| //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// |
| /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual |
| /// flag bits. |
| /// |
| /// We have to do this by carefully analyzing and rewriting the usage of the |
| /// copied EFLAGS register because there is no general way to rematerialize the |
| /// entire EFLAGS register safely and efficiently. Using `popf` both forces |
| /// dynamic stack adjustment and can create correctness issues due to IF, TF, |
| /// and other non-status flags being overwritten. Using sequences involving |
| /// SAHF don't work on all x86 processors and are often quite slow compared to |
| /// directly testing a single status preserved in its own GPR. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86InstrInfo.h" |
| #include "X86Subtarget.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/SparseBitVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/MachineSSAUpdater.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSchedule.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/MC/MCSchedule.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <iterator> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define PASS_KEY "x86-flags-copy-lowering" |
| #define DEBUG_TYPE PASS_KEY |
| |
| STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated"); |
| STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted"); |
| STATISTIC(NumTestsInserted, "Number of test instructions inserted"); |
| STATISTIC(NumAddsInserted, "Number of adds instructions inserted"); |
| |
| namespace { |
| |
| // Convenient array type for storing registers associated with each condition. |
| using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>; |
| |
| class X86FlagsCopyLoweringPass : public MachineFunctionPass { |
| public: |
| X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { } |
| |
| StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; } |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| void getAnalysisUsage(AnalysisUsage &AU) const override; |
| |
| /// Pass identification, replacement for typeid. |
| static char ID; |
| |
| private: |
| MachineRegisterInfo *MRI; |
| const X86Subtarget *Subtarget; |
| const X86InstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| const TargetRegisterClass *PromoteRC; |
| MachineDominatorTree *MDT; |
| |
| CondRegArray collectCondsInRegs(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator CopyDefI); |
| |
| unsigned promoteCondToReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator TestPos, |
| DebugLoc TestLoc, X86::CondCode Cond); |
| std::pair<unsigned, bool> |
| getCondOrInverseInReg(MachineBasicBlock &TestMBB, |
| MachineBasicBlock::iterator TestPos, DebugLoc TestLoc, |
| X86::CondCode Cond, CondRegArray &CondRegs); |
| void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
| DebugLoc Loc, unsigned Reg); |
| |
| void rewriteArithmetic(MachineBasicBlock &TestMBB, |
| MachineBasicBlock::iterator TestPos, DebugLoc TestLoc, |
| MachineInstr &MI, MachineOperand &FlagUse, |
| CondRegArray &CondRegs); |
| void rewriteCMov(MachineBasicBlock &TestMBB, |
| MachineBasicBlock::iterator TestPos, DebugLoc TestLoc, |
| MachineInstr &CMovI, MachineOperand &FlagUse, |
| CondRegArray &CondRegs); |
| void rewriteCondJmp(MachineBasicBlock &TestMBB, |
| MachineBasicBlock::iterator TestPos, DebugLoc TestLoc, |
| MachineInstr &JmpI, CondRegArray &CondRegs); |
| void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse, |
| MachineInstr &CopyDefI); |
| void rewriteSetCarryExtended(MachineBasicBlock &TestMBB, |
| MachineBasicBlock::iterator TestPos, |
| DebugLoc TestLoc, MachineInstr &SetBI, |
| MachineOperand &FlagUse, CondRegArray &CondRegs); |
| void rewriteSetCC(MachineBasicBlock &TestMBB, |
| MachineBasicBlock::iterator TestPos, DebugLoc TestLoc, |
| MachineInstr &SetCCI, MachineOperand &FlagUse, |
| CondRegArray &CondRegs); |
| }; |
| |
| } // end anonymous namespace |
| |
| INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE, |
| "X86 EFLAGS copy lowering", false, false) |
| INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE, |
| "X86 EFLAGS copy lowering", false, false) |
| |
| FunctionPass *llvm::createX86FlagsCopyLoweringPass() { |
| return new X86FlagsCopyLoweringPass(); |
| } |
| |
| char X86FlagsCopyLoweringPass::ID = 0; |
| |
| void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<MachineDominatorTree>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| namespace { |
| /// An enumeration of the arithmetic instruction mnemonics which have |
| /// interesting flag semantics. |
| /// |
| /// We can map instruction opcodes into these mnemonics to make it easy to |
| /// dispatch with specific functionality. |
| enum class FlagArithMnemonic { |
| ADC, |
| ADCX, |
