blob: aedf5b713c3f94e983a9a0647dafdcd21f059809 [file] [log] [blame]
//===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/PPCMCExpr.h"
#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "PPCTargetStreamer.h"
#include "TargetInfo/PowerPCTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
DEFINE_PPC_REGCLASSES;
// Evaluate an expression containing condition register
// or condition register field symbols. Returns positive
// value on success, or -1 on error.
static int64_t
EvaluateCRExpr(const MCExpr *E) {
switch (E->getKind()) {
case MCExpr::Target:
return -1;
case MCExpr::Constant: {
int64_t Res = cast<MCConstantExpr>(E)->getValue();
return Res < 0 ? -1 : Res;
}
case MCExpr::SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
StringRef Name = SRE->getSymbol().getName();
if (Name == "lt") return 0;
if (Name == "gt") return 1;
if (Name == "eq") return 2;
if (Name == "so") return 3;
if (Name == "un") return 3;
if (Name == "cr0") return 0;
if (Name == "cr1") return 1;
if (Name == "cr2") return 2;
if (Name == "cr3") return 3;
if (Name == "cr4") return 4;
if (Name == "cr5") return 5;
if (Name == "cr6") return 6;
if (Name == "cr7") return 7;
return -1;
}
case MCExpr::Unary:
return -1;
case MCExpr::Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
int64_t LHSVal = EvaluateCRExpr(BE->getLHS());
int64_t RHSVal = EvaluateCRExpr(BE->getRHS());
int64_t Res;
if (LHSVal < 0 || RHSVal < 0)
return -1;
switch (BE->getOpcode()) {
default: return -1;
case MCBinaryExpr::Add: Res = LHSVal + RHSVal; break;
case MCBinaryExpr::Mul: Res = LHSVal * RHSVal; break;
}
return Res < 0 ? -1 : Res;
}
}
llvm_unreachable("Invalid expression kind!");
}
namespace {
struct PPCOperand;
class PPCAsmParser : public MCTargetAsmParser {
bool IsPPC64;
bool IsDarwin;
void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); }
bool isPPC64() const { return IsPPC64; }
bool isDarwin() const { return IsDarwin; }
bool MatchRegisterName(unsigned &RegNo, int64_t &IntVal);
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
const MCExpr *ExtractModifierFromExpr(const MCExpr *E,
PPCMCExpr::VariantKind &Variant);
const MCExpr *FixupVariantKind(const MCExpr *E);
bool ParseExpression(const MCExpr *&EVal);
bool ParseDarwinExpression(const MCExpr *&EVal);
bool ParseOperand(OperandVector &Operands);
bool ParseDirectiveWord(unsigned Size, AsmToken ID);
bool ParseDirectiveTC(unsigned Size, AsmToken ID);
bool ParseDirectiveMachine(SMLoc L);
bool ParseDarwinDirectiveMachine(SMLoc L);
bool ParseDirectiveAbiVersion(SMLoc L);
bool ParseDirectiveLocalEntry(SMLoc L);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
void ProcessInstruction(MCInst &Inst, const OperandVector &Ops);
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "PPCGenAsmMatcher.inc"
/// }
public:
PPCAsmParser(const MCSubtargetInfo &STI, MCAsmParser &,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII) {
// Check for 64-bit vs. 32-bit pointer mode.
const Triple &TheTriple = STI.getTargetTriple();
IsPPC64 = TheTriple.isPPC64();
IsDarwin = TheTriple.isMacOSX();
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
const MCExpr *applyModifierToExpr(const MCExpr *E,
MCSymbolRefExpr::VariantKind,
MCContext &Ctx) override;
};
/// PPCOperand - Instances of this class represent a parsed PowerPC machine
/// instruction.
struct PPCOperand : public MCParsedAsmOperand {
enum KindTy {
Token,
Immediate,
ContextImmediate,
Expression,
TLSRegister
} Kind;
SMLoc StartLoc, EndLoc;
bool IsPPC64;
struct TokOp {
const char *Data;
unsigned Length;
};
struct ImmOp {
int64_t Val;
};
struct ExprOp {
const MCExpr *Val;
int64_t CRVal; // Cached result of EvaluateCRExpr(Val)
};
struct TLSRegOp {
const MCSymbolRefExpr *Sym;
};
union {
struct TokOp Tok;
struct ImmOp Imm;
struct ExprOp Expr;
struct TLSRegOp TLSReg;
};
PPCOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
IsPPC64 = o.IsPPC64;
switch (Kind) {
case Token:
Tok = o.Tok;
break;
case Immediate:
case ContextImmediate:
Imm = o.Imm;
break;
case Expression:
Expr = o.Expr;
break;
case TLSRegister:
TLSReg = o.TLSReg;
break;
}
}
// Disable use of sized deallocation due to overallocation of PPCOperand
// objects in CreateTokenWithStringCopy.
void operator delete(void *p) { ::operator delete(p); }
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const override { return EndLoc; }
/// getLocRange - Get the range between the first and last token of this
/// operand.
SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
/// isPPC64 - True if this operand is for an instruction in 64-bit mode.
