blob: e8efe8f2afe5d70e8d0b3767b1a64386404bf19d [file] [log] [blame]
//===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the X86 specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
#define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
#include "X86FrameLowering.h"
#include "X86ISelLowering.h"
#include "X86InstrInfo.h"
#include "X86SelectionDAGInfo.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/Target/TargetMachine.h"
#include <climits>
#include <memory>
#define GET_SUBTARGETINFO_HEADER
#include "X86GenSubtargetInfo.inc"
namespace llvm {
class GlobalValue;
/// The X86 backend supports a number of different styles of PIC.
///
namespace PICStyles {
enum Style {
StubPIC, // Used on i386-darwin in pic mode.
GOT, // Used on 32 bit elf on when in pic mode.
RIPRel, // Used on X86-64 when in pic mode.
None // Set when not in pic mode.
};
} // end namespace PICStyles
class X86Subtarget final : public X86GenSubtargetInfo {
public:
// NOTE: Do not add anything new to this list. Coarse, CPU name based flags
// are not a good idea. We should be migrating away from these.
enum X86ProcFamilyEnum {
Others,
IntelAtom,
IntelSLM,
IntelGLM,
IntelGLP,
IntelTRM
};
protected:
enum X86SSEEnum {
NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
};
enum X863DNowEnum {
NoThreeDNow, MMX, ThreeDNow, ThreeDNowA
};
/// X86 processor family: Intel Atom, and others
X86ProcFamilyEnum X86ProcFamily = Others;
/// Which PIC style to use
PICStyles::Style PICStyle;
const TargetMachine &TM;
/// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
X86SSEEnum X86SSELevel = NoSSE;
/// MMX, 3DNow, 3DNow Athlon, or none supported.
X863DNowEnum X863DNowLevel = NoThreeDNow;
/// True if the processor supports X87 instructions.
bool HasX87 = false;
/// True if the processor supports CMPXCHG8B.
bool HasCmpxchg8b = false;
/// True if this processor has NOPL instruction
/// (generally pentium pro+).
bool HasNOPL = false;
/// True if this processor has conditional move instructions
/// (generally pentium pro+).
bool HasCMov = false;
/// True if the processor supports X86-64 instructions.
bool HasX86_64 = false;
/// True if the processor supports POPCNT.
bool HasPOPCNT = false;
/// True if the processor supports SSE4A instructions.
bool HasSSE4A = false;
/// Target has AES instructions
bool HasAES = false;
bool HasVAES = false;
/// Target has FXSAVE/FXRESTOR instructions
bool HasFXSR = false;
/// Target has XSAVE instructions
bool HasXSAVE = false;
/// Target has XSAVEOPT instructions
bool HasXSAVEOPT = false;
/// Target has XSAVEC instructions
bool HasXSAVEC = false;
/// Target has XSAVES instructions
bool HasXSAVES = false;
/// Target has carry-less multiplication
bool HasPCLMUL = false;
bool HasVPCLMULQDQ = false;
/// Target has Galois Field Arithmetic instructions
bool HasGFNI = false;
/// Target has 3-operand fused multiply-add
bool HasFMA = false;
/// Target has 4-operand fused multiply-add
bool HasFMA4 = false;
/// Target has XOP instructions
bool HasXOP = false;
/// Target has TBM instructions.
bool HasTBM = false;
/// Target has LWP instructions
bool HasLWP = false;
/// True if the processor has the MOVBE instruction.
bool HasMOVBE = false;
/// True if the processor has the RDRAND instruction.
bool HasRDRAND = false;
/// Processor has 16-bit floating point conversion instructions.
bool HasF16C = false;
/// Processor has FS/GS base insturctions.
bool HasFSGSBase = false;
/// Processor has LZCNT instruction.
bool HasLZCNT = false;
/// Processor has BMI1 instructions.
bool HasBMI = false;
/// Processor has BMI2 instructions.
bool HasBMI2 = false;
/// Processor has VBMI instructions.