| ADOX, |
| RCL, |
| RCR, |
| SBB, |
| }; |
| } // namespace |
| |
| static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) { |
| switch (Opcode) { |
| default: |
| report_fatal_error("No support for lowering a copy into EFLAGS when used " |
| "by this instruction!"); |
| |
| #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \ |
| case X86::MNEMONIC##8##SUFFIX: \ |
| case X86::MNEMONIC##16##SUFFIX: \ |
| case X86::MNEMONIC##32##SUFFIX: \ |
| case X86::MNEMONIC##64##SUFFIX: |
| |
| #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \ |
| LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \ |
| LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \ |
| LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \ |
| LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \ |
| case X86::MNEMONIC##8ri: \ |
| case X86::MNEMONIC##16ri8: \ |
| case X86::MNEMONIC##32ri8: \ |
| case X86::MNEMONIC##64ri8: \ |
| case X86::MNEMONIC##16ri: \ |
| case X86::MNEMONIC##32ri: \ |
| case X86::MNEMONIC##64ri32: \ |
| case X86::MNEMONIC##8mi: \ |
| case X86::MNEMONIC##16mi8: \ |
| case X86::MNEMONIC##32mi8: \ |
| case X86::MNEMONIC##64mi8: \ |
| case X86::MNEMONIC##16mi: \ |
| case X86::MNEMONIC##32mi: \ |
| case X86::MNEMONIC##64mi32: \ |
| case X86::MNEMONIC##8i8: \ |
| case X86::MNEMONIC##16i16: \ |
| case X86::MNEMONIC##32i32: \ |
| case X86::MNEMONIC##64i32: |
| |
| LLVM_EXPAND_ADC_SBB_INSTR(ADC) |
| return FlagArithMnemonic::ADC; |
| |
| LLVM_EXPAND_ADC_SBB_INSTR(SBB) |
| return FlagArithMnemonic::SBB; |
| |
| #undef LLVM_EXPAND_ADC_SBB_INSTR |
| |
| LLVM_EXPAND_INSTR_SIZES(RCL, rCL) |
| LLVM_EXPAND_INSTR_SIZES(RCL, r1) |
| LLVM_EXPAND_INSTR_SIZES(RCL, ri) |
| return FlagArithMnemonic::RCL; |
| |
| LLVM_EXPAND_INSTR_SIZES(RCR, rCL) |
| LLVM_EXPAND_INSTR_SIZES(RCR, r1) |
| LLVM_EXPAND_INSTR_SIZES(RCR, ri) |
| return FlagArithMnemonic::RCR; |
| |
| #undef LLVM_EXPAND_INSTR_SIZES |
| |
| case X86::ADCX32rr: |
| case X86::ADCX64rr: |
| case X86::ADCX32rm: |
| case X86::ADCX64rm: |
| return FlagArithMnemonic::ADCX; |
| |
| case X86::ADOX32rr: |
| case X86::ADOX64rr: |
| case X86::ADOX32rm: |
| case X86::ADOX64rm: |
| return FlagArithMnemonic::ADOX; |
| } |
| } |
| |
| static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB, |
| MachineInstr &SplitI, |
| const X86InstrInfo &TII) { |
| MachineFunction &MF = *MBB.getParent(); |
| |
| assert(SplitI.getParent() == &MBB && |
| "Split instruction must be in the split block!"); |
| assert(SplitI.isBranch() && |
| "Only designed to split a tail of branch instructions!"); |
| assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID && |
| "Must split on an actual jCC instruction!"); |
| |
| // Dig out the previous instruction to the split point. |
| MachineInstr &PrevI = *std::prev(SplitI.getIterator()); |
| assert(PrevI.isBranch() && "Must split after a branch!"); |
| assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID && |
| "Must split after an actual jCC instruction!"); |
| assert(!std::prev(PrevI.getIterator())->isTerminator() && |
| "Must only have this one terminator prior to the split!"); |
| |
| // Grab the one successor edge that will stay in `MBB`. |
| MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB(); |
| |
| // Analyze the original block to see if we are actually splitting an edge |
| // into two edges. This can happen when we have multiple conditional jumps to |
| // the same successor. |
| bool IsEdgeSplit = |
| std::any_of(SplitI.getIterator(), MBB.instr_end(), |
| [&](MachineInstr &MI) { |
| assert(MI.isTerminator() && |
| "Should only have spliced terminators!"); |
| return llvm::any_of( |
| MI.operands(), [&](MachineOperand &MOp) { |
| return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc; |
| }); |
| }) || |
| MBB.getFallThrough() == &UnsplitSucc; |
| |
| MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); |
| |
| // Insert the new block immediately after the current one. Any existing |
| // fallthrough will be sunk into this new block anyways. |
| MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); |
| |
| // Splice the tail of instructions into the new block. |
| NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end()); |
| |
| // Copy the necessary succesors (and their probability info) into the new |
| // block. |
| for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI) |
| if (IsEdgeSplit || *SI != &UnsplitSucc) |
| NewMBB.copySuccessor(&MBB, SI); |
| // Normalize the probabilities if we didn't end up splitting the edge. |
| if (!IsEdgeSplit) |
| NewMBB.normalizeSuccProbs(); |
| |
| // Now replace all of the moved successors in the original block with the new |
| // block. This will merge their probabilities. |
| for (MachineBasicBlock *Succ : NewMBB.successors()) |