bool isPPC64() const { return IsPPC64; }
int64_t getImm() const {
assert(Kind == Immediate && "Invalid access!");
return Imm.Val;
}
int64_t getImmS16Context() const {
assert((Kind == Immediate || Kind == ContextImmediate) &&
"Invalid access!");
if (Kind == Immediate)
return Imm.Val;
return static_cast<int16_t>(Imm.Val);
}
int64_t getImmU16Context() const {
assert((Kind == Immediate || Kind == ContextImmediate) &&
"Invalid access!");
return Imm.Val;
}
const MCExpr *getExpr() const {
assert(Kind == Expression && "Invalid access!");
return Expr.Val;
}
int64_t getExprCRVal() const {
assert(Kind == Expression && "Invalid access!");
return Expr.CRVal;
}
const MCExpr *getTLSReg() const {
assert(Kind == TLSRegister && "Invalid access!");
return TLSReg.Sym;
}
unsigned getReg() const override {
assert(isRegNumber() && "Invalid access!");
return (unsigned) Imm.Val;
}
unsigned getVSReg() const {
assert(isVSRegNumber() && "Invalid access!");
return (unsigned) Imm.Val;
}
unsigned getCCReg() const {
assert(isCCRegNumber() && "Invalid access!");
return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal);
}
unsigned getCRBit() const {
assert(isCRBitNumber() && "Invalid access!");
return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal);
}
unsigned getCRBitMask() const {
assert(isCRBitMask() && "Invalid access!");
return 7 - countTrailingZeros<uint64_t>(Imm.Val);
}
bool isToken() const override { return Kind == Token; }
bool isImm() const override {
return Kind == Immediate || Kind == Expression;
}
bool isU1Imm() const { return Kind == Immediate && isUInt<1>(getImm()); }
bool isU2Imm() const { return Kind == Immediate && isUInt<2>(getImm()); }
bool isU3Imm() const { return Kind == Immediate && isUInt<3>(getImm()); }
bool isU4Imm() const { return Kind == Immediate && isUInt<4>(getImm()); }
bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); }
bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); }
bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); }
bool isU6ImmX2() const { return Kind == Immediate &&
isUInt<6>(getImm()) &&
(getImm() & 1) == 0; }
bool isU7Imm() const { return Kind == Immediate && isUInt<7>(getImm()); }
bool isU7ImmX4() const { return Kind == Immediate &&
isUInt<7>(getImm()) &&
(getImm() & 3) == 0; }
bool isU8Imm() const { return Kind == Immediate && isUInt<8>(getImm()); }
bool isU8ImmX8() const { return Kind == Immediate &&
isUInt<8>(getImm()) &&
(getImm() & 7) == 0; }
bool isU10Imm() const { return Kind == Immediate && isUInt<10>(getImm()); }
bool isU12Imm() const { return Kind == Immediate && isUInt<12>(getImm()); }
bool isU16Imm() const {
switch (Kind) {
case Expression:
return true;
case Immediate:
case ContextImmediate:
return isUInt<16>(getImmU16Context());
default:
return false;
}
}
bool isS16Imm() const {
switch (Kind) {
case Expression:
return true;
case Immediate:
case ContextImmediate:
return isInt<16>(getImmS16Context());
default:
return false;
}
}
bool isS16ImmX4() const { return Kind == Expression ||
(Kind == Immediate && isInt<16>(getImm()) &&
(getImm() & 3) == 0); }
bool isS16ImmX16() const { return Kind == Expression ||
(Kind == Immediate && isInt<16>(getImm()) &&
(getImm() & 15) == 0); }
bool isS17Imm() const {
switch (Kind) {
case Expression:
return true;
case Immediate:
case ContextImmediate:
return isInt<17>(getImmS16Context());
default:
return false;
}
}
bool isTLSReg() const { return Kind == TLSRegister; }
bool isDirectBr() const {
if (Kind == Expression)
return true;
if (Kind != Immediate)
return false;
// Operand must be 64-bit aligned, signed 27-bit immediate.
if ((getImm() & 3) != 0)
return false;
if (isInt<26>(getImm()))
return true;
if (!IsPPC64) {
// In 32-bit mode, large 32-bit quantities wrap around.
if (isUInt<32>(getImm()) && isInt<26>(static_cast<int32_t>(getImm())))
return true;
}
return false;
}
bool isCondBr() const { return Kind == Expression ||
(Kind == Immediate && isInt<16>(getImm()) &&
(getImm() & 3) == 0); }
bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); }
bool isVSRegNumber() const {
return Kind == Immediate && isUInt<6>(getImm());
}
bool isCCRegNumber() const { return (Kind == Expression
&& isUInt<3>(getExprCRVal())) ||
(Kind == Immediate
&& isUInt<3>(getImm())); }
bool isCRBitNumber() const { return (Kind == Expression
&& isUInt<5>(getExprCRVal())) ||
(Kind == Immediate
&& isUInt<5>(getImm())); }
bool isCRBitMask() const { return Kind == Immediate && isUInt<8>(getImm()) &&
isPowerOf2_32(getImm()); }
bool isATBitsAsHint() const { return false; }
bool isMem() const override { return false; }
bool isReg() const override { return false; }
void addRegOperands(MCInst &Inst, unsigned N) const {
llvm_unreachable("addRegOperands");
}
void addRegGPRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(RRegs[getReg()]));
}
void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(RRegsNoR0[getReg()]));
}
void addRegG8RCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(XRegs[getReg()]));
}
void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(XRegsNoX0[getReg()]));
}
void addRegGxRCOperands(MCInst &Inst, unsigned N) const {
if (isPPC64())
addRegG8RCOperands(Inst, N);
else
addRegGPRCOperands(Inst, N);
}
void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const {
if (isPPC64())
addRegG8RCNoX0Operands(Inst, N);
else
addRegGPRCNoR0Operands(Inst, N);
}
void addRegF4RCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(FRegs[getReg()]));
}
void addRegF8RCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(FRegs[getReg()]));
}
void addRegVFRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(VFRegs[getReg()]));
}
void addRegVRRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(VRegs[getReg()]));
}
void addRegVSRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(VSRegs[getVSReg()]));
}
void addRegVSFRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(VSFRegs[getVSReg()]));
}
void addRegVSSRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(VSSRegs[getVSReg()]));
}
void addRegQFRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(QFRegs[getReg()]));
}
void addRegQSRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(QFRegs[getReg()]));
}
void addRegQBRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(QFRegs[getReg()]));
}
void addRegSPE4RCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(RRegs[getReg()]));
}
void addRegSPERCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(SPERegs[getReg()]));
}
void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(CRBITRegs[getCRBit()]));
}
void addRegCRRCOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(CRRegs[getCCReg()]));
}
void addCRBitMaskOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(CRRegs[getCRBitMask()]));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (Kind == Immediate)
Inst.addOperand(MCOperand::createImm(getImm()));
else
Inst.addOperand(MCOperand::createExpr(getExpr()));
}
void addS16ImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
switch (Kind) {
case Immediate:
Inst.addOperand(MCOperand::createImm(getImm()));
break;
case ContextImmediate:
Inst.addOperand(MCOperand::createImm(getImmS16Context()));
break;
default:
Inst.addOperand(MCOperand::createExpr(getExpr()));
break;
}
}
void addU16ImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
switch (Kind) {
case Immediate:
Inst.addOperand(MCOperand::createImm(getImm()));
break;
case ContextImmediate:
Inst.addOperand(MCOperand::createImm(getImmU16Context()));
break;
default:
Inst.addOperand(MCOperand::createExpr(getExpr()));
break;
}
}
void addBranchTargetOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (Kind == Immediate)
Inst.addOperand(MCOperand::createImm(getImm() / 4));
else
Inst.addOperand(MCOperand::createExpr(getExpr()));
}
void addTLSRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createExpr(getTLSReg()));
}
StringRef getToken() const {
assert(Kind == Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
void print(raw_ostream &OS) const override;
static std::unique_ptr<PPCOperand> CreateToken(StringRef Str, SMLoc S,
bool IsPPC64) {
auto Op = std::make_unique<PPCOperand>(Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
Op->IsPPC64 = IsPPC64;
return Op;
}
static std::unique_ptr<PPCOperand>
CreateTokenWithStringCopy(StringRef Str, SMLoc S, bool IsPPC64) {
// Allocate extra memory for the string and copy it.