bool HasVBMI = false;
/// Processor has VBMI2 instructions.
bool HasVBMI2 = false;
/// Processor has Integer Fused Multiply Add
bool HasIFMA = false;
/// Processor has RTM instructions.
bool HasRTM = false;
/// Processor has ADX instructions.
bool HasADX = false;
/// Processor has SHA instructions.
bool HasSHA = false;
/// Processor has PRFCHW instructions.
bool HasPRFCHW = false;
/// Processor has RDSEED instructions.
bool HasRDSEED = false;
/// Processor has LAHF/SAHF instructions.
bool HasLAHFSAHF = false;
/// Processor has MONITORX/MWAITX instructions.
bool HasMWAITX = false;
/// Processor has Cache Line Zero instruction
bool HasCLZERO = false;
/// Processor has Cache Line Demote instruction
bool HasCLDEMOTE = false;
/// Processor has MOVDIRI instruction (direct store integer).
bool HasMOVDIRI = false;
/// Processor has MOVDIR64B instruction (direct store 64 bytes).
bool HasMOVDIR64B = false;
/// Processor has ptwrite instruction.
bool HasPTWRITE = false;
/// Processor has Prefetch with intent to Write instruction
bool HasPREFETCHWT1 = false;
/// True if SHLD instructions are slow.
bool IsSHLDSlow = false;
/// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and
// PMULUDQ.
bool IsPMULLDSlow = false;
/// True if the PMADDWD instruction is slow compared to PMULLD.
bool IsPMADDWDSlow = false;
/// True if unaligned memory accesses of 16-bytes are slow.
bool IsUAMem16Slow = false;
/// True if unaligned memory accesses of 32-bytes are slow.
bool IsUAMem32Slow = false;
/// True if SSE operations can have unaligned memory operands.
/// This may require setting a configuration bit in the processor.
bool HasSSEUnalignedMem = false;
/// True if this processor has the CMPXCHG16B instruction;
/// this is true for most x86-64 chips, but not the first AMD chips.
bool HasCmpxchg16b = false;
/// True if the LEA instruction should be used for adjusting
/// the stack pointer. This is an optimization for Intel Atom processors.
bool UseLeaForSP = false;
/// True if POPCNT instruction has a false dependency on the destination register.
bool HasPOPCNTFalseDeps = false;
/// True if LZCNT/TZCNT instructions have a false dependency on the destination register.
bool HasLZCNTFalseDeps = false;
/// True if its preferable to combine to a single shuffle using a variable
/// mask over multiple fixed shuffles.
bool HasFastVariableShuffle = false;
/// True if there is no performance penalty to writing only the lower parts
/// of a YMM or ZMM register without clearing the upper part.
bool HasFastPartialYMMorZMMWrite = false;
/// True if there is no performance penalty for writing NOPs with up to
/// 11 bytes.
bool HasFast11ByteNOP = false;
/// True if there is no performance penalty for writing NOPs with up to
/// 15 bytes.
bool HasFast15ByteNOP = false;
/// True if gather is reasonably fast. This is true for Skylake client and
/// all AVX-512 CPUs.
bool HasFastGather = false;
/// True if hardware SQRTSS instruction is at least as fast (latency) as
/// RSQRTSS followed by a Newton-Raphson iteration.
bool HasFastScalarFSQRT = false;
/// True if hardware SQRTPS/VSQRTPS instructions are at least as fast
/// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration.
bool HasFastVectorFSQRT = false;
/// True if 8-bit divisions are significantly faster than
/// 32-bit divisions and should be used when possible.
bool HasSlowDivide32 = false;
/// True if 32-bit divides are significantly faster than
/// 64-bit divisions and should be used when possible.
bool HasSlowDivide64 = false;
/// True if LZCNT instruction is fast.
bool HasFastLZCNT = false;
/// True if SHLD based rotate is fast.
bool HasFastSHLDRotate = false;
/// True if the processor supports macrofusion.