| if (Succ != &UnsplitSucc) |
| MBB.replaceSuccessor(Succ, &NewMBB); |
| |
| // We should always end up replacing at least one successor. |
| assert(MBB.isSuccessor(&NewMBB) && |
| "Failed to make the new block a successor!"); |
| |
| // Now update all the PHIs. |
| for (MachineBasicBlock *Succ : NewMBB.successors()) { |
| for (MachineInstr &MI : *Succ) { |
| if (!MI.isPHI()) |
| break; |
| |
| for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; |
| OpIdx += 2) { |
| MachineOperand &OpV = MI.getOperand(OpIdx); |
| MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); |
| assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!"); |
| if (OpMBB.getMBB() != &MBB) |
| continue; |
| |
| // Replace the operand for unsplit successors |
| if (!IsEdgeSplit || Succ != &UnsplitSucc) { |
| OpMBB.setMBB(&NewMBB); |
| |
| // We have to continue scanning as there may be multiple entries in |
| // the PHI. |
| continue; |
| } |
| |
| // When we have split the edge append a new successor. |
| MI.addOperand(MF, OpV); |
| MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); |
| break; |
| } |
| } |
| } |
| |
| return NewMBB; |
| } |
| |
| bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) { |
| LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() |
| << " **********\n"); |
| |
| Subtarget = &MF.getSubtarget<X86Subtarget>(); |
| MRI = &MF.getRegInfo(); |
| TII = Subtarget->getInstrInfo(); |
| TRI = Subtarget->getRegisterInfo(); |
| MDT = &getAnalysis<MachineDominatorTree>(); |
| PromoteRC = &X86::GR8RegClass; |
| |
| if (MF.begin() == MF.end()) |
| // Nothing to do for a degenerate empty function... |
| return false; |
| |
| // Collect the copies in RPO so that when there are chains where a copy is in |
| // turn copied again we visit the first one first. This ensures we can find |
| // viable locations for testing the original EFLAGS that dominate all the |
| // uses across complex CFGs. |
| SmallVector<MachineInstr *, 4> Copies; |
| ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); |
| for (MachineBasicBlock *MBB : RPOT) |
| for (MachineInstr &MI : *MBB) |
| if (MI.getOpcode() == TargetOpcode::COPY && |
| MI.getOperand(0).getReg() == X86::EFLAGS) |
| Copies.push_back(&MI); |
| |
| for (MachineInstr *CopyI : Copies) { |
| MachineBasicBlock &MBB = *CopyI->getParent(); |
| |
| MachineOperand &VOp = CopyI->getOperand(1); |
| assert(VOp.isReg() && |
| "The input to the copy for EFLAGS should always be a register!"); |
| MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg()); |
| if (CopyDefI.getOpcode() != TargetOpcode::COPY) { |
| // FIXME: The big likely candidate here are PHI nodes. We could in theory |
| // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard |
| // enough that it is probably better to change every other part of LLVM |
| // to avoid creating them. The issue is that once we have PHIs we won't |
| // know which original EFLAGS value we need to capture with our setCCs |
| // below. The end result will be computing a complete set of setCCs that |
| // we *might* want, computing them in every place where we copy *out* of |
| // EFLAGS and then doing SSA formation on all of them to insert necessary |
| // PHI nodes and consume those here. Then hoping that somehow we DCE the |
| // unnecessary ones. This DCE seems very unlikely to be successful and so |
| // we will almost certainly end up with a glut of dead setCC |
| // instructions. Until we have a motivating test case and fail to avoid |
| // it by changing other parts of LLVM's lowering, we refuse to handle |
| // this complex case here. |
| LLVM_DEBUG( |
| dbgs() << "ERROR: Encountered unexpected def of an eflags copy: "; |
| CopyDefI.dump()); |
| report_fatal_error( |
| "Cannot lower EFLAGS copy unless it is defined in turn by a copy!"); |
| } |
| |
| auto Cleanup = make_scope_exit([&] { |
| // All uses of the EFLAGS copy are now rewritten, kill the copy into |
| // eflags and if dead the copy from. |
| CopyI->eraseFromParent(); |
| if (MRI->use_empty(CopyDefI.getOperand(0).getReg())) |
| CopyDefI.eraseFromParent(); |
| ++NumCopiesEliminated; |
| }); |
| |
| MachineOperand &DOp = CopyI->getOperand(0); |
| assert(DOp.isDef() && "Expected register def!"); |
| assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!"); |
| if (DOp.isDead()) |
| continue; |
| |
| MachineBasicBlock *TestMBB = CopyDefI.getParent(); |
| auto TestPos = CopyDefI.getIterator(); |
| DebugLoc TestLoc = CopyDefI.getDebugLoc(); |
| |
| LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump()); |
| |
| // Walk up across live-in EFLAGS to find where they were actually def'ed. |
| // |
| // This copy's def may just be part of a region of blocks covered by |
| // a single def of EFLAGS and we want to find the top of that region where |