// FIXME: This is incorrect, Operands are owned by unique_ptr with a default
// deleter which will destroy them by simply using "delete", not correctly
// calling operator delete on this extra memory after calling the dtor
// explicitly.
void *Mem = ::operator new(sizeof(PPCOperand) + Str.size());
std::unique_ptr<PPCOperand> Op(new (Mem) PPCOperand(Token));
Op->Tok.Data = reinterpret_cast<const char *>(Op.get() + 1);
Op->Tok.Length = Str.size();
std::memcpy(const_cast<char *>(Op->Tok.Data), Str.data(), Str.size());
Op->StartLoc = S;
Op->EndLoc = S;
Op->IsPPC64 = IsPPC64;
return Op;
}
static std::unique_ptr<PPCOperand> CreateImm(int64_t Val, SMLoc S, SMLoc E,
bool IsPPC64) {
auto Op = std::make_unique<PPCOperand>(Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsPPC64 = IsPPC64;
return Op;
}
static std::unique_ptr<PPCOperand> CreateExpr(const MCExpr *Val, SMLoc S,
SMLoc E, bool IsPPC64) {
auto Op = std::make_unique<PPCOperand>(Expression);
Op->Expr.Val = Val;
Op->Expr.CRVal = EvaluateCRExpr(Val);
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsPPC64 = IsPPC64;
return Op;
}
static std::unique_ptr<PPCOperand>
CreateTLSReg(const MCSymbolRefExpr *Sym, SMLoc S, SMLoc E, bool IsPPC64) {
auto Op = std::make_unique<PPCOperand>(TLSRegister);
Op->TLSReg.Sym = Sym;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsPPC64 = IsPPC64;
return Op;
}
static std::unique_ptr<PPCOperand>
CreateContextImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) {
auto Op = std::make_unique<PPCOperand>(ContextImmediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsPPC64 = IsPPC64;
return Op;
}
static std::unique_ptr<PPCOperand>
CreateFromMCExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) {
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val))
return CreateImm(CE->getValue(), S, E, IsPPC64);
if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val))
if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS)
return CreateTLSReg(SRE, S, E, IsPPC64);
if (const PPCMCExpr *TE = dyn_cast<PPCMCExpr>(Val)) {
int64_t Res;
if (TE->evaluateAsConstant(Res))
return CreateContextImm(Res, S, E, IsPPC64);
}
return CreateExpr(Val, S, E, IsPPC64);
}
};
} // end anonymous namespace.
void PPCOperand::print(raw_ostream &OS) const {
switch (Kind) {
case Token:
OS << "'" << getToken() << "'";
break;
case Immediate:
case ContextImmediate:
OS << getImm();
break;
case Expression:
OS << *getExpr();
break;
case TLSRegister:
OS << *getTLSReg();
break;
}
}
static void
addNegOperand(MCInst &Inst, MCOperand &Op, MCContext &Ctx) {
if (Op.isImm()) {
Inst.addOperand(MCOperand::createImm(-Op.getImm()));
return;
}
const MCExpr *Expr = Op.getExpr();
if (const MCUnaryExpr *UnExpr = dyn_cast<MCUnaryExpr>(Expr)) {
if (UnExpr->getOpcode() == MCUnaryExpr::Minus) {
Inst.addOperand(MCOperand::createExpr(UnExpr->getSubExpr()));
return;
}
} else if (const MCBinaryExpr *BinExpr = dyn_cast<MCBinaryExpr>(Expr)) {
if (BinExpr->getOpcode() == MCBinaryExpr::Sub) {
const MCExpr *NE = MCBinaryExpr::createSub(BinExpr->getRHS(),
BinExpr->getLHS(), Ctx);
Inst.addOperand(MCOperand::createExpr(NE));
return;
}
}
Inst.addOperand(MCOperand::createExpr(MCUnaryExpr::createMinus(Expr, Ctx)));
}
void PPCAsmParser::ProcessInstruction(MCInst &Inst,
const OperandVector &Operands) {
int Opcode = Inst.getOpcode();
switch (Opcode) {
case PPC::DCBTx:
case PPC::DCBTT:
case PPC::DCBTSTx:
case PPC::DCBTSTT: {
MCInst TmpInst;
TmpInst.setOpcode((Opcode == PPC::DCBTx || Opcode == PPC::DCBTT) ?