bool HasMacroFusion = false;
/// True if the processor supports branch fusion.
bool HasBranchFusion = false;
/// True if the processor has enhanced REP MOVSB/STOSB.
bool HasERMSB = false;
/// True if the short functions should be padded to prevent
/// a stall when returning too early.
bool PadShortFunctions = false;
/// True if two memory operand instructions should use a temporary register
/// instead.
bool SlowTwoMemOps = false;
/// True if the LEA instruction inputs have to be ready at address generation
/// (AG) time.
bool LEAUsesAG = false;
/// True if the LEA instruction with certain arguments is slow
bool SlowLEA = false;
/// True if the LEA instruction has all three source operands: base, index,
/// and offset or if the LEA instruction uses base and index registers where
/// the base is EBP, RBP,or R13
bool Slow3OpsLEA = false;
/// True if INC and DEC instructions are slow when writing to flags
bool SlowIncDec = false;
/// Processor has AVX-512 PreFetch Instructions
bool HasPFI = false;
/// Processor has AVX-512 Exponential and Reciprocal Instructions
bool HasERI = false;
/// Processor has AVX-512 Conflict Detection Instructions
bool HasCDI = false;
/// Processor has AVX-512 population count Instructions
bool HasVPOPCNTDQ = false;
/// Processor has AVX-512 Doubleword and Quadword instructions
bool HasDQI = false;
/// Processor has AVX-512 Byte and Word instructions
bool HasBWI = false;
/// Processor has AVX-512 Vector Length eXtenstions
bool HasVLX = false;
/// Processor has PKU extenstions
bool HasPKU = false;
/// Processor has AVX-512 Vector Neural Network Instructions
bool HasVNNI = false;
/// Processor has AVX-512 bfloat16 floating-point extensions
bool HasBF16 = false;
/// Processor supports ENQCMD instructions
bool HasENQCMD = false;
/// Processor has AVX-512 Bit Algorithms instructions
bool HasBITALG = false;
/// Processor has AVX-512 vp2intersect instructions
bool HasVP2INTERSECT = false;
/// Deprecated flag for MPX instructions.
bool DeprecatedHasMPX = false;
/// Processor supports CET SHSTK - Control-Flow Enforcement Technology
/// using Shadow Stack
bool HasSHSTK = false;
/// Processor supports Invalidate Process-Context Identifier
bool HasINVPCID = false;
/// Processor has Software Guard Extensions
bool HasSGX = false;
/// Processor supports Flush Cache Line instruction
bool HasCLFLUSHOPT = false;
/// Processor supports Cache Line Write Back instruction
bool HasCLWB = false;
/// Processor supports Write Back No Invalidate instruction
bool HasWBNOINVD = false;
/// Processor support RDPID instruction
bool HasRDPID = false;
/// Processor supports WaitPKG instructions
bool HasWAITPKG = false;
/// Processor supports PCONFIG instruction
bool HasPCONFIG = false;
/// Processor has a single uop BEXTR implementation.
bool HasFastBEXTR = false;
/// Try harder to combine to horizontal vector ops if they are fast.
bool HasFastHorizontalOps = false;
/// Prefer a left/right scalar logical shifts pair over a shift+and pair.
bool HasFastScalarShiftMasks = false;
/// Prefer a left/right vector logical shifts pair over a shift+and pair.
bool HasFastVectorShiftMasks = false;
/// Use a retpoline thunk rather than indirect calls to block speculative
/// execution.
bool UseRetpolineIndirectCalls = false;
/// Use a retpoline thunk or remove any indirect branch to block speculative
/// execution.
bool UseRetpolineIndirectBranches = false;
/// Deprecated flag, query `UseRetpolineIndirectCalls` and
/// `UseRetpolineIndirectBranches` instead.
bool DeprecatedUseRetpoline = false;
/// When using a retpoline thunk, call an externally provided thunk rather
/// than emitting one inside the compiler.
bool UseRetpolineExternalThunk = false;
/// Use software floating point for code generation.
bool UseSoftFloat = false;
/// Use alias analysis during code generation.
bool UseAA = false;
/// The minimum alignment known to hold of the stack frame on
/// entry to the function and which must be maintained by every function.