| // possible. |
| // |
| // This is essentially a search for a *candidate* reaching definition |
| // location. We don't need to ever find the actual reaching definition here, |
| // but we want to walk up the dominator tree to find the highest point which |
| // would be viable for such a definition. |
| auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin, |
| MachineBasicBlock::iterator End) { |
| // Scan backwards as we expect these to be relatively short and often find |
| // a clobber near the end. |
| return llvm::any_of( |
| llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) { |
| // Flag any instruction (other than the copy we are |
| // currently rewriting) that defs EFLAGS. |
| return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS); |
| }); |
| }; |
| auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB, |
| MachineBasicBlock *EndMBB) { |
| assert(MDT->dominates(BeginMBB, EndMBB) && |
| "Only support paths down the dominator tree!"); |
| SmallPtrSet<MachineBasicBlock *, 4> Visited; |
| SmallVector<MachineBasicBlock *, 4> Worklist; |
| // We terminate at the beginning. No need to scan it. |
| Visited.insert(BeginMBB); |
| Worklist.push_back(EndMBB); |
| do { |
| auto *MBB = Worklist.pop_back_val(); |
| for (auto *PredMBB : MBB->predecessors()) { |
| if (!Visited.insert(PredMBB).second) |
| continue; |
| if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end())) |
| return true; |
| // Enqueue this block to walk its predecessors. |
| Worklist.push_back(PredMBB); |
| } |
| } while (!Worklist.empty()); |
| // No clobber found along a path from the begin to end. |
| return false; |
| }; |
| while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() && |
| !HasEFLAGSClobber(TestMBB->begin(), TestPos)) { |
| // Find the nearest common dominator of the predecessors, as |
| // that will be the best candidate to hoist into. |
| MachineBasicBlock *HoistMBB = |
| std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(), |
| *TestMBB->pred_begin(), |
| [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) { |
| return MDT->findNearestCommonDominator(LHS, RHS); |
| }); |
| |
| // Now we need to scan all predecessors that may be reached along paths to |
| // the hoist block. A clobber anywhere in any of these blocks the hoist. |
| // Note that this even handles loops because we require *no* clobbers. |
| if (HasEFLAGSClobberPath(HoistMBB, TestMBB)) |
| break; |
| |
| // We also need the terminators to not sneakily clobber flags. |
| if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(), |
| HoistMBB->instr_end())) |
| break; |
| |
| // We found a viable location, hoist our test position to it. |
| TestMBB = HoistMBB; |
| TestPos = TestMBB->getFirstTerminator()->getIterator(); |
| // Clear the debug location as it would just be confusing after hoisting. |
| TestLoc = DebugLoc(); |
| } |
| LLVM_DEBUG({ |
| auto DefIt = llvm::find_if( |
| llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)), |
| [&](MachineInstr &MI) { |
| return MI.findRegisterDefOperand(X86::EFLAGS); |
| }); |
| if (DefIt.base() != TestMBB->instr_begin()) { |
| dbgs() << " Using EFLAGS defined by: "; |
| DefIt->dump(); |
| } else { |
| dbgs() << " Using live-in flags for BB:\n"; |
| TestMBB->dump(); |
| } |
| }); |
| |
| // While rewriting uses, we buffer jumps and rewrite them in a second pass |
| // because doing so will perturb the CFG that we are walking to find the |
| // uses in the first place. |
| SmallVector<MachineInstr *, 4> JmpIs; |
| |
| // Gather the condition flags that have already been preserved in |
| // registers. We do this from scratch each time as we expect there to be |
| // very few of them and we expect to not revisit the same copy definition |
| // many times. If either of those change sufficiently we could build a map |
| // of these up front instead. |
| CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos); |
| |
| // Collect the basic blocks we need to scan. Typically this will just be |
| // a single basic block but we may have to scan multiple blocks if the |
| // EFLAGS copy lives into successors. |
| SmallVector<MachineBasicBlock *, 2> Blocks; |
| SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks; |
| Blocks.push_back(&MBB); |
| |
| do { |
| MachineBasicBlock &UseMBB = *Blocks.pop_back_val(); |
| |
| // Track when if/when we find a kill of the flags in this block. |
| bool FlagsKilled = false; |
| |
| // In most cases, we walk from the beginning to the end of the block. But |
| // when the block is the same block as the copy is from, we will visit it |
| // twice. The first time we start from the copy and go to the end. The |
| // second time we start from the beginning and go to the copy. This lets |
| // us handle copies inside of cycles. |