PPC::DCBT : PPC::DCBTST);
TmpInst.addOperand(MCOperand::createImm(
(Opcode == PPC::DCBTx || Opcode == PPC::DCBTSTx) ? 0 : 16));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
Inst = TmpInst;
break;
}
case PPC::DCBTCT:
case PPC::DCBTDS: {
MCInst TmpInst;
TmpInst.setOpcode(PPC::DCBT);
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
Inst = TmpInst;
break;
}
case PPC::DCBTSTCT:
case PPC::DCBTSTDS: {
MCInst TmpInst;
TmpInst.setOpcode(PPC::DCBTST);
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
Inst = TmpInst;
break;
}
case PPC::DCBFx:
case PPC::DCBFL:
case PPC::DCBFLP: {
int L = 0;
if (Opcode == PPC::DCBFL)
L = 1;
else if (Opcode == PPC::DCBFLP)
L = 3;
MCInst TmpInst;
TmpInst.setOpcode(PPC::DCBF);
TmpInst.addOperand(MCOperand::createImm(L));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
Inst = TmpInst;
break;
}
case PPC::LAx: {
MCInst TmpInst;
TmpInst.setOpcode(PPC::LA);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(Inst.getOperand(1));
Inst = TmpInst;
break;
}
case PPC::SUBI: {
MCInst TmpInst;
TmpInst.setOpcode(PPC::ADDI);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
addNegOperand(TmpInst, Inst.getOperand(2), getContext());
Inst = TmpInst;
break;
}
case PPC::SUBIS: {
MCInst TmpInst;
TmpInst.setOpcode(PPC::ADDIS);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
addNegOperand(TmpInst, Inst.getOperand(2), getContext());
Inst = TmpInst;
break;
}
case PPC::SUBIC: {
MCInst TmpInst;
TmpInst.setOpcode(PPC::ADDIC);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
addNegOperand(TmpInst, Inst.getOperand(2), getContext());
Inst = TmpInst;
break;
}
case PPC::SUBICo: {
MCInst TmpInst;
TmpInst.setOpcode(PPC::ADDICo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
addNegOperand(TmpInst, Inst.getOperand(2), getContext());
Inst = TmpInst;
break;
}
case PPC::EXTLWI:
case PPC::EXTLWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::EXTLWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(B));
TmpInst.addOperand(MCOperand::createImm(0));
TmpInst.addOperand(MCOperand::createImm(N - 1));
Inst = TmpInst;
break;
}
case PPC::EXTRWI:
case PPC::EXTRWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::EXTRWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(B + N));
TmpInst.addOperand(MCOperand::createImm(32 - N));
TmpInst.addOperand(MCOperand::createImm(31));
Inst = TmpInst;
break;
}
case PPC::INSLWI:
case PPC::INSLWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::INSLWI? PPC::RLWIMI : PPC::RLWIMIo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(32 - B));
TmpInst.addOperand(MCOperand::createImm(B));
TmpInst.addOperand(MCOperand::createImm((B + N) - 1));
Inst = TmpInst;
break;
}
case PPC::INSRWI:
case PPC::INSRWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::INSRWI? PPC::RLWIMI : PPC::RLWIMIo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(32 - (B + N)));
TmpInst.addOperand(MCOperand::createImm(B));
TmpInst.addOperand(MCOperand::createImm((B + N) - 1));
Inst = TmpInst;
break;
}
case PPC::ROTRWI:
case PPC::ROTRWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::ROTRWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(32 - N));
TmpInst.addOperand(MCOperand::createImm(0));
TmpInst.addOperand(MCOperand::createImm(31));
Inst = TmpInst;
break;
}
case PPC::SLWI:
case PPC::SLWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::SLWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(N));
TmpInst.addOperand(MCOperand::createImm(0));
TmpInst.addOperand(MCOperand::createImm(31 - N));
Inst = TmpInst;
break;
}
case PPC::SRWI:
case PPC::SRWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::SRWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(32 - N));
TmpInst.addOperand(MCOperand::createImm(N));
TmpInst.addOperand(MCOperand::createImm(31));
Inst = TmpInst;
break;
}
case PPC::CLRRWI:
case PPC::CLRRWIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::CLRRWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(0));
TmpInst.addOperand(MCOperand::createImm(0));
TmpInst.addOperand(MCOperand::createImm(31 - N));
Inst = TmpInst;
break;
}
case PPC::CLRLSLWI:
case PPC::CLRLSLWIo: {
MCInst TmpInst;
int64_t B = Inst.getOperand(2).getImm();
int64_t N = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::CLRLSLWI? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(N));
TmpInst.addOperand(MCOperand::createImm(B - N));
TmpInst.addOperand(MCOperand::createImm(31 - N));
Inst = TmpInst;
break;
}
case PPC::EXTLDI:
case PPC::EXTLDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::EXTLDI? PPC::RLDICR : PPC::RLDICRo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(B));
TmpInst.addOperand(MCOperand::createImm(N - 1));
Inst = TmpInst;
break;
}
case PPC::EXTRDI:
case PPC::EXTRDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::EXTRDI? PPC::RLDICL : PPC::RLDICLo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(B + N));
TmpInst.addOperand(MCOperand::createImm(64 - N));
Inst = TmpInst;
break;
}
case PPC::INSRDI:
case PPC::INSRDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
int64_t B = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::INSRDI? PPC::RLDIMI : PPC::RLDIMIo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(64 - (B + N)));
TmpInst.addOperand(MCOperand::createImm(B));
Inst = TmpInst;
break;
}
case PPC::ROTRDI:
case PPC::ROTRDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::ROTRDI? PPC::RLDICL : PPC::RLDICLo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(64 - N));
TmpInst.addOperand(MCOperand::createImm(0));
Inst = TmpInst;
break;
}
case PPC::SLDI:
case PPC::SLDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::SLDI? PPC::RLDICR : PPC::RLDICRo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(N));
TmpInst.addOperand(MCOperand::createImm(63 - N));
Inst = TmpInst;
break;
}
case PPC::SUBPCIS: {
MCInst TmpInst;
int64_t N = Inst.getOperand(1).getImm();
TmpInst.setOpcode(PPC::ADDPCIS);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(MCOperand::createImm(-N));
Inst = TmpInst;
break;
}
case PPC::SRDI:
case PPC::SRDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::SRDI? PPC::RLDICL : PPC::RLDICLo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(64 - N));
TmpInst.addOperand(MCOperand::createImm(N));
Inst = TmpInst;
break;
}
case PPC::CLRRDI:
case PPC::CLRRDIo: {
MCInst TmpInst;
int64_t N = Inst.getOperand(2).getImm();
TmpInst.setOpcode(Opcode == PPC::CLRRDI? PPC::RLDICR : PPC::RLDICRo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(0));
TmpInst.addOperand(MCOperand::createImm(63 - N));
Inst = TmpInst;
break;
}
case PPC::CLRLSLDI:
case PPC::CLRLSLDIo: {
MCInst TmpInst;
int64_t B = Inst.getOperand(2).getImm();
int64_t N = Inst.getOperand(3).getImm();
TmpInst.setOpcode(Opcode == PPC::CLRLSLDI? PPC::RLDIC : PPC::RLDICo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(N));
TmpInst.addOperand(MCOperand::createImm(B - N));
Inst = TmpInst;
break;
}
case PPC::RLWINMbm:
case PPC::RLWINMobm: {
unsigned MB, ME;
int64_t BM = Inst.getOperand(3).getImm();
if (!isRunOfOnes(BM, MB, ME))
break;
MCInst TmpInst;
TmpInst.setOpcode(Opcode == PPC::RLWINMbm ? PPC::RLWINM : PPC::RLWINMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(MCOperand::createImm(MB));
TmpInst.addOperand(MCOperand::createImm(ME));
Inst = TmpInst;
break;
}
case PPC::RLWIMIbm:
case PPC::RLWIMIobm: {
unsigned MB, ME;
int64_t BM = Inst.getOperand(3).getImm();
if (!isRunOfOnes(BM, MB, ME))
break;
MCInst TmpInst;
TmpInst.setOpcode(Opcode == PPC::RLWIMIbm ? PPC::RLWIMI : PPC::RLWIMIo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(0)); // The tied operand.
