next element.
DesiredPadding = NextPowerOf2(InitSize - 1) - InitSize;
// Experiments of different caps with Chromium on both x64 and ARM64
// have shown that the 32-byte cap generates the smallest binary on
// both platforms while different caps yield similar performance.
// (see https://lists.llvm.org/pipermail/llvm-dev/2018-July/124694.html)
if (DesiredPadding > 32)
DesiredPadding = alignTo(InitSize, 32) - InitSize;
}
Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits);
auto *CombinedGlobal =
new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true,
GlobalValue::PrivateLinkage, NewInit);
CombinedGlobal->setAlignment(MaxAlign);
StructType *NewTy = cast<StructType>(NewInit->getType());
lowerTypeTestCalls(TypeIds, CombinedGlobal, GlobalLayout);
// Build aliases pointing to offsets into the combined global for each
// global from which we built the combined global, and replace references
// to the original globals with references to the aliases.
for (unsigned I = 0; I != Globals.size(); ++I) {
GlobalVariable *GV = cast<GlobalVariable>(Globals[I]->getGlobal());
// Multiply by 2 to account for padding elements.
Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
ConstantInt::get(Int32Ty, I * 2)};
Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
assert(GV->getType()->getAddressSpace() == 0);
GlobalAlias *GAlias =
GlobalAlias::create(NewTy->getElementType(I * 2), 0, GV->getLinkage(),
"", CombinedGlobalElemPtr, &M);
GAlias->setVisibility(GV->getVisibility());
GAlias->takeName(GV);
GV->replaceAllUsesWith(GAlias);
GV->eraseFromParent();
}
}
bool LowerTypeTestsModule::shouldExportConstantsAsAbsoluteSymbols() {
return (Arch == Triple::x86 || Arch == Triple::x86_64) &&
ObjectFormat == Triple::ELF;
}
/// Export the given type identifier so that ThinLTO backends may import it.
/// Type identifiers are exported by adding coarse-grained information about how
/// to test the type identifier to the summary, and creating symbols in the
/// object file (aliases and absolute symbols) containing fine-grained
/// information about the type identifier.
///
/// Returns a pointer to the location in which to store the bitmask, if
/// applicable.
uint8_t *LowerTypeTestsModule::exportTypeId(StringRef TypeId,
const TypeIdLowering &TIL) {
TypeTestResolution &TTRes =
ExportSummary->getOrInsertTypeIdSummary(TypeId).TTRes;
TTRes.TheKind = TIL.TheKind;
auto ExportGlobal = [&](StringRef Name, Constant *C) {
GlobalAlias *GA =
GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
"__typeid_" + TypeId + "_" + Name, C, &M);
GA->setVisibility(GlobalValue::HiddenVisibility);
};
auto ExportConstant = [&](StringRef Name, uint64_t &Storage, Constant *C) {
if (shouldExportConstantsAsAbsoluteSymbols())
ExportGlobal(Name, ConstantExpr::getIntToPtr(C, Int8PtrTy));
else
Storage = cast<ConstantInt>(C)->getZExtValue();
};
if (TIL.TheKind != TypeTestResolution::Unsat)
ExportGlobal("global_addr", TIL.OffsetedGlobal);
if (TIL.TheKind == TypeTestResolution::ByteArray ||
TIL.TheKind == TypeTestResolution::Inline ||
TIL.TheKind == TypeTestResolution::AllOnes) {
ExportConstant("align", TTRes.AlignLog2, TIL.AlignLog2);
ExportConstant("size_m1", TTRes.SizeM1, TIL.SizeM1);
uint64_t BitSize = cast<ConstantInt>(TIL.SizeM1)->getZExtValue() + 1;
if (TIL.TheKind == TypeTestResolution::Inline)
TTRes.SizeM1BitWidth = (BitSize <= 32) ? 5 : 6;
else
TTRes.SizeM1BitWidth = (BitSize <= 128) ? 7 : 32;
}
if (TIL.TheKind == TypeTestResolution::ByteArray) {
ExportGlobal("byte_array", TIL.TheByteArray);
if (shouldExportConstantsAsAbsoluteSymbols())
ExportGlobal("bit_mask", TIL.BitMask);
else
return &TTRes.BitMask;
}
if (TIL.TheKind == TypeTestResolution::Inline)
ExportConstant("inline_bits", TTRes.InlineBits, TIL.InlineBits);
return nullptr;
}
LowerTypeTestsModule::TypeIdLowering
LowerTypeTestsModule::importTypeId(StringRef TypeId) {
const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(TypeId);
if (!TidSummary)
return {}; // Unsat: no globals match this type id.
const TypeTestResolution &TTRes = TidSummary->TTRes;
TypeIdLowering TIL;
TIL.TheKind = TTRes.TheKind;
auto ImportGlobal = [&](StringRef Name) {
// Give the global a type of length 0 so that it is not assumed not to alias
// with any other global.
Constant *C = M.getOrInsertGlobal(("__typeid_" + TypeId + "_" + Name).str(),
Int8Arr0Ty);
if (auto *GV = dyn_cast<GlobalVariable>(C))
GV->setVisibility(GlobalValue::HiddenVisibility);
C = ConstantExpr::getBitCast(C, Int8PtrTy);
return C;
};
auto ImportConstant = [&](StringRef Name, uint64_t Const, unsigned AbsWidth,
Type *Ty) {
if (!shouldExportConstantsAsAbsoluteSymbols()) {
Constant *C =
ConstantInt::get(isa<IntegerType>(Ty) ? Ty : Int64Ty, Const);
if (!isa<IntegerType>(Ty))
C = ConstantExpr::getIntToPtr(C, Ty);
return C;
}
Constant *C = ImportGlobal(Name);
auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
if (isa<IntegerType>(Ty))
C = ConstantExpr::getPtrToInt(C, Ty);
if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
return C;
auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
GV->setMetadata(LLVMContext::MD_absolute_symbol,
MDNode::get(M.getContext(), {MinC, MaxC}));
};
if (AbsWidth == IntPtrTy->getBitWidth())
SetAbsRange(~0ull, ~0ull); // Full set.