| // FIXME: This loop is *super* confusing. This is at least in part |
| // a symptom of all of this routine needing to be refactored into |
| // documentable components. Once done, there may be a better way to write |
| // this loop. |
| for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB)) |
| ? std::next(CopyI->getIterator()) |
| : UseMBB.instr_begin(), |
| MIE = UseMBB.instr_end(); |
| MII != MIE;) { |
| MachineInstr &MI = *MII++; |
| // If we are in the original copy block and encounter either the copy |
| // def or the copy itself, break so that we don't re-process any part of |
| // the block or process the instructions in the range that was copied |
| // over. |
| if (&MI == CopyI || &MI == &CopyDefI) { |
| assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) && |
| "Should only encounter these on the second pass over the " |
| "original block."); |
| break; |
| } |
| |
| MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS); |
| if (!FlagUse) { |
| if (MI.findRegisterDefOperand(X86::EFLAGS)) { |
| // If EFLAGS are defined, it's as-if they were killed. We can stop |
| // scanning here. |
| // |
| // NB!!! Many instructions only modify some flags. LLVM currently |
| // models this as clobbering all flags, but if that ever changes |
| // this will need to be carefully updated to handle that more |
| // complex logic. |
| FlagsKilled = true; |
| break; |
| } |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << " Rewriting use: "; MI.dump()); |
| |
| // Check the kill flag before we rewrite as that may change it. |
| if (FlagUse->isKill()) |
| FlagsKilled = true; |
| |
| // Once we encounter a branch, the rest of the instructions must also be |
| // branches. We can't rewrite in place here, so we handle them below. |
| // |
| // Note that we don't have to handle tail calls here, even conditional |
| // tail calls, as those are not introduced into the X86 MI until post-RA |
| // branch folding or black placement. As a consequence, we get to deal |
| // with the simpler formulation of conditional branches followed by tail |
| // calls. |
| if (X86::getCondFromBranch(MI) != X86::COND_INVALID) { |
| auto JmpIt = MI.getIterator(); |
| do { |
| JmpIs.push_back(&*JmpIt); |
| ++JmpIt; |
| } while (JmpIt != UseMBB.instr_end() && |
| X86::getCondFromBranch(*JmpIt) != |
| X86::COND_INVALID); |
| break; |
| } |
| |
| // Otherwise we can just rewrite in-place. |
| if (X86::getCondFromCMov(MI) != X86::COND_INVALID) { |
| rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs); |
| } else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) { |
| rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs); |
| } else if (MI.getOpcode() == TargetOpcode::COPY) { |
| rewriteCopy(MI, *FlagUse, CopyDefI); |
| } else { |
| // We assume all other instructions that use flags also def them. |
| assert(MI.findRegisterDefOperand(X86::EFLAGS) && |
| "Expected a def of EFLAGS for this instruction!"); |
| |
| // NB!!! Several arithmetic instructions only *partially* update |
| // flags. Theoretically, we could generate MI code sequences that |
| // would rely on this fact and observe different flags independently. |
| // But currently LLVM models all of these instructions as clobbering |
| // all the flags in an undef way. We rely on that to simplify the |
| // logic. |
| FlagsKilled = true; |
| |
| switch (MI.getOpcode()) { |
| case X86::SETB_C8r: |
| case X86::SETB_C16r: |
| case X86::SETB_C32r: |
| case X86::SETB_C64r: |
| // Use custom lowering for arithmetic that is merely extending the |
| // carry flag. We model this as the SETB_C* pseudo instructions. |
| rewriteSetCarryExtended(*TestMBB, TestPos, TestLoc, MI, *FlagUse, |
| CondRegs); |
| break; |
| |
| default: |
| // Generically handle remaining uses as arithmetic instructions. |
| rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse, |
| CondRegs); |
| break; |
| } |
| break; |
| } |
| |
| // If this was the last use of the flags, we're done. |
| if (FlagsKilled) |
| break; |
| } |
| |
| // If the flags were killed, we're done with this block. |
| if (FlagsKilled) |
| continue; |
| |
| // Otherwise we need to scan successors for ones where the flags live-in |
| // and queue those up for processing. |
| for (MachineBasicBlock *SuccMBB : UseMBB.successors()) |
| if (SuccMBB->isLiveIn(X86::EFLAGS) && |
| VisitedBlocks.insert(SuccMBB).second) { |
| // We currently don't do any PHI insertion and so we require that the |
| // test basic block dominates all of the use basic blocks. Further, we |
| // can't have a cycle from the test block back to itself as that would |
| // create a cycle requiring a PHI to break it. |
| // |
| // We could in theory do PHI insertion here if it becomes useful by |