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(MCOperand::createImm(MB));
TmpInst.addOperand(MCOperand::createImm(ME));
Inst = TmpInst;
break;
}
case PPC::RLWNMbm:
case PPC::RLWNMobm: {
unsigned MB, ME;
int64_t BM = Inst.getOperand(3).getImm();
if (!isRunOfOnes(BM, MB, ME))
break;
MCInst TmpInst;
TmpInst.setOpcode(Opcode == PPC::RLWNMbm ? PPC::RLWNM : PPC::RLWNMo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(Inst.getOperand(2));
TmpInst.addOperand(MCOperand::createImm(MB));
TmpInst.addOperand(MCOperand::createImm(ME));
Inst = TmpInst;
break;
}
case PPC::MFTB: {
if (getSTI().getFeatureBits()[PPC::FeatureMFTB]) {
assert(Inst.getNumOperands() == 2 && "Expecting two operands");
Inst.setOpcode(PPC::MFSPR);
}
break;
}
case PPC::CP_COPYx:
case PPC::CP_COPY_FIRST: {
MCInst TmpInst;
TmpInst.setOpcode(PPC::CP_COPY);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_COPYx ? 0 : 1));
Inst = TmpInst;
break;
}
case PPC::CP_PASTEx :
case PPC::CP_PASTE_LAST: {
MCInst TmpInst;
TmpInst.setOpcode(Opcode == PPC::CP_PASTEx ?
PPC::CP_PASTE : PPC::CP_PASTEo);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(1));
TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_PASTEx ? 0 : 1));
Inst = TmpInst;
break;
}
}
}
static std::string PPCMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
unsigned VariantID = 0);
bool PPCAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) {
case Match_Success:
// Post-process instructions (typically extended mnemonics)
ProcessInstruction(Inst, Operands);
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst, getSTI());
return false;
case Match_MissingFeature:
return Error(IDLoc, "instruction use requires an option to be enabled");
case Match_MnemonicFail: {
FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
std::string Suggestion = PPCMnemonicSpellCheck(
((PPCOperand &)*Operands[0]).getToken(), FBS);
return Error(IDLoc, "invalid instruction" + Suggestion,
((PPCOperand &)*Operands[0]).getLocRange());
}
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((PPCOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
}
llvm_unreachable("Implement any new match types added!");
}
bool PPCAsmParser::MatchRegisterName(unsigned &RegNo, int64_t &IntVal) {
if (getParser().getTok().is(AsmToken::Identifier)) {
StringRef Name = getParser().getTok().getString();
if (Name.equals_lower("lr")) {
RegNo = isPPC64()? PPC::LR8 : PPC::LR;
IntVal = 8;
} else if (Name.equals_lower("ctr")) {
RegNo = isPPC64()? PPC::CTR8 : PPC::CTR;
IntVal = 9;
} else if (Name.equals_lower("vrsave")) {
RegNo = PPC::VRSAVE;
IntVal = 256;
} else if (Name.startswith_lower("r") &&
!Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) {
RegNo = isPPC64()? XRegs[IntVal] : RRegs[IntVal];
} else if (Name.startswith_lower("f") &&
!Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) {
RegNo = FRegs[IntVal];
} else if (Name.startswith_lower("vs") &&
!Name.substr(2).getAsInteger(10, IntVal) && IntVal < 64) {
RegNo = VSRegs[IntVal];
} else if (Name.startswith_lower("v") &&
!Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) {
RegNo = VRegs[IntVal];
} else if (Name.startswith_lower("q") &&
!Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) {
RegNo = QFRegs[IntVal];
} else if (Name.startswith_lower("cr") &&
!Name.substr(2).getAsInteger(10, IntVal) && IntVal < 8) {
RegNo = CRRegs[IntVal];
} else
return true;
getParser().Lex();
return false;
}
return true;
}
bool PPCAsmParser::
ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
RegNo = 0;
int64_t IntVal;
if (MatchRegisterName(RegNo, IntVal))
return TokError("invalid register name");
return false;
}
/// Extract \code @l/@ha \endcode modifier from expression. Recursively scan
/// the expression and check for VK_PPC_LO/HI/HA
/// symbol variants. If all symbols with modifier use the same
/// variant, return the corresponding PPCMCExpr::VariantKind,
/// and a modified expression using the default symbol variant.