else
SetAbsRange(0, 1ull << AbsWidth);
return C;
};
if (TIL.TheKind != TypeTestResolution::Unsat)
TIL.OffsetedGlobal = ImportGlobal("global_addr");
if (TIL.TheKind == TypeTestResolution::ByteArray ||
TIL.TheKind == TypeTestResolution::Inline ||
TIL.TheKind == TypeTestResolution::AllOnes) {
TIL.AlignLog2 = ImportConstant("align", TTRes.AlignLog2, 8, Int8Ty);
TIL.SizeM1 =
ImportConstant("size_m1", TTRes.SizeM1, TTRes.SizeM1BitWidth, IntPtrTy);
}
if (TIL.TheKind == TypeTestResolution::ByteArray) {
TIL.TheByteArray = ImportGlobal("byte_array");
TIL.BitMask = ImportConstant("bit_mask", TTRes.BitMask, 8, Int8PtrTy);
}
if (TIL.TheKind == TypeTestResolution::Inline)
TIL.InlineBits = ImportConstant(
"inline_bits", TTRes.InlineBits, 1 << TTRes.SizeM1BitWidth,
TTRes.SizeM1BitWidth <= 5 ? Int32Ty : Int64Ty);
return TIL;
}
void LowerTypeTestsModule::importTypeTest(CallInst *CI) {
auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
if (!TypeIdMDVal)
report_fatal_error("Second argument of llvm.type.test must be metadata");
auto TypeIdStr = dyn_cast<MDString>(TypeIdMDVal->getMetadata());
if (!TypeIdStr)
report_fatal_error(
"Second argument of llvm.type.test must be a metadata string");
TypeIdLowering TIL = importTypeId(TypeIdStr->getString());
Value *Lowered = lowerTypeTestCall(TypeIdStr, CI, TIL);
CI->replaceAllUsesWith(Lowered);
CI->eraseFromParent();
}
// ThinLTO backend: the function F has a jump table entry; update this module
// accordingly. isJumpTableCanonical describes the type of the jump table entry.
void LowerTypeTestsModule::importFunction(
Function *F, bool isJumpTableCanonical,
std::vector<GlobalAlias *> &AliasesToErase) {
assert(F->getType()->getAddressSpace() == 0);
GlobalValue::VisibilityTypes Visibility = F->getVisibility();
std::string Name = F->getName();
if (F->isDeclarationForLinker() && isJumpTableCanonical) {
// Non-dso_local functions may be overriden at run time,
// don't short curcuit them
if (F->isDSOLocal()) {
Function *RealF = Function::Create(F->getFunctionType(),
GlobalValue::ExternalLinkage,
F->getAddressSpace(),
Name + ".cfi", &M);
RealF->setVisibility(GlobalVariable::HiddenVisibility);
replaceDirectCalls(F, RealF);
}
return;
}
Function *FDecl;
if (!isJumpTableCanonical) {
// Either a declaration of an external function or a reference to a locally
// defined jump table.
FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
F->getAddressSpace(), Name + ".cfi_jt", &M);
FDecl->setVisibility(GlobalValue::HiddenVisibility);
} else {
F->setName(Name + ".cfi");
F->setLinkage(GlobalValue::ExternalLinkage);
FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
F->getAddressSpace(), Name, &M);
FDecl->setVisibility(Visibility);
Visibility = GlobalValue::HiddenVisibility;
// Delete aliases pointing to this function, they'll be re-created in the
// merged output. Don't do it yet though because ScopedSaveAliaseesAndUsed
// will want to reset the aliasees first.
for (auto &U : F->uses()) {
if (auto *A = dyn_cast<GlobalAlias>(U.getUser())) {
Function *AliasDecl = Function::Create(
F->getFunctionType(), GlobalValue::ExternalLinkage,
F->getAddressSpace(), "", &M);
AliasDecl->takeName(A);
A->replaceAllUsesWith(AliasDecl);
AliasesToErase.push_back(A);
}
}
}
if (F->hasExternalWeakLinkage())
replaceWeakDeclarationWithJumpTablePtr(F, FDecl, isJumpTableCanonical);
else
replaceCfiUses(F, FDecl, isJumpTableCanonical);
// Set visibility late because it's used in replaceCfiUses() to determine
// whether uses need to to be replaced.
F->setVisibility(Visibility);
}
void LowerTypeTestsModule::lowerTypeTestCalls(
ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
CombinedGlobalAddr = ConstantExpr::getBitCast(CombinedGlobalAddr, Int8PtrTy);
// For each type identifier in this disjoint set...
for (Metadata *TypeId : TypeIds) {
// Build the bitset.
BitSetInfo BSI = buildBitSet(TypeId, GlobalLayout);
LLVM_DEBUG({
if (auto MDS = dyn_cast<MDString>(TypeId))
dbgs() << MDS->getString() << ": ";
else
dbgs() << "<unnamed>: ";
BSI.print(dbgs());
});
ByteArrayInfo *BAI = nullptr;
TypeIdLowering TIL;
TIL.OffsetedGlobal = ConstantExpr::getGetElementPtr(
Int8Ty, CombinedGlobalAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset)),
TIL.AlignLog2 = ConstantInt::get(Int8Ty, BSI.AlignLog2);
TIL.SizeM1 = ConstantInt::get(IntPtrTy, BSI.BitSize - 1);
if (BSI.isAllOnes()) {
TIL.TheKind = (BSI.BitSize == 1) ? TypeTestResolution::Single
: TypeTestResolution::AllOnes;
} else if (BSI.BitSize <= 64) {
TIL.TheKind = TypeTestResolution::Inline;
uint64_t InlineBits = 0;
for (auto Bit : BSI.Bits)
InlineBits |= uint64_t(1) << Bit;
if (InlineBits == 0)
TIL.TheKind = TypeTestResolution::Unsat;
else
TIL.InlineBits = ConstantInt::get(
(BSI.BitSize <= 32) ? Int32Ty : Int64Ty, InlineBits);
} else {
TIL.TheKind = TypeTestResolution::ByteArray;
++NumByteArraysCreated;
BAI = createByteArray(BSI);
TIL.TheByteArray = BAI->ByteArray;
TIL.BitMask = BAI->MaskGlobal;
}
TypeIdUserInfo &TIUI = TypeIdUsers[TypeId];
if (TIUI.IsExported) {
uint8_t *MaskPtr = exportTypeId(cast<MDString>(TypeId)->getString(), TIL);
if (BAI)
BAI->MaskPtr = MaskPtr;
}
// Lower each call to llvm.type.test for this type identifier.