| // just taking undef values in along every edge that we don't trace |
| // this EFLAGS copy along. This isn't as bad as fully general PHI |
| // insertion, but still seems like a great deal of complexity. |
| // |
| // Because it is theoretically possible that some earlier MI pass or |
| // other lowering transformation could induce this to happen, we do |
| // a hard check even in non-debug builds here. |
| if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) { |
| LLVM_DEBUG({ |
| dbgs() |
| << "ERROR: Encountered use that is not dominated by our test " |
| "basic block! Rewriting this would require inserting PHI " |
| "nodes to track the flag state across the CFG.\n\nTest " |
| "block:\n"; |
| TestMBB->dump(); |
| dbgs() << "Use block:\n"; |
| SuccMBB->dump(); |
| }); |
| report_fatal_error( |
| "Cannot lower EFLAGS copy when original copy def " |
| "does not dominate all uses."); |
| } |
| |
| Blocks.push_back(SuccMBB); |
| } |
| } while (!Blocks.empty()); |
| |
| // Now rewrite the jumps that use the flags. These we handle specially |
| // because if there are multiple jumps in a single basic block we'll have |
| // to do surgery on the CFG. |
| MachineBasicBlock *LastJmpMBB = nullptr; |
| for (MachineInstr *JmpI : JmpIs) { |
| // Past the first jump within a basic block we need to split the blocks |
| // apart. |
| if (JmpI->getParent() == LastJmpMBB) |
| splitBlock(*JmpI->getParent(), *JmpI, *TII); |
| else |
| LastJmpMBB = JmpI->getParent(); |
| |
| rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs); |
| } |
| |
| // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if |
| // the copy's def operand is itself a kill. |
| } |
| |
| #ifndef NDEBUG |
| for (MachineBasicBlock &MBB : MF) |
| for (MachineInstr &MI : MBB) |
| if (MI.getOpcode() == TargetOpcode::COPY && |
| (MI.getOperand(0).getReg() == X86::EFLAGS || |
| MI.getOperand(1).getReg() == X86::EFLAGS)) { |
| LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: "; |
| MI.dump()); |
| llvm_unreachable("Unlowered EFLAGS copy!"); |
| } |
| #endif |
| |
| return true; |
| } |
| |
| /// Collect any conditions that have already been set in registers so that we |
| /// can re-use them rather than adding duplicates. |
| CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) { |
| CondRegArray CondRegs = {}; |
| |
| // Scan backwards across the range of instructions with live EFLAGS. |
| for (MachineInstr &MI : |
| llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) { |
| X86::CondCode Cond = X86::getCondFromSETCC(MI); |
| if (Cond != X86::COND_INVALID && !MI.mayStore() && |
| MI.getOperand(0).isReg() && |
| Register::isVirtualRegister(MI.getOperand(0).getReg())) { |
| assert(MI.getOperand(0).isDef() && |
| "A non-storing SETcc should always define a register!"); |
| CondRegs[Cond] = MI.getOperand(0).getReg(); |
| } |
| |
| // Stop scanning when we see the first definition of the EFLAGS as prior to |
| // this we would potentially capture the wrong flag state. |
| if (MI.findRegisterDefOperand(X86::EFLAGS)) |
| break; |
| } |
| return CondRegs; |
| } |
| |
| unsigned X86FlagsCopyLoweringPass::promoteCondToReg( |
| MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
| DebugLoc TestLoc, X86::CondCode Cond) { |
| Register Reg = MRI->createVirtualRegister(PromoteRC); |
| auto SetI = BuildMI(TestMBB, TestPos, TestLoc, |
| TII->get(X86::SETCCr), Reg).addImm(Cond); |
| (void)SetI; |
| LLVM_DEBUG(dbgs() << " save cond: "; SetI->dump()); |
| ++NumSetCCsInserted; |
| return Reg; |
| } |
| |
| std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg( |
| MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
| DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) { |
| unsigned &CondReg = CondRegs[Cond]; |
| unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)]; |
| if (!CondReg && !InvCondReg) |
| CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond); |
| |
| if (CondReg) |
| return {CondReg, false}; |
| else |
| return {InvCondReg, true}; |
| } |
| |
| void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator Pos, |
| DebugLoc Loc, unsigned Reg) { |
| auto TestI = |
| BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg); |
| (void)TestI; |
| LLVM_DEBUG(dbgs() << " test cond: "; TestI->dump()); |
| ++NumTestsInserted; |
| } |
| |
| void X86FlagsCopyLoweringPass::rewriteArithmetic( |
| MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
| DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse, |
| CondRegArray &CondRegs) { |
| // Arithmetic is either reading CF or OF. Figure out which condition we need |
| // to preserve in a register. |
| X86::CondCode Cond; |
| |
| // The addend to use to reset CF or OF when added to the flag value. |
| int Addend; |
| |
| switch (getMnemonicFromOpcode(MI.getOpcode())) { |