/// Otherwise, return NULL.
const MCExpr *PPCAsmParser::
ExtractModifierFromExpr(const MCExpr *E,
PPCMCExpr::VariantKind &Variant) {
MCContext &Context = getParser().getContext();
Variant = PPCMCExpr::VK_PPC_None;
switch (E->getKind()) {
case MCExpr::Target:
case MCExpr::Constant:
return nullptr;
case MCExpr::SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
switch (SRE->getKind()) {
case MCSymbolRefExpr::VK_PPC_LO:
Variant = PPCMCExpr::VK_PPC_LO;
break;
case MCSymbolRefExpr::VK_PPC_HI:
Variant = PPCMCExpr::VK_PPC_HI;
break;
case MCSymbolRefExpr::VK_PPC_HA:
Variant = PPCMCExpr::VK_PPC_HA;
break;
case MCSymbolRefExpr::VK_PPC_HIGH:
Variant = PPCMCExpr::VK_PPC_HIGH;
break;
case MCSymbolRefExpr::VK_PPC_HIGHA:
Variant = PPCMCExpr::VK_PPC_HIGHA;
break;
case MCSymbolRefExpr::VK_PPC_HIGHER:
Variant = PPCMCExpr::VK_PPC_HIGHER;
break;
case MCSymbolRefExpr::VK_PPC_HIGHERA:
Variant = PPCMCExpr::VK_PPC_HIGHERA;
break;
case MCSymbolRefExpr::VK_PPC_HIGHEST:
Variant = PPCMCExpr::VK_PPC_HIGHEST;
break;
case MCSymbolRefExpr::VK_PPC_HIGHESTA:
Variant = PPCMCExpr::VK_PPC_HIGHESTA;
break;
default:
return nullptr;
}
return MCSymbolRefExpr::create(&SRE->getSymbol(), Context);
}
case MCExpr::Unary: {
const MCUnaryExpr *UE = cast<MCUnaryExpr>(E);
const MCExpr *Sub = ExtractModifierFromExpr(UE->getSubExpr(), Variant);
if (!Sub)
return nullptr;
return MCUnaryExpr::create(UE->getOpcode(), Sub, Context);
}
case MCExpr::Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
PPCMCExpr::VariantKind LHSVariant, RHSVariant;
const MCExpr *LHS = ExtractModifierFromExpr(BE->getLHS(), LHSVariant);
const MCExpr *RHS = ExtractModifierFromExpr(BE->getRHS(), RHSVariant);
if (!LHS && !RHS)
return nullptr;
if (!LHS) LHS = BE->getLHS();
if (!RHS) RHS = BE->getRHS();
if (LHSVariant == PPCMCExpr::VK_PPC_None)
Variant = RHSVariant;
else if (RHSVariant == PPCMCExpr::VK_PPC_None)
Variant = LHSVariant;
else if (LHSVariant == RHSVariant)
Variant = LHSVariant;
else
return nullptr;
return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context);
}
}
llvm_unreachable("Invalid expression kind!");
}
/// Find all VK_TLSGD/VK_TLSLD symbol references in expression and replace
/// them by VK_PPC_TLSGD/VK_PPC_TLSLD. This is necessary to avoid having
/// _GLOBAL_OFFSET_TABLE_ created via ELFObjectWriter::RelocNeedsGOT.
/// FIXME: This is a hack.
const MCExpr *PPCAsmParser::
FixupVariantKind(const MCExpr *E) {
MCContext &Context = getParser().getContext();
switch (E->getKind()) {
case MCExpr::Target:
case MCExpr::Constant:
return E;
case MCExpr::SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
switch (SRE->getKind()) {
case MCSymbolRefExpr::VK_TLSGD:
Variant = MCSymbolRefExpr::VK_PPC_TLSGD;
break;
case MCSymbolRefExpr::VK_TLSLD:
Variant = MCSymbolRefExpr::VK_PPC_TLSLD;
break;
default:
return E;
}
return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, Context);
}
case MCExpr::Unary: {
const MCUnaryExpr *UE = cast<MCUnaryExpr>(E);
const MCExpr *Sub = FixupVariantKind(UE->getSubExpr());
if (Sub == UE->getSubExpr())
return E;
return MCUnaryExpr::create(UE->getOpcode(), Sub, Context);
}
case MCExpr::Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
const MCExpr *LHS = FixupVariantKind(BE->getLHS());
const MCExpr *RHS = FixupVariantKind(BE->getRHS());
if (LHS == BE->getLHS() && RHS == BE->getRHS())
return E;
return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context);
}
}
llvm_unreachable("Invalid expression kind!");
}
/// ParseExpression. This differs from the default "parseExpression" in that
/// it handles modifiers.
bool PPCAsmParser::
ParseExpression(const MCExpr *&EVal) {
if (isDarwin())
return ParseDarwinExpression(EVal);
// (ELF Platforms)
// Handle \code @l/@ha \endcode
if (getParser().parseExpression(EVal))
return true;
EVal = FixupVariantKind(EVal);
PPCMCExpr::VariantKind Variant;
const MCExpr *E = ExtractModifierFromExpr(EVal, Variant);
if (E)
EVal = PPCMCExpr::create(Variant, E, false, getParser().getContext());
return false;
}
/// ParseDarwinExpression. (MachO Platforms)
/// This differs from the default "parseExpression" in that it handles detection
/// of the \code hi16(), ha16() and lo16() \endcode modifiers. At present,
/// parseExpression() doesn't recognise the modifiers when in the Darwin/MachO
/// syntax form so it is done here. TODO: Determine if there is merit in
/// arranging for this to be done at a higher level.
bool PPCAsmParser::
ParseDarwinExpression(const MCExpr *&EVal) {
MCAsmParser &Parser = getParser();
PPCMCExpr::VariantKind Variant = PPCMCExpr::VK_PPC_None;
switch (getLexer().getKind()) {
default:
break;
case AsmToken::Identifier:
// Compiler-generated Darwin identifiers begin with L,l,_ or "; thus
// something starting with any other char should be part of the
// asm syntax. If handwritten asm includes an identifier like lo16,
// then all bets are off - but no-one would do that, right?
