| //===-- IPConstantPropagation.cpp - Propagate constants through calls -----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements an _extremely_ simple interprocedural constant |
| // propagation pass. It could certainly be improved in many different ways, |
| // like using a worklist. This pass makes arguments dead, but does not remove |
| // them. The existing dead argument elimination pass should be run after this |
| // to clean up the mess. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Transforms/IPO.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ipconstprop" |
| |
| STATISTIC(NumArgumentsProped, "Number of args turned into constants"); |
| STATISTIC(NumReturnValProped, "Number of return values turned into constants"); |
| |
| namespace { |
| /// IPCP - The interprocedural constant propagation pass |
| /// |
| struct IPCP : public ModulePass { |
| static char ID; // Pass identification, replacement for typeid |
| IPCP() : ModulePass(ID) { |
| initializeIPCPPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnModule(Module &M) override; |
| }; |
| } |
| |
| /// PropagateConstantsIntoArguments - Look at all uses of the specified |
| /// function. If all uses are direct call sites, and all pass a particular |
| /// constant in for an argument, propagate that constant in as the argument. |
| /// |
| static bool PropagateConstantsIntoArguments(Function &F) { |
| if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit. |
| |
| // For each argument, keep track of its constant value and whether it is a |
| // constant or not. The bool is driven to true when found to be non-constant. |
| SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants; |
| ArgumentConstants.resize(F.arg_size()); |
| |
| unsigned NumNonconstant = 0; |
| for (Use &U : F.uses()) { |
| User *UR = U.getUser(); |
| // Ignore blockaddress uses. |
| if (isa<BlockAddress>(UR)) continue; |
| |
| // If no abstract call site was created we did not understand the use, bail. |
| AbstractCallSite ACS(&U); |
| if (!ACS) |
| return false; |
| |
| // Mismatched argument count is undefined behavior. Simply bail out to avoid |
| // handling of such situations below (avoiding asserts/crashes). |
| unsigned NumActualArgs = ACS.getNumArgOperands(); |
| if (F.isVarArg() ? ArgumentConstants.size() > NumActualArgs |
| : ArgumentConstants.size() != NumActualArgs) |
| return false; |
| |
| // Check out all of the potentially constant arguments. Note that we don't |
| // inspect varargs here. |
| Function::arg_iterator Arg = F.arg_begin(); |
| for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++Arg) { |
| |
| // If this argument is known non-constant, ignore it. |
| if (ArgumentConstants[i].second) |
| continue; |
| |
| Value *V = ACS.getCallArgOperand(i); |
| Constant *C = dyn_cast_or_null<Constant>(V); |
| |
| // Mismatched argument type is undefined behavior. Simply bail out to avoid |
| // handling of such situations below (avoiding asserts/crashes). |
| if (C && Arg->getType() != C->getType()) |
| return false; |
| |
| // We can only propagate thread independent values through callbacks. |
| // This is different to direct/indirect call sites because for them we |
| // know the thread executing the caller and callee is the same. For |
| // callbacks this is not guaranteed, thus a thread dependent value could |
| // be different for the caller and callee, making it invalid to propagate. |
| if (C && ACS.isCallbackCall() && C->isThreadDependent()) { |
| // Argument became non-constant. If all arguments are non-constant now, |
| // give up on this function. |
| if (++NumNonconstant == ArgumentConstants.size()) |
| return false; |
| |
| ArgumentConstants[i].second = true; |
| continue; |
| } |
| |
| if (C && ArgumentConstants[i].first == nullptr) { |
| ArgumentConstants[i].first = C; // First constant seen. |
| } else if (C && ArgumentConstants[i].first == C) { |
| // Still the constant value we think it is. |
| } else if (V == &*Arg) { |
| // Ignore recursive calls passing argument down. |
| } else { |
| // Argument became non-constant. If all arguments are non-constant now, |
| // give up on this function. |
| if (++NumNonconstant == ArgumentConstants.size()) |
| return false; |
| ArgumentConstants[i].second = true; |
| } |
| } |
| } |
| |
| // If we got to this point, there is a constant argument! |
| assert(NumNonconstant != ArgumentConstants.size()); |
| bool MadeChange = false; |
| Function::arg_iterator AI = F.arg_begin(); |
| for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) { |
| // Do we have a constant argument? |
| if (ArgumentConstants[i].second || AI->use_empty() || |
| AI->hasInAllocaAttr() || (AI->hasByValAttr() && !F.onlyReadsMemory())) |
| continue; |
| |
| Value *V = ArgumentConstants[i].first; |
| if (!V) V = UndefValue::get(AI->getType()); |
| AI->replaceAllUsesWith(V); |
| ++NumArgumentsProped; |
| MadeChange = true; |
| } |
| return MadeChange; |
| } |
| |
| |
| // Check to see if this function returns one or more constants. If so, replace |