Align stackAlignment = Align(4);
/// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
///
// FIXME: this is a known good value for Yonah. How about others?
unsigned MaxInlineSizeThreshold = 128;
/// Indicates target prefers 128 bit instructions.
bool Prefer128Bit = false;
/// Indicates target prefers 256 bit instructions.
bool Prefer256Bit = false;
/// Threeway branch is profitable in this subtarget.
bool ThreewayBranchProfitable = false;
/// What processor and OS we're targeting.
Triple TargetTriple;
/// GlobalISel related APIs.
std::unique_ptr<CallLowering> CallLoweringInfo;
std::unique_ptr<LegalizerInfo> Legalizer;
std::unique_ptr<RegisterBankInfo> RegBankInfo;
std::unique_ptr<InstructionSelector> InstSelector;
private:
/// Override the stack alignment.
MaybeAlign StackAlignOverride;
/// Preferred vector width from function attribute.
unsigned PreferVectorWidthOverride;
/// Resolved preferred vector width from function attribute and subtarget
/// features.
unsigned PreferVectorWidth = UINT32_MAX;
/// Required vector width from function attribute.
unsigned RequiredVectorWidth;
/// True if compiling for 64-bit, false for 16-bit or 32-bit.
bool In64BitMode;
/// True if compiling for 32-bit, false for 16-bit or 64-bit.
bool In32BitMode;
/// True if compiling for 16-bit, false for 32-bit or 64-bit.
bool In16BitMode;
/// Contains the Overhead of gather\scatter instructions
int GatherOverhead = 1024;
int ScatterOverhead = 1024;
X86SelectionDAGInfo TSInfo;
// Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
// X86TargetLowering needs.
X86InstrInfo InstrInfo;
X86TargetLowering TLInfo;
X86FrameLowering FrameLowering;
public:
/// This constructor initializes the data members to match that
/// of the specified triple.
///
X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
const X86TargetMachine &TM, MaybeAlign StackAlignOverride,
unsigned PreferVectorWidthOverride,
unsigned RequiredVectorWidth);
const X86TargetLowering *getTargetLowering() const override {
return &TLInfo;
}
const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
const X86FrameLowering *getFrameLowering() const override {
return &FrameLowering;
}
const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
return &TSInfo;
}
const X86RegisterInfo *getRegisterInfo() const override {
return &getInstrInfo()->getRegisterInfo();
}
/// Returns the minimum alignment known to hold of the
/// stack frame on entry to the function and which must be maintained by every
/// function for this subtarget.
Align getStackAlignment() const { return stackAlignment; }
/// Returns the maximum memset / memcpy size
/// that still makes it profitable to inline the call.
unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
/// Methods used by Global ISel
const CallLowering *getCallLowering() const override;
InstructionSelector *getInstructionSelector() const override;
const LegalizerInfo *getLegalizerInfo() const override;
const RegisterBankInfo *getRegBankInfo() const override;
private:
/// Initialize the full set of dependencies so we can use an initializer
/// list for X86Subtarget.
X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
void initSubtargetFeatures(StringRef CPU, StringRef FS);
public:
/// Is this x86_64? (disregarding specific ABI / programming model)
bool is64Bit() const {
return In64BitMode;
}
bool is32Bit() const {
return In32BitMode;
}
bool is16Bit() const {
return In16BitMode;
}
/// Is this x86_64 with the ILP32 programming model (x32 ABI)?
bool isTarget64BitILP32() const {
return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
TargetTriple.isOSNaCl());
}
/// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
bool isTarget64BitLP64() const {
return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32 &&
!TargetTriple.isOSNaCl());
}
PICStyles::Style getPICStyle() const { return PICStyle; }
void setPICStyle(PICStyles::Style Style) { PICStyle = Style; }
bool hasX87() const { return HasX87; }
bool hasCmpxchg8b() const { return HasCmpxchg8b; }
bool hasNOPL() const { return HasNOPL; }
// SSE codegen depends on cmovs, and all SSE1+ processors support them.