for (CallInst *CI : TIUI.CallSites) {
++NumTypeTestCallsLowered;
Value *Lowered = lowerTypeTestCall(TypeId, CI, TIL);
CI->replaceAllUsesWith(Lowered);
CI->eraseFromParent();
}
}
}
void LowerTypeTestsModule::verifyTypeMDNode(GlobalObject *GO, MDNode *Type) {
if (Type->getNumOperands() != 2)
report_fatal_error("All operands of type metadata must have 2 elements");
if (GO->isThreadLocal())
report_fatal_error("Bit set element may not be thread-local");
if (isa<GlobalVariable>(GO) && GO->hasSection())
report_fatal_error(
"A member of a type identifier may not have an explicit section");
// FIXME: We previously checked that global var member of a type identifier
// must be a definition, but the IR linker may leave type metadata on
// declarations. We should restore this check after fixing PR31759.
auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Type->getOperand(0));
if (!OffsetConstMD)
report_fatal_error("Type offset must be a constant");
auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
if (!OffsetInt)
report_fatal_error("Type offset must be an integer constant");
}
static const unsigned kX86JumpTableEntrySize = 8;
static const unsigned kARMJumpTableEntrySize = 4;
unsigned LowerTypeTestsModule::getJumpTableEntrySize() {
switch (Arch) {
case Triple::x86:
case Triple::x86_64:
return kX86JumpTableEntrySize;
case Triple::arm:
case Triple::thumb:
case Triple::aarch64:
return kARMJumpTableEntrySize;
default:
report_fatal_error("Unsupported architecture for jump tables");
}
}
// Create a jump table entry for the target. This consists of an instruction
// sequence containing a relative branch to Dest. Appends inline asm text,
// constraints and arguments to AsmOS, ConstraintOS and AsmArgs.
void LowerTypeTestsModule::createJumpTableEntry(
raw_ostream &AsmOS, raw_ostream &ConstraintOS,
Triple::ArchType JumpTableArch, SmallVectorImpl<Value *> &AsmArgs,
Function *Dest) {
unsigned ArgIndex = AsmArgs.size();
if (JumpTableArch == Triple::x86 || JumpTableArch == Triple::x86_64) {
AsmOS << "jmp ${" << ArgIndex << ":c}@plt\n";
AsmOS << "int3\nint3\nint3\n";
} else if (JumpTableArch == Triple::arm || JumpTableArch == Triple::aarch64) {
AsmOS << "b $" << ArgIndex << "\n";
} else if (JumpTableArch == Triple::thumb) {
AsmOS << "b.w $" << ArgIndex << "\n";
} else {
report_fatal_error("Unsupported architecture for jump tables");
}
ConstraintOS << (ArgIndex > 0 ? ",s" : "s");
AsmArgs.push_back(Dest);
}
Type *LowerTypeTestsModule::getJumpTableEntryType() {
return ArrayType::get(Int8Ty, getJumpTableEntrySize());
}
/// Given a disjoint set of type identifiers and functions, build the bit sets
/// and lower the llvm.type.test calls, architecture dependently.
void LowerTypeTestsModule::buildBitSetsFromFunctions(
ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
if (Arch == Triple::x86 || Arch == Triple::x86_64 || Arch == Triple::arm ||
Arch == Triple::thumb || Arch == Triple::aarch64)
buildBitSetsFromFunctionsNative(TypeIds, Functions);
else if (Arch == Triple::wasm32 || Arch == Triple::wasm64)
buildBitSetsFromFunctionsWASM(TypeIds, Functions);
else
report_fatal_error("Unsupported architecture for jump tables");
}
void LowerTypeTestsModule::moveInitializerToModuleConstructor(
GlobalVariable *GV) {
if (WeakInitializerFn == nullptr) {
WeakInitializerFn = Function::Create(
FunctionType::get(Type::getVoidTy(M.getContext()),
/* IsVarArg */ false),
GlobalValue::InternalLinkage,
M.getDataLayout().getProgramAddressSpace(),
"__cfi_global_var_init", &M);
BasicBlock *BB =
BasicBlock::Create(M.getContext(), "entry", WeakInitializerFn);
ReturnInst::Create(M.getContext(), BB);
WeakInitializerFn->setSection(
ObjectFormat == Triple::MachO
? "__TEXT,__StaticInit,regular,pure_instructions"
: ".text.startup");
// This code is equivalent to relocation application, and should run at the
// earliest possible time (i.e. with the highest priority).
appendToGlobalCtors(M, WeakInitializerFn, /* Priority */ 0);
}
IRBuilder<> IRB(WeakInitializerFn->getEntryBlock().getTerminator());
GV->setConstant(false);
IRB.CreateAlignedStore(GV->getInitializer(), GV, GV->getAlignment());
GV->setInitializer(Constant::getNullValue(GV->getValueType()));
}
void LowerTypeTestsModule::findGlobalVariableUsersOf(
Constant *C, SmallSetVector<GlobalVariable *, 8> &Out) {
for (auto *U : C->users()){
if (auto *GV = dyn_cast<GlobalVariable>(U))
Out.insert(GV);
else if (auto *C2 = dyn_cast<Constant>(U))
findGlobalVariableUsersOf(C2, Out);
}
}
// Replace all uses of F with (F ? JT : 0).
void LowerTypeTestsModule::replaceWeakDeclarationWithJumpTablePtr(
Function *F, Constant *JT, bool IsJumpTableCanonical) {
// The target expression can not appear in a constant initializer on most
// (all?) targets. Switch to a runtime initializer.
SmallSetVector<GlobalVariable *, 8> GlobalVarUsers;
findGlobalVariableUsersOf(F, GlobalVarUsers);
for (auto GV : GlobalVarUsers)
moveInitializerToModuleConstructor(GV);
// Can not RAUW F with an expression that uses F. Replace with a temporary
// placeholder first.
Function *PlaceholderFn =
Function::Create(cast<FunctionType>(F->getValueType()),
GlobalValue::ExternalWeakLinkage,
F->getAddressSpace(), "", &M);
replaceCfiUses(F, PlaceholderFn, IsJumpTableCanonical);
Constant *Target = ConstantExpr::getSelect(
ConstantExpr::getICmp(CmpInst::ICMP_NE, F,
Constant::getNullValue(F->getType())),
JT, Constant::getNullValue(F->getType()));
PlaceholderFn->replaceAllUsesWith(Target);
PlaceholderFn->eraseFromParent();
}
static bool isThumbFunction(Function *F, Triple::ArchType ModuleArch) {
Attribute TFAttr = F->getFnAttribute("target-features");
if (!TFAttr.hasAttribute(Attribute::None)) {
SmallVector<StringRef, 6> Features;
TFAttr.getValueAsString().split(Features, ',');
for (StringRef Feature : Features) {
if (Feature == "-thumb-mode")
return false;
else if (Feature == "+thumb-mode")
return true;
}
}
return ModuleArch == Triple::thumb;
}
// Each jump table must be either ARM or Thumb as a whole for the bit-test math
// to work. Pick one that matches the majority of members to minimize interop
// veneers inserted by the linker.
static Triple::ArchType
selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember *> Functions,
Triple::ArchType ModuleArch) {
if (ModuleArch != Triple::arm && ModuleArch != Triple::thumb)
return ModuleArch;
unsigned ArmCount = 0, ThumbCount = 0;
for (const auto GTM : Functions) {
if (!GTM->isJumpTableCanonical()) {
// PLT stubs are always ARM.