StringRef poss = Parser.getTok().getString();
if (poss.equals_lower("lo16")) {
Variant = PPCMCExpr::VK_PPC_LO;
} else if (poss.equals_lower("hi16")) {
Variant = PPCMCExpr::VK_PPC_HI;
} else if (poss.equals_lower("ha16")) {
Variant = PPCMCExpr::VK_PPC_HA;
}
if (Variant != PPCMCExpr::VK_PPC_None) {
Parser.Lex(); // Eat the xx16
if (getLexer().isNot(AsmToken::LParen))
return Error(Parser.getTok().getLoc(), "expected '('");
Parser.Lex(); // Eat the '('
}
break;
}
if (getParser().parseExpression(EVal))
return true;
if (Variant != PPCMCExpr::VK_PPC_None) {
if (getLexer().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "expected ')'");
Parser.Lex(); // Eat the ')'
EVal = PPCMCExpr::create(Variant, EVal, false, getParser().getContext());
}
return false;
}
/// ParseOperand
/// This handles registers in the form 'NN', '%rNN' for ELF platforms and
/// rNN for MachO.
bool PPCAsmParser::ParseOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = Parser.getTok().getLoc();
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
const MCExpr *EVal;
// Attempt to parse the next token as an immediate
switch (getLexer().getKind()) {
// Special handling for register names. These are interpreted
// as immediates corresponding to the register number.
case AsmToken::Percent:
Parser.Lex(); // Eat the '%'.
unsigned RegNo;
int64_t IntVal;
if (MatchRegisterName(RegNo, IntVal))
return Error(S, "invalid register name");
Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64()));
return false;
case AsmToken::Identifier:
case AsmToken::LParen:
case AsmToken::Plus:
case AsmToken::Minus:
case AsmToken::Integer:
case AsmToken::Dot:
case AsmToken::Dollar:
case AsmToken::Exclaim:
case AsmToken::Tilde:
// Note that non-register-name identifiers from the compiler will begin
// with '_', 'L'/'l' or '"'. Of course, handwritten asm could include
// identifiers like r31foo - so we fall through in the event that parsing
// a register name fails.
if (isDarwin()) {
unsigned RegNo;
int64_t IntVal;
if (!MatchRegisterName(RegNo, IntVal)) {
Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64()));
return false;
}
}
// All other expressions
if (!ParseExpression(EVal))
break;
// Fall-through
LLVM_FALLTHROUGH;
default:
return Error(S, "unknown operand");
}
// Push the parsed operand into the list of operands
Operands.push_back(PPCOperand::CreateFromMCExpr(EVal, S, E, isPPC64()));
// Check whether this is a TLS call expression
bool TLSCall = false;
if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(EVal))
TLSCall = Ref->getSymbol().getName() == "__tls_get_addr";
if (TLSCall && getLexer().is(AsmToken::LParen)) {
const MCExpr *TLSSym;
Parser.Lex(); // Eat the '('.
S = Parser.getTok().getLoc();
if (ParseExpression(TLSSym))
return Error(S, "invalid TLS call expression");
if (getLexer().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "missing ')'");
E = Parser.getTok().getLoc();
Parser.Lex(); // Eat the ')'.
Operands.push_back(PPCOperand::CreateFromMCExpr(TLSSym, S, E, isPPC64()));
}
// Otherwise, check for D-form memory operands
if (!TLSCall && getLexer().is(AsmToken::LParen)) {
Parser.Lex(); // Eat the '('.
S = Parser.getTok().getLoc();
int64_t IntVal;
switch (getLexer().getKind()) {
case AsmToken::Percent:
Parser.Lex(); // Eat the '%'.
unsigned RegNo;
if (MatchRegisterName(RegNo, IntVal))
return Error(S, "invalid register name");
break;
case AsmToken::Integer:
if (isDarwin())
return Error(S, "unexpected integer value");
else if (getParser().parseAbsoluteExpression(IntVal) || IntVal < 0 ||
IntVal > 31)
return Error(S, "invalid register number");
break;
case AsmToken::Identifier:
if (isDarwin()) {
unsigned RegNo;
if (!MatchRegisterName(RegNo, IntVal)) {
break;
}
}
LLVM_FALLTHROUGH;
default:
return Error(S, "invalid memory operand");
}
E = Parser.getTok().getLoc();
if (parseToken(AsmToken::RParen, "missing ')'"))
return true;
Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64()));
}
return false;
}
/// Parse an instruction mnemonic followed by its operands.
bool PPCAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
// The first operand is the token for the instruction name.
// If the next character is a '+' or '-', we need to add it to the
// instruction name, to match what TableGen is doing.
std::string NewOpcode;
if (parseOptionalToken(AsmToken::Plus)) {
NewOpcode = Name;
NewOpcode += '+';
Name = NewOpcode;
}
if (parseOptionalToken(AsmToken::Minus)) {
NewOpcode = Name;
NewOpcode += '-';
Name = NewOpcode;
}
// If the instruction ends in a '.', we need to create a separate
// token for it, to match what TableGen is doing.
size_t Dot = Name.find('.');
StringRef Mnemonic = Name.slice(0, Dot);
if (!NewOpcode.empty()) // Underlying memory for Name is volatile.
Operands.push_back(
PPCOperand::CreateTokenWithStringCopy(Mnemonic, NameLoc, isPPC64()));
else
Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64()));
if (Dot != StringRef::npos) {
SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot);
StringRef DotStr = Name.slice(Dot, StringRef::npos);
if (!NewOpcode.empty()) // Underlying memory for Name is volatile.
Operands.push_back(
PPCOperand::CreateTokenWithStringCopy(DotStr, DotLoc, isPPC64()));
else
Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64()));
}
// If there are no more operands then finish
if (parseOptionalToken(AsmToken::EndOfStatement))
return false;
// Parse the first operand
if (ParseOperand(Operands))
return true;
while (!parseOptionalToken(AsmToken::EndOfStatement)) {
if (parseToken(AsmToken::Comma) || ParseOperand(Operands))
return true;
}
// We'll now deal with an unfortunate special case: the syntax for the dcbt
// and dcbtst instructions differs for server vs. embedded cores.