// All 64-bit processors support cmov.
bool hasCMov() const { return HasCMov || X86SSELevel >= SSE1 || is64Bit(); }
bool hasSSE1() const { return X86SSELevel >= SSE1; }
bool hasSSE2() const { return X86SSELevel >= SSE2; }
bool hasSSE3() const { return X86SSELevel >= SSE3; }
bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
bool hasSSE41() const { return X86SSELevel >= SSE41; }
bool hasSSE42() const { return X86SSELevel >= SSE42; }
bool hasAVX() const { return X86SSELevel >= AVX; }
bool hasAVX2() const { return X86SSELevel >= AVX2; }
bool hasAVX512() const { return X86SSELevel >= AVX512F; }
bool hasInt256() const { return hasAVX2(); }
bool hasSSE4A() const { return HasSSE4A; }
bool hasMMX() const { return X863DNowLevel >= MMX; }
bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
bool hasPOPCNT() const { return HasPOPCNT; }
bool hasAES() const { return HasAES; }
bool hasVAES() const { return HasVAES; }
bool hasFXSR() const { return HasFXSR; }
bool hasXSAVE() const { return HasXSAVE; }
bool hasXSAVEOPT() const { return HasXSAVEOPT; }
bool hasXSAVEC() const { return HasXSAVEC; }
bool hasXSAVES() const { return HasXSAVES; }
bool hasPCLMUL() const { return HasPCLMUL; }
bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; }
bool hasGFNI() const { return HasGFNI; }
// Prefer FMA4 to FMA - its better for commutation/memory folding and
// has equal or better performance on all supported targets.
bool hasFMA() const { return HasFMA; }
bool hasFMA4() const { return HasFMA4; }
bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
bool hasXOP() const { return HasXOP; }
bool hasTBM() const { return HasTBM; }
bool hasLWP() const { return HasLWP; }
bool hasMOVBE() const { return HasMOVBE; }
bool hasRDRAND() const { return HasRDRAND; }
bool hasF16C() const { return HasF16C; }
bool hasFSGSBase() const { return HasFSGSBase; }
bool hasLZCNT() const { return HasLZCNT; }
bool hasBMI() const { return HasBMI; }
bool hasBMI2() const { return HasBMI2; }
bool hasVBMI() const { return HasVBMI; }
bool hasVBMI2() const { return HasVBMI2; }
bool hasIFMA() const { return HasIFMA; }
bool hasRTM() const { return HasRTM; }
bool hasADX() const { return HasADX; }
bool hasSHA() const { return HasSHA; }
bool hasPRFCHW() const { return HasPRFCHW || HasPREFETCHWT1; }
bool hasPREFETCHWT1() const { return HasPREFETCHWT1; }
bool hasSSEPrefetch() const {
// We implicitly enable these when we have a write prefix supporting cache
// level OR if we have prfchw, but don't already have a read prefetch from
// 3dnow.