// FIXME: This is the wrong heuristic for non-canonical jump tables.
++ArmCount;
continue;
}
Function *F = cast<Function>(GTM->getGlobal());
++(isThumbFunction(F, ModuleArch) ? ThumbCount : ArmCount);
}
return ArmCount > ThumbCount ? Triple::arm : Triple::thumb;
}
void LowerTypeTestsModule::createJumpTable(
Function *F, ArrayRef<GlobalTypeMember *> Functions) {
std::string AsmStr, ConstraintStr;
raw_string_ostream AsmOS(AsmStr), ConstraintOS(ConstraintStr);
SmallVector<Value *, 16> AsmArgs;
AsmArgs.reserve(Functions.size() * 2);
Triple::ArchType JumpTableArch = selectJumpTableArmEncoding(Functions, Arch);
for (unsigned I = 0; I != Functions.size(); ++I)
createJumpTableEntry(AsmOS, ConstraintOS, JumpTableArch, AsmArgs,
cast<Function>(Functions[I]->getGlobal()));
// Align the whole table by entry size.
F->setAlignment(Align(getJumpTableEntrySize()));
// Skip prologue.
// Disabled on win32 due to https://llvm.org/bugs/show_bug.cgi?id=28641#c3.
// Luckily, this function does not get any prologue even without the
// attribute.
if (OS != Triple::Win32)
F->addFnAttr(Attribute::Naked);
if (JumpTableArch == Triple::arm)
F->addFnAttr("target-features", "-thumb-mode");
if (JumpTableArch == Triple::thumb) {
F->addFnAttr("target-features", "+thumb-mode");
// Thumb jump table assembly needs Thumb2. The following attribute is added
// by Clang for -march=armv7.
F->addFnAttr("target-cpu", "cortex-a8");
}
// Make sure we don't emit .eh_frame for this function.
F->addFnAttr(Attribute::NoUnwind);
BasicBlock *BB = BasicBlock::Create(M.getContext(), "entry", F);
IRBuilder<> IRB(BB);
SmallVector<Type *, 16> ArgTypes;
ArgTypes.reserve(AsmArgs.size());
for (const auto &Arg : AsmArgs)
ArgTypes.push_back(Arg->getType());
InlineAsm *JumpTableAsm =
InlineAsm::get(FunctionType::get(IRB.getVoidTy(), ArgTypes, false),
AsmOS.str(), ConstraintOS.str(),
/*hasSideEffects=*/true);
IRB.CreateCall(JumpTableAsm, AsmArgs);
IRB.CreateUnreachable();
}
/// Given a disjoint set of type identifiers and functions, build a jump table
/// for the functions, build the bit sets and lower the llvm.type.test calls.
void LowerTypeTestsModule::buildBitSetsFromFunctionsNative(
ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
// Unlike the global bitset builder, the function bitset builder cannot
// re-arrange functions in a particular order and base its calculations on the
// layout of the functions' entry points, as we have no idea how large a
// particular function will end up being (the size could even depend on what
// this pass does!) Instead, we build a jump table, which is a block of code
// consisting of one branch instruction for each of the functions in the bit
// set that branches to the target function, and redirect any taken function
// addresses to the corresponding jump table entry. In the object file's
// symbol table, the symbols for the target functions also refer to the jump
// table entries, so that addresses taken outside the module will pass any
// verification done inside the module.
//
// In more concrete terms, suppose we have three functions f, g, h which are
// of the same type, and a function foo that returns their addresses:
//
// f:
// mov 0, %eax
// ret
//
// g:
// mov 1, %eax
// ret
//
// h:
// mov 2, %eax
// ret
//
// foo:
// mov f, %eax
// mov g, %edx
// mov h, %ecx
// ret
//
// We output the jump table as module-level inline asm string. The end result
// will (conceptually) look like this:
//
// f = .cfi.jumptable
// g = .cfi.jumptable + 4
// h = .cfi.jumptable + 8
// .cfi.jumptable:
// jmp f.cfi ; 5 bytes
// int3 ; 1 byte
// int3 ; 1 byte
// int3 ; 1 byte
// jmp g.cfi ; 5 bytes
// int3 ; 1 byte
// int3 ; 1 byte
// int3 ; 1 byte
// jmp h.cfi ; 5 bytes
// int3 ; 1 byte
// int3 ; 1 byte
// int3 ; 1 byte
//
// f.cfi:
// mov 0, %eax
// ret
//
// g.cfi:
// mov 1, %eax
// ret
//
// h.cfi:
// mov 2, %eax
// ret
//
// foo:
// mov f, %eax
// mov g, %edx
// mov h, %ecx
// ret
//
// Because the addresses of f, g, h are evenly spaced at a power of 2, in the
// normal case the check can be carried out using the same kind of simple
// arithmetic that we normally use for globals.
// FIXME: find a better way to represent the jumptable in the IR.
assert(!Functions.empty());
// Build a simple layout based on the regular layout of jump tables.
DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
unsigned EntrySize = getJumpTableEntrySize();
for (unsigned I = 0; I != Functions.size(); ++I)
GlobalLayout[Functions[I]] = I * EntrySize;
Function *JumpTableFn =
Function::Create(FunctionType::get(Type::getVoidTy(M.getContext()),
/* IsVarArg */ false),
GlobalValue::PrivateLinkage,
M.getDataLayout().getProgramAddressSpace(),
".cfi.jumptable", &M);
ArrayType *JumpTableType =
ArrayType::get(getJumpTableEntryType(), Functions.size());
auto JumpTable =
ConstantExpr::getPointerCast(JumpTableFn, JumpTableType->getPointerTo(0));
lowerTypeTestCalls(TypeIds, JumpTable, GlobalLayout);
{
ScopedSaveAliaseesAndUsed S(M);
// Build aliases pointing to offsets into the jump table, and replace
// references to the original functions with references to the aliases.
for (unsigned I = 0; I != Functions.size(); ++I) {
Function *F = cast<Function>(Functions[I]->getGlobal());
bool IsJumpTableCanonical = Functions[I]->isJumpTableCanonical();
Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
ConstantExpr::getInBoundsGetElementPtr(
JumpTableType, JumpTable,
ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
ConstantInt::get(IntPtrTy, I)}),
F->getType());
if (Functions[I]->isExported()) {
if (IsJumpTableCanonical) {
ExportSummary->cfiFunctionDefs().insert(F->getName());
} else {
GlobalAlias *JtAlias = GlobalAlias::create(
F->getValueType(), 0, GlobalValue::ExternalLinkage,
F->getName() + ".cfi_jt", CombinedGlobalElemPtr, &M);
JtAlias->setVisibility(GlobalValue::HiddenVisibility);
ExportSummary->cfiFunctionDecls().insert(F->getName());
}
}
if (!IsJumpTableCanonical) {
if (F->hasExternalWeakLinkage())
replaceWeakDeclarationWithJumpTablePtr(F, CombinedGlobalElemPtr,
IsJumpTableCanonical);
else
replaceCfiUses(F, CombinedGlobalElemPtr, IsJumpTableCanonical);
} else {
assert(F->getType()->getAddressSpace() == 0);
GlobalAlias *FAlias =
GlobalAlias::create(F->getValueType(), 0, F->getLinkage(), "",
CombinedGlobalElemPtr, &M);
FAlias->setVisibility(F->getVisibility());
FAlias->takeName(F);
if (FAlias->hasName())
F->setName(FAlias->getName() + ".cfi");
replaceCfiUses(F, FAlias, IsJumpTableCanonical);
if (!F->hasLocalLinkage())
F->setVisibility(GlobalVariable::HiddenVisibility);
}
}
}
createJumpTable(JumpTableFn, Functions);
}
/// Assign a dummy layout using an incrementing counter, tag each function
/// with its index represented as metadata, and lower each type test to an
/// integer range comparison. During generation of the indirect function call
/// table in the backend, it will assign the given indexes.
/// Note: Dynamic linking is not supported, as the WebAssembly ABI has not yet
/// been finalized.
void LowerTypeTestsModule::buildBitSetsFromFunctionsWASM(
ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
assert(!Functions.empty());
// Build consecutive monotonic integer ranges for each call target set
DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
for (GlobalTypeMember *GTM : Functions) {
Function *F = cast<Function>(GTM->getGlobal());
// Skip functions that are not address taken, to avoid bloating the table
if (!F->hasAddressTaken())
continue;
// Store metadata with the index for each function
MDNode *MD = MDNode::get(F->getContext(),
ArrayRef<Metadata *>(ConstantAsMetadata::get(
ConstantInt::get(Int64Ty, IndirectIndex))));
F->setMetadata("wasm.index", MD);
// Assign the counter value
GlobalLayout[GTM] = IndirectIndex++;
}
// The indirect function table index space starts at zero, so pass a NULL
// pointer as the subtracted "jump table" offset.
lowerTypeTestCalls(TypeIds, ConstantPointerNull::get(Int32PtrTy),
GlobalLayout);
}
void LowerTypeTestsModule::buildBitSetsFromDisjointSet(
ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals,
ArrayRef<ICallBranchFunnel *> ICallBranchFunnels) {
DenseMap<Metadata *, uint64_t> TypeIdIndices;
for (unsigned I = 0; I != TypeIds.size(); ++I)
TypeIdIndices[TypeIds[I]] = I;
// For each type identifier, build a set of indices that refer to members of
// the type identifier.
std::vector<std::set<uint64_t>> TypeMembers(TypeIds.size());
unsigned GlobalIndex = 0;
DenseMap<GlobalTypeMember *, uint64_t> GlobalIndices;
for (GlobalTypeMember *GTM : Globals) {
for (MDNode *Type : GTM->types()) {
// Type = { offset, type identifier }
auto I = TypeIdIndices.find(Type->getOperand(1));
if (I != TypeIdIndices.end())
TypeMembers[I->second].insert(GlobalIndex);
}
GlobalIndices[GTM] = GlobalIndex;
GlobalIndex++;
}
for (ICallBranchFunnel *JT : ICallBranchFunnels) {
TypeMembers.emplace_back();
std::set<uint64_t> &TMSet = TypeMembers.back();
for (GlobalTypeMember *T : JT->targets())
TMSet.insert(GlobalIndices[T]);
}
// Order the sets of indices by size. The GlobalLayoutBuilder works best
// when given small index sets first.
llvm::stable_sort(TypeMembers, [](const std::set<uint64_t> &O1,
const std::set<uint64_t> &O2) {
return O1.size() < O2.size();
});
// Create a GlobalLayoutBuilder and provide it with index sets as layout
// fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
// close together as possible.
GlobalLayoutBuilder GLB(Globals.size());
for (auto &&MemSet : TypeMembers)
GLB.addFragment(MemSet);
// Build a vector of globals with the computed layout.
bool IsGlobalSet =
Globals.empty() || isa<GlobalVariable>(Globals[0]->getGlobal());
std::vector<GlobalTypeMember *> OrderedGTMs(Globals.size());
auto OGTMI = OrderedGTMs.begin();
for (auto &&F : GLB.Fragments) {
for (auto &&Offset : F) {
if (IsGlobalSet != isa<GlobalVariable>(Globals[Offset]->getGlobal()))
report_fatal_error("Type identifier may not contain both global "
"variables and functions");
*OGTMI++ = Globals[Offset];
}
}
// Build the bitsets from this disjoint set.
if (IsGlobalSet)
buildBitSetsFromGlobalVariables(TypeIds, OrderedGTMs);
else
buildBitSetsFromFunctions(TypeIds, OrderedGTMs);
}
/// Lower all type tests in this module.