| // all callers that use those return values with the constant value. This will |
| // leave in the actual return values and instructions, but deadargelim will |
| // clean that up. |
| // |
| // Additionally if a function always returns one of its arguments directly, |
| // callers will be updated to use the value they pass in directly instead of |
| // using the return value. |
| static bool PropagateConstantReturn(Function &F) { |
| if (F.getReturnType()->isVoidTy()) |
| return false; // No return value. |
| |
| // We can infer and propagate the return value only when we know that the |
| // definition we'll get at link time is *exactly* the definition we see now. |
| // For more details, see GlobalValue::mayBeDerefined. |
| if (!F.isDefinitionExact()) |
| return false; |
| |
| // Don't touch naked functions. The may contain asm returning |
| // value we don't see, so we may end up interprocedurally propagating |
| // the return value incorrectly. |
| if (F.hasFnAttribute(Attribute::Naked)) |
| return false; |
| |
| // Check to see if this function returns a constant. |
| SmallVector<Value *,4> RetVals; |
| StructType *STy = dyn_cast<StructType>(F.getReturnType()); |
| if (STy) |
| for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i) |
| RetVals.push_back(UndefValue::get(STy->getElementType(i))); |
| else |
| RetVals.push_back(UndefValue::get(F.getReturnType())); |
| |
| unsigned NumNonConstant = 0; |
| for (BasicBlock &BB : F) |
| if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { |
| for (unsigned i = 0, e = RetVals.size(); i != e; ++i) { |
| // Already found conflicting return values? |
| Value *RV = RetVals[i]; |
| if (!RV) |
| continue; |
| |
| // Find the returned value |
| Value *V; |
| if (!STy) |
| V = RI->getOperand(0); |
| else |
| V = FindInsertedValue(RI->getOperand(0), i); |
| |
| if (V) { |
| // Ignore undefs, we can change them into anything |
| if (isa<UndefValue>(V)) |
| continue; |
| |
| // Try to see if all the rets return the same constant or argument. |
| if (isa<Constant>(V) || isa<Argument>(V)) { |
| if (isa<UndefValue>(RV)) { |
| // No value found yet? Try the current one. |
| RetVals[i] = V; |
| continue; |
| } |
| // Returning the same value? Good. |
| if (RV == V) |
| continue; |
| } |
| } |
| // Different or no known return value? Don't propagate this return |
| // value. |
| RetVals[i] = nullptr; |
| // All values non-constant? Stop looking. |
| if (++NumNonConstant == RetVals.size()) |
| return false; |
| } |
| } |
| |
| // If we got here, the function returns at least one constant value. Loop |
| // over all users, replacing any uses of the return value with the returned |
| // constant. |
| bool MadeChange = false; |
| for (Use &U : F.uses()) { |
| CallSite CS(U.getUser()); |
| Instruction* Call = CS.getInstruction(); |
| |
| // Not a call instruction or a call instruction that's not calling F |
| // directly? |
| if (!Call || !CS.isCallee(&U)) |
| continue; |
| |
| // Call result not used? |
| if (Call->use_empty()) |
| continue; |
| |
| MadeChange = true; |
| |
| if (!STy) { |
| Value* New = RetVals[0]; |
| if (Argument *A = dyn_cast<Argument>(New)) |
| // Was an argument returned? Then find the corresponding argument in |
| // the call instruction and use that. |
| New = CS.getArgument(A->getArgNo()); |
| Call->replaceAllUsesWith(New); |
| continue; |
| } |
| |
| for (auto I = Call->user_begin(), E = Call->user_end(); I != E;) { |
| Instruction *Ins = cast<Instruction>(*I); |
| |
| // Increment now, so we can remove the use |
| ++I; |
| |
| // Find the index of the retval to replace with |
| int index = -1; |
| if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins)) |
| if (EV->hasIndices()) |
| index = *EV->idx_begin(); |
| |
| // If this use uses a specific return value, and we have a replacement, |
| // replace it. |
| if (index != -1) { |
| Value *New = RetVals[index]; |
| if (New) { |
| if (Argument *A = dyn_cast<Argument>(New)) |
| // Was an argument returned? Then find the corresponding argument in |
| // the call instruction and use that. |
| New = CS.getArgument(A->getArgNo()); |
| Ins->replaceAllUsesWith(New); |
| Ins->eraseFromParent(); |
| } |
| } |
| } |
| } |
| |
| if (MadeChange) ++NumReturnValProped; |
| return MadeChange; |
| } |
| |
| char IPCP::ID = 0; |
| INITIALIZE_PASS(IPCP, "ipconstprop", |
| "Interprocedural constant propagation", false, false) |
| |
| ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); } |
| |
| bool IPCP::runOnModule(Module &M) { |
| if (skipModule(M)) |
| return false; |
| |
| bool Changed = false; |
| bool LocalChange = true; |
| |
| // FIXME: instead of using smart algorithms, we just iterate until we stop |
| // making changes. |
| while (LocalChange) { |
| LocalChange = false; |
| for (Function &F : M) |
| if (!F.isDeclaration()) { |
| // Delete any klingons. |
| F.removeDeadConstantUsers(); |
| if (F.hasLocalLinkage()) |
| LocalChange |= PropagateConstantsIntoArguments(F); |
| Changed |= PropagateConstantReturn(F); |
| } |
| Changed |= LocalChange; |
| } |
| return Changed; |
| } |