return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1();
}
bool hasRDSEED() const { return HasRDSEED; }
bool hasLAHFSAHF() const { return HasLAHFSAHF; }
bool hasMWAITX() const { return HasMWAITX; }
bool hasCLZERO() const { return HasCLZERO; }
bool hasCLDEMOTE() const { return HasCLDEMOTE; }
bool hasMOVDIRI() const { return HasMOVDIRI; }
bool hasMOVDIR64B() const { return HasMOVDIR64B; }
bool hasPTWRITE() const { return HasPTWRITE; }
bool isSHLDSlow() const { return IsSHLDSlow; }
bool isPMULLDSlow() const { return IsPMULLDSlow; }
bool isPMADDWDSlow() const { return IsPMADDWDSlow; }
bool isUnalignedMem16Slow() const { return IsUAMem16Slow; }
bool isUnalignedMem32Slow() const { return IsUAMem32Slow; }
int getGatherOverhead() const { return GatherOverhead; }
int getScatterOverhead() const { return ScatterOverhead; }
bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; }
bool hasCmpxchg16b() const { return HasCmpxchg16b && is64Bit(); }
bool useLeaForSP() const { return UseLeaForSP; }
bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; }
bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; }
bool hasFastVariableShuffle() const {
return HasFastVariableShuffle;
}
bool hasFastPartialYMMorZMMWrite() const {
return HasFastPartialYMMorZMMWrite;
}
bool hasFastGather() const { return HasFastGather; }
bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; }
bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; }
bool hasFastLZCNT() const { return HasFastLZCNT; }
bool hasFastSHLDRotate() const { return HasFastSHLDRotate; }
bool hasFastBEXTR() const { return HasFastBEXTR; }
bool hasFastHorizontalOps() const { return HasFastHorizontalOps; }
bool hasFastScalarShiftMasks() const { return HasFastScalarShiftMasks; }
bool hasFastVectorShiftMasks() const { return HasFastVectorShiftMasks; }
bool hasMacroFusion() const { return HasMacroFusion; }
bool hasBranchFusion() const { return HasBranchFusion; }
bool hasERMSB() const { return HasERMSB; }
bool hasSlowDivide32() const { return HasSlowDivide32; }
bool hasSlowDivide64() const { return HasSlowDivide64; }
bool padShortFunctions() const { return PadShortFunctions; }
bool slowTwoMemOps() const { return SlowTwoMemOps; }
bool LEAusesAG() const { return LEAUsesAG; }
bool slowLEA() const { return SlowLEA; }
bool slow3OpsLEA() const { return Slow3OpsLEA; }
bool slowIncDec() const { return SlowIncDec; }
bool hasCDI() const { return HasCDI; }
bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; }
bool hasPFI() const { return HasPFI; }
bool hasERI() const { return HasERI; }
bool hasDQI() const { return HasDQI; }
bool hasBWI() const { return HasBWI; }
bool hasVLX() const { return HasVLX; }
bool hasPKU() const { return HasPKU; }
bool hasVNNI() const { return HasVNNI; }
bool hasBF16() const { return HasBF16; }
bool hasVP2INTERSECT() const { return HasVP2INTERSECT; }
bool hasBITALG() const { return HasBITALG; }
bool hasSHSTK() const { return HasSHSTK; }
bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; }
bool hasCLWB() const { return HasCLWB; }
bool hasWBNOINVD() const { return HasWBNOINVD; }
bool hasRDPID() const { return HasRDPID; }
bool hasWAITPKG() const { return HasWAITPKG; }
bool hasPCONFIG() const { return HasPCONFIG; }
bool hasSGX() const { return HasSGX; }
bool threewayBranchProfitable() const { return ThreewayBranchProfitable; }
bool hasINVPCID() const { return HasINVPCID; }
bool hasENQCMD() const { return HasENQCMD; }
bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls; }
bool useRetpolineIndirectBranches() const {
return UseRetpolineIndirectBranches;
}
bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; }
unsigned getPreferVectorWidth() const { return PreferVectorWidth; }
unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; }
// Helper functions to determine when we should allow widening to 512-bit
// during codegen.
// TODO: Currently we're always allowing widening on CPUs without VLX,
// because for many cases we don't have a better option.
bool canExtendTo512DQ() const {
return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512);
}
bool canExtendTo512BW() const {
return hasBWI() && canExtendTo512DQ();
}
// If there are no 512-bit vectors and we prefer not to use 512-bit registers,
// disable them in the legalizer.