LowerTypeTestsModule::LowerTypeTestsModule(
Module &M, ModuleSummaryIndex *ExportSummary,
const ModuleSummaryIndex *ImportSummary)
: M(M), ExportSummary(ExportSummary), ImportSummary(ImportSummary) {
assert(!(ExportSummary && ImportSummary));
Triple TargetTriple(M.getTargetTriple());
Arch = TargetTriple.getArch();
OS = TargetTriple.getOS();
ObjectFormat = TargetTriple.getObjectFormat();
}
bool LowerTypeTestsModule::runForTesting(Module &M) {
ModuleSummaryIndex Summary(/*HaveGVs=*/false);
// Handle the command-line summary arguments. This code is for testing
// purposes only, so we handle errors directly.
if (!ClReadSummary.empty()) {
ExitOnError ExitOnErr("-lowertypetests-read-summary: " + ClReadSummary +
": ");
auto ReadSummaryFile =
ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
yaml::Input In(ReadSummaryFile->getBuffer());
In >> Summary;
ExitOnErr(errorCodeToError(In.error()));
}
bool Changed =
LowerTypeTestsModule(
M, ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
.lower();
if (!ClWriteSummary.empty()) {
ExitOnError ExitOnErr("-lowertypetests-write-summary: " + ClWriteSummary +
": ");
std::error_code EC;
raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
ExitOnErr(errorCodeToError(EC));
yaml::Output Out(OS);
Out << Summary;
}
return Changed;
}
static bool isDirectCall(Use& U) {
auto *Usr = dyn_cast<CallInst>(U.getUser());
if (Usr) {
CallSite CS(Usr);
if (CS.isCallee(&U))
return true;
}
return false;
}
void LowerTypeTestsModule::replaceCfiUses(Function *Old, Value *New,
bool IsJumpTableCanonical) {
SmallSetVector<Constant *, 4> Constants;
auto UI = Old->use_begin(), E = Old->use_end();
for (; UI != E;) {
Use &U = *UI;
++UI;
// Skip block addresses
if (isa<BlockAddress>(U.getUser()))
continue;
// Skip direct calls to externally defined or non-dso_local functions
if (isDirectCall(U) && (Old->isDSOLocal() || !IsJumpTableCanonical))
continue;
// Must handle Constants specially, we cannot call replaceUsesOfWith on a
// constant because they are uniqued.
if (auto *C = dyn_cast<Constant>(U.getUser())) {
if (!isa<GlobalValue>(C)) {
// Save unique users to avoid processing operand replacement
// more than once.
Constants.insert(C);
continue;
}
}
U.set(New);
}
// Process operand replacement of saved constants.
for (auto *C : Constants)
C->handleOperandChange(Old, New);
}
void LowerTypeTestsModule::replaceDirectCalls(Value *Old, Value *New) {
Old->replaceUsesWithIf(New, [](Use &U) { return isDirectCall(U); });
}
bool LowerTypeTestsModule::lower() {
// If only some of the modules were split, we cannot correctly perform
// this transformation. We already checked for the presense of type tests
// with partially split modules during the thin link, and would have emitted
// an error if any were found, so here we can simply return.
if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
(ImportSummary && ImportSummary->partiallySplitLTOUnits()))
return false;
Function *TypeTestFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_test));
Function *ICallBranchFunnelFunc =
M.getFunction(Intrinsic::getName(Intrinsic::icall_branch_funnel));
if ((!TypeTestFunc || TypeTestFunc->use_empty()) &&
(!ICallBranchFunnelFunc || ICallBranchFunnelFunc->use_empty()) &&
!ExportSummary && !ImportSummary)
return false;
if (ImportSummary) {
if (TypeTestFunc) {
for (auto UI = TypeTestFunc->use_begin(), UE = TypeTestFunc->use_end();
UI != UE;) {
auto *CI = cast<CallInst>((*UI++).getUser());
importTypeTest(CI);
}
}
if (ICallBranchFunnelFunc && !ICallBranchFunnelFunc->use_empty())
report_fatal_error(
"unexpected call to llvm.icall.branch.funnel during import phase");
SmallVector<Function *, 8> Defs;
SmallVector<Function *, 8> Decls;
for (auto &F : M) {
// CFI functions are either external, or promoted. A local function may
// have the same name, but it's not the one we are looking for.
if (F.hasLocalLinkage())
continue;
if (ImportSummary->cfiFunctionDefs().count(F.getName()))
Defs.push_back(&F);
else if (ImportSummary->cfiFunctionDecls().count(F.getName()))
Decls.push_back(&F);
}
std::vector<GlobalAlias *> AliasesToErase;
{
ScopedSaveAliaseesAndUsed S(M);
for (auto F : Defs)
importFunction(F, /*isJumpTableCanonical*/ true, AliasesToErase);
for (auto F : Decls)
importFunction(F, /*isJumpTableCanonical*/ false, AliasesToErase);
}
for (GlobalAlias *GA : AliasesToErase)
GA->eraseFromParent();
return true;
}
// Equivalence class set containing type identifiers and the globals that
// reference them. This is used to partition the set of type identifiers in
// the module into disjoint sets.
using GlobalClassesTy = EquivalenceClasses<
PointerUnion3<GlobalTypeMember *, Metadata *, ICallBranchFunnel *>>;
GlobalClassesTy GlobalClasses;
// Verify the type metadata and build a few data structures to let us
// efficiently enumerate the type identifiers associated with a global:
// a list of GlobalTypeMembers (a GlobalObject stored alongside a vector
// of associated type metadata) and a mapping from type identifiers to their
// list of GlobalTypeMembers and last observed index in the list of globals.
// The indices will be used later to deterministically order the list of type
// identifiers.
BumpPtrAllocator Alloc;
struct TIInfo {
unsigned UniqueId;
std::vector<GlobalTypeMember *> RefGlobals;
};
DenseMap<Metadata *, TIInfo> TypeIdInfo;
unsigned CurUniqueId = 0;
SmallVector<MDNode *, 2> Types;
// Cross-DSO CFI emits jumptable entries for exported functions as well as
// address taken functions in case they are address taken in other modules.
const bool CrossDsoCfi = M.getModuleFlag("Cross-DSO CFI") != nullptr;
struct ExportedFunctionInfo {
CfiFunctionLinkage Linkage;
MDNode *FuncMD; // {name, linkage, type[, type...]}
};
DenseMap<StringRef, ExportedFunctionInfo> ExportedFunctions;
if (ExportSummary) {
// A set of all functions that are address taken by a live global object.