| case FlagArithMnemonic::ADC: |
| case FlagArithMnemonic::ADCX: |
| case FlagArithMnemonic::RCL: |
| case FlagArithMnemonic::RCR: |
| case FlagArithMnemonic::SBB: |
| Cond = X86::COND_B; // CF == 1 |
| // Set up an addend that when one is added will need a carry due to not |
| // having a higher bit available. |
| Addend = 255; |
| break; |
| |
| case FlagArithMnemonic::ADOX: |
| Cond = X86::COND_O; // OF == 1 |
| // Set up an addend that when one is added will turn from positive to |
| // negative and thus overflow in the signed domain. |
| Addend = 127; |
| break; |
| } |
| |
| // Now get a register that contains the value of the flag input to the |
| // arithmetic. We require exactly this flag to simplify the arithmetic |
| // required to materialize it back into the flag. |
| unsigned &CondReg = CondRegs[Cond]; |
| if (!CondReg) |
| CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond); |
| |
| MachineBasicBlock &MBB = *MI.getParent(); |
| |
| // Insert an instruction that will set the flag back to the desired value. |
| Register TmpReg = MRI->createVirtualRegister(PromoteRC); |
| auto AddI = |
| BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri)) |
| .addDef(TmpReg, RegState::Dead) |
| .addReg(CondReg) |
| .addImm(Addend); |
| (void)AddI; |
| LLVM_DEBUG(dbgs() << " add cond: "; AddI->dump()); |
| ++NumAddsInserted; |
| FlagUse.setIsKill(true); |
| } |
| |
| void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB, |
| MachineBasicBlock::iterator TestPos, |
| DebugLoc TestLoc, |
| MachineInstr &CMovI, |
| MachineOperand &FlagUse, |
| CondRegArray &CondRegs) { |
| // First get the register containing this specific condition. |
| X86::CondCode Cond = X86::getCondFromCMov(CMovI); |
| unsigned CondReg; |
| bool Inverted; |
| std::tie(CondReg, Inverted) = |
| getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs); |
| |
| MachineBasicBlock &MBB = *CMovI.getParent(); |
| |
| // Insert a direct test of the saved register. |
| insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg); |
| |
| // Rewrite the CMov to use the !ZF flag from the test, and then kill its use |
| // of the flags afterward. |
| CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1) |
| .setImm(Inverted ? X86::COND_E : X86::COND_NE); |
| FlagUse.setIsKill(true); |
| LLVM_DEBUG(dbgs() << " fixed cmov: "; CMovI.dump()); |
| } |
| |
| void X86FlagsCopyLoweringPass::rewriteCondJmp( |
| MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
| DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) { |
| // First get the register containing this specific condition. |
| X86::CondCode Cond = X86::getCondFromBranch(JmpI); |
| unsigned CondReg; |
| bool Inverted; |
| std::tie(CondReg, Inverted) = |
| getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs); |
| |
| MachineBasicBlock &JmpMBB = *JmpI.getParent(); |
| |
| // Insert a direct test of the saved register. |
| insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg); |
| |
| // Rewrite the jump to use the !ZF flag from the test, and kill its use of |
| // flags afterward. |
| JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE); |
| JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); |
| LLVM_DEBUG(dbgs() << " fixed jCC: "; JmpI.dump()); |
| } |
| |
| void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI, |
| MachineOperand &FlagUse, |
| MachineInstr &CopyDefI) { |
| // Just replace this copy with the original copy def. |
| MRI->replaceRegWith(MI.getOperand(0).getReg(), |
| CopyDefI.getOperand(0).getReg()); |
| MI.eraseFromParent(); |
| } |
| |
| void X86FlagsCopyLoweringPass::rewriteSetCarryExtended( |
| MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
| DebugLoc TestLoc, MachineInstr &SetBI, MachineOperand &FlagUse, |
| CondRegArray &CondRegs) { |
| // This routine is only used to handle pseudos for setting a register to zero |
| // or all ones based on CF. This is essentially the sign extended from 1-bit |
| // form of SETB and modeled with the SETB_C* pseudos. They require special |
| // handling as they aren't normal SETcc instructions and are lowered to an |
| // EFLAGS clobbering operation (SBB typically). One simplifying aspect is that |
| // they are only provided in reg-defining forms. A complicating factor is that |
| // they can define many different register widths. |
| assert(SetBI.getOperand(0).isReg() && |
| "Cannot have a non-register defined operand to this variant of SETB!"); |
| |
| // Little helper to do the common final step of replacing the register def'ed |
| // by this SETB instruction with a new register and removing the SETB |
| // instruction. |
| auto RewriteToReg = [&](unsigned Reg) { |
| MRI->replaceRegWith(SetBI.getOperand(0).getReg(), Reg); |
| SetBI.eraseFromParent(); |
| }; |