bool useAVX512Regs() const {
return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256);
}
bool useBWIRegs() const {
return hasBWI() && useAVX512Regs();
}
bool isXRaySupported() const override { return is64Bit(); }
X86ProcFamilyEnum getProcFamily() const { return X86ProcFamily; }
/// TODO: to be removed later and replaced with suitable properties
bool isAtom() const { return X86ProcFamily == IntelAtom; }
bool isSLM() const { return X86ProcFamily == IntelSLM; }
bool isGLM() const {
return X86ProcFamily == IntelGLM ||
X86ProcFamily == IntelGLP ||
X86ProcFamily == IntelTRM;
}
bool useSoftFloat() const { return UseSoftFloat; }
bool useAA() const override { return UseAA; }
/// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
/// no-sse2). There isn't any reason to disable it if the target processor
/// supports it.
bool hasMFence() const { return hasSSE2() || is64Bit(); }
const Triple &getTargetTriple() const { return TargetTriple; }
bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
bool isTargetPS4() const { return TargetTriple.isPS4CPU(); }
bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); }
bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); }
bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); }
bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); }
bool isTargetWindowsMSVC() const {
return TargetTriple.isWindowsMSVCEnvironment();
}
bool isTargetWindowsCoreCLR() const {
return TargetTriple.isWindowsCoreCLREnvironment();
}
bool isTargetWindowsCygwin() const {
return TargetTriple.isWindowsCygwinEnvironment();
}
bool isTargetWindowsGNU() const {
return TargetTriple.isWindowsGNUEnvironment();
}
bool isTargetWindowsItanium() const {
return TargetTriple.isWindowsItaniumEnvironment();
}
bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
bool isOSWindows() const { return TargetTriple.isOSWindows(); }
bool isTargetWin64() const { return In64BitMode && isOSWindows(); }
bool isTargetWin32() const { return !In64BitMode && isOSWindows(); }
bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; }
bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; }
bool isPICStyleStubPIC() const {
return PICStyle == PICStyles::StubPIC;
}
bool isPositionIndependent() const { return TM.isPositionIndependent(); }
bool isCallingConvWin64(CallingConv::ID CC) const {
switch (CC) {
// On Win64, all these conventions just use the default convention.
case CallingConv::C:
case CallingConv::Fast:
case CallingConv::Tail:
case CallingConv::Swift:
case CallingConv::X86_FastCall:
case CallingConv::X86_StdCall:
case CallingConv::X86_ThisCall:
case CallingConv::X86_VectorCall:
case CallingConv::Intel_OCL_BI:
return isTargetWin64();
// This convention allows using the Win64 convention on other targets.
case CallingConv::Win64:
return true;
// This convention allows using the SysV convention on Windows targets.
case CallingConv::X86_64_SysV:
return false;
// Otherwise, who knows what this is.
default:
return false;
}
}
/// Classify a global variable reference for the current subtarget according
/// to how we should reference it in a non-pcrel context.
unsigned char classifyLocalReference(const GlobalValue *GV) const;
unsigned char classifyGlobalReference(const GlobalValue *GV,
const Module &M) const;
unsigned char classifyGlobalReference(const GlobalValue *GV) const;
/// Classify a global function reference for the current subtarget.
unsigned char classifyGlobalFunctionReference(const GlobalValue *GV,
const Module &M) const;
unsigned char classifyGlobalFunctionReference(const GlobalValue *GV) const;
/// Classify a blockaddress reference for the current subtarget according to
/// how we should reference it in a non-pcrel context.
unsigned char classifyBlockAddressReference() const;
/// Return true if the subtarget allows calls to immediate address.
bool isLegalToCallImmediateAddr() const;
/// If we are using retpolines, we need to expand indirectbr to avoid it
/// lowering to an actual indirect jump.
bool enableIndirectBrExpand() const override {
return useRetpolineIndirectBranches();
}
/// Enable the MachineScheduler pass for all X86 subtargets.
bool enableMachineScheduler() const override { return true; }
bool enableEarlyIfConversion() const override;
void getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>>
&Mutations) const override;
AntiDepBreakMode getAntiDepBreakMode() const override {
return TargetSubtargetInfo::ANTIDEP_CRITICAL;
}
bool enableAdvancedRASplitCost() const override { return true; }
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H