DenseSet<GlobalValue::GUID> AddressTaken;
for (auto &I : *ExportSummary)
for (auto &GVS : I.second.SummaryList)
if (GVS->isLive())
for (auto &Ref : GVS->refs())
AddressTaken.insert(Ref.getGUID());
NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions");
if (CfiFunctionsMD) {
for (auto FuncMD : CfiFunctionsMD->operands()) {
assert(FuncMD->getNumOperands() >= 2);
StringRef FunctionName =
cast<MDString>(FuncMD->getOperand(0))->getString();
CfiFunctionLinkage Linkage = static_cast<CfiFunctionLinkage>(
cast<ConstantAsMetadata>(FuncMD->getOperand(1))
->getValue()
->getUniqueInteger()
.getZExtValue());
const GlobalValue::GUID GUID = GlobalValue::getGUID(
GlobalValue::dropLLVMManglingEscape(FunctionName));
// Do not emit jumptable entries for functions that are not-live and
// have no live references (and are not exported with cross-DSO CFI.)
if (!ExportSummary->isGUIDLive(GUID))
continue;
if (!AddressTaken.count(GUID)) {
if (!CrossDsoCfi || Linkage != CFL_Definition)
continue;
bool Exported = false;
if (auto VI = ExportSummary->getValueInfo(GUID))
for (auto &GVS : VI.getSummaryList())
if (GVS->isLive() && !GlobalValue::isLocalLinkage(GVS->linkage()))
Exported = true;
if (!Exported)
continue;
}
auto P = ExportedFunctions.insert({FunctionName, {Linkage, FuncMD}});
if (!P.second && P.first->second.Linkage != CFL_Definition)
P.first->second = {Linkage, FuncMD};
}
for (const auto &P : ExportedFunctions) {
StringRef FunctionName = P.first;
CfiFunctionLinkage Linkage = P.second.Linkage;
MDNode *FuncMD = P.second.FuncMD;
Function *F = M.getFunction(FunctionName);
if (F && F->hasLocalLinkage()) {
// Locally defined function that happens to have the same name as a
// function defined in a ThinLTO module. Rename it to move it out of
// the way of the external reference that we're about to create.
// Note that setName will find a unique name for the function, so even
// if there is an existing function with the suffix there won't be a
// name collision.
F->setName(F->getName() + ".1");
F = nullptr;
}
if (!F)
F = Function::Create(
FunctionType::get(Type::getVoidTy(M.getContext()), false),
GlobalVariable::ExternalLinkage,
M.getDataLayout().getProgramAddressSpace(), FunctionName, &M);
// If the function is available_externally, remove its definition so
// that it is handled the same way as a declaration. Later we will try
// to create an alias using this function's linkage, which will fail if
// the linkage is available_externally. This will also result in us
// following the code path below to replace the type metadata.
if (F->hasAvailableExternallyLinkage()) {
F->setLinkage(GlobalValue::ExternalLinkage);
F->deleteBody();
F->setComdat(nullptr);
F->clearMetadata();
}
// Update the linkage for extern_weak declarations when a definition
// exists.
if (Linkage == CFL_Definition && F->hasExternalWeakLinkage())
F->setLinkage(GlobalValue::ExternalLinkage);
// If the function in the full LTO module is a declaration, replace its
// type metadata with the type metadata we found in cfi.functions. That
// metadata is presumed to be more accurate than the metadata attached
// to the declaration.
if (F->isDeclaration()) {
if (Linkage == CFL_WeakDeclaration)
F->setLinkage(GlobalValue::ExternalWeakLinkage);
F->eraseMetadata(LLVMContext::MD_type);
for (unsigned I = 2; I < FuncMD->getNumOperands(); ++I)
F->addMetadata(LLVMContext::MD_type,
*cast<MDNode>(FuncMD->getOperand(I).get()));
}
}
}
}
DenseMap<GlobalObject *, GlobalTypeMember *> GlobalTypeMembers;
for (GlobalObject &GO : M.global_objects()) {
if (isa<GlobalVariable>(GO) && GO.isDeclarationForLinker())
continue;
Types.clear();
GO.getMetadata(LLVMContext::MD_type, Types);
bool IsJumpTableCanonical = false;
bool IsExported = false;
if (Function *F = dyn_cast<Function>(&GO)) {
IsJumpTableCanonical = isJumpTableCanonical(F);
if (ExportedFunctions.count(F->getName())) {
IsJumpTableCanonical |=
ExportedFunctions[F->getName()].Linkage == CFL_Definition;
IsExported = true;
// TODO: The logic here checks only that the function is address taken,
// not that the address takers are live. This can be updated to check
// their liveness and emit fewer jumptable entries once monolithic LTO
// builds also emit summaries.
} else if (!F->hasAddressTaken()) {
if (!CrossDsoCfi || !IsJumpTableCanonical || F->hasLocalLinkage())
continue;
}
}
auto *GTM = GlobalTypeMember::create(Alloc, &GO, IsJumpTableCanonical,
IsExported, Types);
GlobalTypeMembers[&GO] = GTM;
for (MDNode *Type : Types) {
verifyTypeMDNode(&GO, Type);
auto &Info = TypeIdInfo[Type->getOperand(1)];
Info.UniqueId = ++CurUniqueId;
Info.RefGlobals.push_back(GTM);
}
}
auto AddTypeIdUse = [&](Metadata *TypeId) -> TypeIdUserInfo & {
// Add the call site to the list of call sites for this type identifier. We
// also use TypeIdUsers to keep track of whether we have seen this type
// identifier before. If we have, we don't need to re-add the referenced
// globals to the equivalence class.
auto Ins = TypeIdUsers.insert({TypeId, {}});
if (Ins.second) {
// Add the type identifier to the equivalence class.
GlobalClassesTy::iterator GCI = GlobalClasses.insert(TypeId);
GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
// Add the referenced globals to the type identifier's equivalence class.