| |
| // Grab the register class used for this particular instruction. |
| auto &SetBRC = *MRI->getRegClass(SetBI.getOperand(0).getReg()); |
| |
| MachineBasicBlock &MBB = *SetBI.getParent(); |
| auto SetPos = SetBI.getIterator(); |
| auto SetLoc = SetBI.getDebugLoc(); |
| |
| auto AdjustReg = [&](unsigned Reg) { |
| auto &OrigRC = *MRI->getRegClass(Reg); |
| if (&OrigRC == &SetBRC) |
| return Reg; |
| |
| unsigned NewReg; |
| |
| int OrigRegSize = TRI->getRegSizeInBits(OrigRC) / 8; |
| int TargetRegSize = TRI->getRegSizeInBits(SetBRC) / 8; |
| assert(OrigRegSize <= 8 && "No GPRs larger than 64-bits!"); |
| assert(TargetRegSize <= 8 && "No GPRs larger than 64-bits!"); |
| int SubRegIdx[] = {X86::NoSubRegister, X86::sub_8bit, X86::sub_16bit, |
| X86::NoSubRegister, X86::sub_32bit}; |
| |
| // If the original size is smaller than the target *and* is smaller than 4 |
| // bytes, we need to explicitly zero extend it. We always extend to 4-bytes |
| // to maximize the chance of being able to CSE that operation and to avoid |
| // partial dependency stalls extending to 2-bytes. |
| if (OrigRegSize < TargetRegSize && OrigRegSize < 4) { |
| NewReg = MRI->createVirtualRegister(&X86::GR32RegClass); |
| BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOVZX32rr8), NewReg) |
| .addReg(Reg); |
| if (&SetBRC == &X86::GR32RegClass) |
| return NewReg; |
| Reg = NewReg; |
| OrigRegSize = 4; |
| } |
| |
| NewReg = MRI->createVirtualRegister(&SetBRC); |
| if (OrigRegSize < TargetRegSize) { |
| BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::SUBREG_TO_REG), |
| NewReg) |
| .addImm(0) |
| .addReg(Reg) |
| .addImm(SubRegIdx[OrigRegSize]); |
| } else if (OrigRegSize > TargetRegSize) { |
| if (TargetRegSize == 1 && !Subtarget->is64Bit()) { |
| // Need to constrain the register class. |
| MRI->constrainRegClass(Reg, &X86::GR32_ABCDRegClass); |
| } |
| |
| BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY), |
| NewReg) |
| .addReg(Reg, 0, SubRegIdx[TargetRegSize]); |
| } else { |
| BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY), NewReg) |
| .addReg(Reg); |
| } |
| return NewReg; |
| }; |
| |
| unsigned &CondReg = CondRegs[X86::COND_B]; |
| if (!CondReg) |
| CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, X86::COND_B); |
| |
| // Adjust the condition to have the desired register width by zero-extending |
| // as needed. |
| // FIXME: We should use a better API to avoid the local reference and using a |
| // different variable here. |
| unsigned ExtCondReg = AdjustReg(CondReg); |
| |
| // Now we need to turn this into a bitmask. We do this by subtracting it from |
| // zero. |
| Register ZeroReg = MRI->createVirtualRegister(&X86::GR32RegClass); |
| BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOV32r0), ZeroReg); |
| ZeroReg = AdjustReg(ZeroReg); |
| |
| unsigned Sub; |
| switch (SetBI.getOpcode()) { |
| case X86::SETB_C8r: |
| Sub = X86::SUB8rr; |
| break; |
| |
| case X86::SETB_C16r: |
| Sub = X86::SUB16rr; |
| break; |
| |
| case X86::SETB_C32r: |
| Sub = X86::SUB32rr; |
| break; |
| |
| case X86::SETB_C64r: |
| Sub = X86::SUB64rr; |
| break; |
| |
| default: |
| llvm_unreachable("Invalid SETB_C* opcode!"); |
| } |
| Register ResultReg = MRI->createVirtualRegister(&SetBRC); |
| BuildMI(MBB, SetPos, SetLoc, TII->get(Sub), ResultReg) |
| .addReg(ZeroReg) |
| .addReg(ExtCondReg); |
| return RewriteToReg(ResultReg); |
| } |
| |
| void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB, |
| MachineBasicBlock::iterator TestPos, |
| DebugLoc TestLoc, |
| MachineInstr &SetCCI, |
| MachineOperand &FlagUse, |
| CondRegArray &CondRegs) { |
| X86::CondCode Cond = X86::getCondFromSETCC(SetCCI); |
| // Note that we can't usefully rewrite this to the inverse without complex |
| // analysis of the users of the setCC. Largely we rely on duplicates which |
| // could have been avoided already being avoided here. |
| unsigned &CondReg = CondRegs[Cond]; |
| if (!CondReg) |
| CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond); |
| |
| // Rewriting a register def is trivial: we just replace the register and |
| // remove the setcc. |
| if (!SetCCI.mayStore()) { |
| assert(SetCCI.getOperand(0).isReg() && |
| "Cannot have a non-register defined operand to SETcc!"); |
| MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg); |
| SetCCI.eraseFromParent(); |
| return; |
| } |
| |
| // Otherwise, we need to emit a store. |
| auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(), |
| SetCCI.getDebugLoc(), TII->get(X86::MOV8mr)); |
| // Copy the address operands. |
| for (int i = 0; i < X86::AddrNumOperands; ++i) |
| MIB.add(SetCCI.getOperand(i)); |
| |
| MIB.addReg(CondReg); |
| |
| MIB.setMemRefs(SetCCI.memoperands()); |
| |
| SetCCI.eraseFromParent(); |
| return; |
| } |