for (GlobalTypeMember *GTM : TypeIdInfo[TypeId].RefGlobals)
CurSet = GlobalClasses.unionSets(
CurSet, GlobalClasses.findLeader(GlobalClasses.insert(GTM)));
}
return Ins.first->second;
};
if (TypeTestFunc) {
for (const Use &U : TypeTestFunc->uses()) {
auto CI = cast<CallInst>(U.getUser());
auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
if (!TypeIdMDVal)
report_fatal_error("Second argument of llvm.type.test must be metadata");
auto TypeId = TypeIdMDVal->getMetadata();
AddTypeIdUse(TypeId).CallSites.push_back(CI);
}
}
if (ICallBranchFunnelFunc) {
for (const Use &U : ICallBranchFunnelFunc->uses()) {
if (Arch != Triple::x86_64)
report_fatal_error(
"llvm.icall.branch.funnel not supported on this target");
auto CI = cast<CallInst>(U.getUser());
std::vector<GlobalTypeMember *> Targets;
if (CI->getNumArgOperands() % 2 != 1)
report_fatal_error("number of arguments should be odd");
GlobalClassesTy::member_iterator CurSet;
for (unsigned I = 1; I != CI->getNumArgOperands(); I += 2) {
int64_t Offset;
auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
CI->getOperand(I), Offset, M.getDataLayout()));
if (!Base)
report_fatal_error(
"Expected branch funnel operand to be global value");
GlobalTypeMember *GTM = GlobalTypeMembers[Base];
Targets.push_back(GTM);
GlobalClassesTy::member_iterator NewSet =
GlobalClasses.findLeader(GlobalClasses.insert(GTM));
if (I == 1)
CurSet = NewSet;
else
CurSet = GlobalClasses.unionSets(CurSet, NewSet);
}
GlobalClasses.unionSets(
CurSet, GlobalClasses.findLeader(
GlobalClasses.insert(ICallBranchFunnel::create(
Alloc, CI, Targets, ++CurUniqueId))));
}
}
if (ExportSummary) {
DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
for (auto &P : TypeIdInfo) {
if (auto *TypeId = dyn_cast<MDString>(P.first))
MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
TypeId);
}
for (auto &P : *ExportSummary) {
for (auto &S : P.second.SummaryList) {
if (!ExportSummary->isGlobalValueLive(S.get()))
continue;
if (auto *FS = dyn_cast<FunctionSummary>(S->getBaseObject()))
for (GlobalValue::GUID G : FS->type_tests())
for (Metadata *MD : MetadataByGUID[G])
AddTypeIdUse(MD).IsExported = true;
}
}
}
if (GlobalClasses.empty())
return false;
// Build a list of disjoint sets ordered by their maximum global index for
// determinism.
std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
E = GlobalClasses.end();
I != E; ++I) {
if (!I->isLeader())
continue;
++NumTypeIdDisjointSets;
unsigned MaxUniqueId = 0;
for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
MI != GlobalClasses.member_end(); ++MI) {
if (auto *MD = MI->dyn_cast<Metadata *>())
MaxUniqueId = std::max(MaxUniqueId, TypeIdInfo[MD].UniqueId);
else if (auto *BF = MI->dyn_cast<ICallBranchFunnel *>())
MaxUniqueId = std::max(MaxUniqueId, BF->UniqueId);
}
Sets.emplace_back(I, MaxUniqueId);
}
llvm::sort(Sets,
[](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
return S1.second < S2.second;
});
// For each disjoint set we found...
for (const auto &S : Sets) {
// Build the list of type identifiers in this disjoint set.
std::vector<Metadata *> TypeIds;
std::vector<GlobalTypeMember *> Globals;
std::vector<ICallBranchFunnel *> ICallBranchFunnels;
for (GlobalClassesTy::member_iterator MI =
GlobalClasses.member_begin(S.first);
MI != GlobalClasses.member_end(); ++MI) {
if (MI->is<Metadata *>())
TypeIds.push_back(MI->get<Metadata *>());
else if (MI->is<GlobalTypeMember *>())
Globals.push_back(MI->get<GlobalTypeMember *>());
else
ICallBranchFunnels.push_back(MI->get<ICallBranchFunnel *>());
}
// Order type identifiers by unique ID for determinism. This ordering is
// stable as there is a one-to-one mapping between metadata and unique IDs.
llvm::sort(TypeIds, [&](Metadata *M1, Metadata *M2) {
return TypeIdInfo[M1].UniqueId < TypeIdInfo[M2].UniqueId;
});
// Same for the branch funnels.
llvm::sort(ICallBranchFunnels,
[&](ICallBranchFunnel *F1, ICallBranchFunnel *F2) {
return F1->UniqueId < F2->UniqueId;
});
// Build bitsets for this disjoint set.
buildBitSetsFromDisjointSet(TypeIds, Globals, ICallBranchFunnels);
}
allocateByteArrays();
// Parse alias data to replace stand-in function declarations for aliases
// with an alias to the intended target.
if (ExportSummary) {
if (NamedMDNode *AliasesMD = M.getNamedMetadata("aliases")) {
for (auto AliasMD : AliasesMD->operands()) {
assert(AliasMD->getNumOperands() >= 4);
StringRef AliasName =
cast<MDString>(AliasMD->getOperand(0))->getString();
StringRef Aliasee = cast<MDString>(AliasMD->getOperand(1))->getString();
if (!ExportedFunctions.count(Aliasee) ||
ExportedFunctions[Aliasee].Linkage != CFL_Definition ||
!M.getNamedAlias(Aliasee))
continue;
GlobalValue::VisibilityTypes Visibility =
static_cast<GlobalValue::VisibilityTypes>(
cast<ConstantAsMetadata>(AliasMD->getOperand(2))
->getValue()
->getUniqueInteger()
.getZExtValue());
bool Weak =
static_cast<bool>(cast<ConstantAsMetadata>(AliasMD->getOperand(3))
->getValue()
->getUniqueInteger()
.getZExtValue());
auto *Alias = GlobalAlias::create("", M.getNamedAlias(Aliasee));
Alias->setVisibility(Visibility);
if (Weak)
Alias->setLinkage(GlobalValue::WeakAnyLinkage);
if (auto *F = M.getFunction(AliasName)) {
Alias->takeName(F);
F->replaceAllUsesWith(Alias);
F->eraseFromParent();
} else {
Alias->setName(AliasName);
}
}
}
}
// Emit .symver directives for exported functions, if they exist.
if (ExportSummary) {
if (NamedMDNode *SymversMD = M.getNamedMetadata("symvers")) {
for (auto Symver : SymversMD->operands()) {
assert(Symver->getNumOperands() >= 2);
StringRef SymbolName =
cast<MDString>(Symver->getOperand(0))->getString();
StringRef Alias = cast<MDString>(Symver->getOperand(1))->getString();
if (!ExportedFunctions.count(SymbolName))
continue;
M.appendModuleInlineAsm(
(llvm::Twine(".symver ") + SymbolName + ", " + Alias).str());
}
}
}
return true;
}
PreservedAnalyses LowerTypeTestsPass::run(Module &M,
ModuleAnalysisManager &AM) {
bool Changed = LowerTypeTestsModule(M, ExportSummary, ImportSummary).lower();
if (!Changed)
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}