// The syntax for dcbt is:
// dcbt ra, rb, th [server]
// dcbt th, ra, rb [embedded]
// where th can be omitted when it is 0. dcbtst is the same. We take the
// server form to be the default, so swap the operands if we're parsing for
// an embedded core (they'll be swapped again upon printing).
if (getSTI().getFeatureBits()[PPC::FeatureBookE] &&
Operands.size() == 4 &&
(Name == "dcbt" || Name == "dcbtst")) {
std::swap(Operands[1], Operands[3]);
std::swap(Operands[2], Operands[1]);
}
return false;
}
/// ParseDirective parses the PPC specific directives
bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (isDarwin()) {
if (IDVal == ".machine")
ParseDarwinDirectiveMachine(DirectiveID.getLoc());
else
return true;
} else if (IDVal == ".word")
ParseDirectiveWord(2, DirectiveID);
else if (IDVal == ".llong")
ParseDirectiveWord(8, DirectiveID);
else if (IDVal == ".tc")
ParseDirectiveTC(isPPC64() ? 8 : 4, DirectiveID);
else if (IDVal == ".machine")
ParseDirectiveMachine(DirectiveID.getLoc());
else if (IDVal == ".abiversion")
ParseDirectiveAbiVersion(DirectiveID.getLoc());
else if (IDVal == ".localentry")
ParseDirectiveLocalEntry(DirectiveID.getLoc());
else
return true;
return false;
}
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool PPCAsmParser::ParseDirectiveWord(unsigned Size, AsmToken ID) {
auto parseOp = [&]() -> bool {
const MCExpr *Value;
SMLoc ExprLoc = getParser().getTok().getLoc();
if (getParser().parseExpression(Value))
return true;
if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) {
assert(Size <= 8 && "Invalid size");
uint64_t IntValue = MCE->getValue();
if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
return Error(ExprLoc, "literal value out of range for '" +
ID.getIdentifier() + "' directive");
getStreamer().EmitIntValue(IntValue, Size);
} else
getStreamer().EmitValue(Value, Size, ExprLoc);
return false;
};
if (parseMany(parseOp))
return addErrorSuffix(" in '" + ID.getIdentifier() + "' directive");
return false;
}
/// ParseDirectiveTC
/// ::= .tc [ symbol (, expression)* ]
bool PPCAsmParser::ParseDirectiveTC(unsigned Size, AsmToken ID) {
MCAsmParser &Parser = getParser();
// Skip TC symbol, which is only used with XCOFF.
while (getLexer().isNot(AsmToken::EndOfStatement)
&& getLexer().isNot(AsmToken::Comma))
Parser.Lex();
if (parseToken(AsmToken::Comma))
return addErrorSuffix(" in '.tc' directive");
// Align to word size.
getParser().getStreamer().EmitValueToAlignment(Size);
// Emit expressions.
return ParseDirectiveWord(Size, ID);
}
/// ParseDirectiveMachine (ELF platforms)
/// ::= .machine [ cpu | "push" | "pop" ]
bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) {
MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Identifier) &&
Parser.getTok().isNot(AsmToken::String))
return Error(L, "unexpected token in '.machine' directive");
StringRef CPU = Parser.getTok().getIdentifier();
// FIXME: Right now, the parser always allows any available
// instruction, so the .machine directive is not useful.
// Implement ".machine any" (by doing nothing) for the benefit
// of existing assembler code. Likewise, we can then implement
// ".machine push" and ".machine pop" as no-op.
if (CPU != "any" && CPU != "push" && CPU != "pop")
return TokError("unrecognized machine type");
Parser.Lex();
if (parseToken(AsmToken::EndOfStatement))
return addErrorSuffix(" in '.machine' directive");
PPCTargetStreamer &TStreamer =
*static_cast<PPCTargetStreamer *>(
getParser().getStreamer().getTargetStreamer());
TStreamer.emitMachine(CPU);
return false;
}
/// ParseDarwinDirectiveMachine (Mach-o platforms)
/// ::= .machine cpu-identifier
bool PPCAsmParser::ParseDarwinDirectiveMachine(SMLoc L) {
MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Identifier) &&
Parser.getTok().isNot(AsmToken::String))
return Error(L, "unexpected token in directive");
StringRef CPU = Parser.getTok().getIdentifier();
Parser.Lex();
// FIXME: this is only the 'default' set of cpu variants.
// However we don't act on this information at present, this is simply
// allowing parsing to proceed with minimal sanity checking.
if (check(CPU != "ppc7400" && CPU != "ppc" && CPU != "ppc64", L,
"unrecognized cpu type") ||
check(isPPC64() && (CPU == "ppc7400" || CPU == "ppc"), L,
"wrong cpu type specified for 64bit") ||
check(!isPPC64() && CPU == "ppc64", L,
"wrong cpu type specified for 32bit") ||
parseToken(AsmToken::EndOfStatement))
return addErrorSuffix(" in '.machine' directive");
return false;
}
/// ParseDirectiveAbiVersion
/// ::= .abiversion constant-expression
bool PPCAsmParser::ParseDirectiveAbiVersion(SMLoc L) {
int64_t AbiVersion;
if (check(getParser().parseAbsoluteExpression(AbiVersion), L,
"expected constant expression") ||
parseToken(AsmToken::EndOfStatement))
return addErrorSuffix(" in '.abiversion' directive");
PPCTargetStreamer &TStreamer =
*static_cast<PPCTargetStreamer *>(
getParser().getStreamer().getTargetStreamer());
TStreamer.emitAbiVersion(AbiVersion);
return false;
}
/// ParseDirectiveLocalEntry
/// ::= .localentry symbol, expression
bool PPCAsmParser::ParseDirectiveLocalEntry(SMLoc L) {
StringRef Name;
if (getParser().parseIdentifier(Name))
return Error(L, "expected identifier in '.localentry' directive");
MCSymbolELF *Sym = cast<MCSymbolELF>(getContext().getOrCreateSymbol(Name));
const MCExpr *Expr;
if (parseToken(AsmToken::Comma) ||
check(getParser().parseExpression(Expr), L, "expected expression") ||
parseToken(AsmToken::EndOfStatement))
return addErrorSuffix(" in '.localentry' directive");
PPCTargetStreamer &TStreamer =
*static_cast<PPCTargetStreamer *>(
getParser().getStreamer().getTargetStreamer());
TStreamer.emitLocalEntry(Sym, Expr);
return false;
}
/// Force static initialization.
extern "C" void LLVMInitializePowerPCAsmParser() {
RegisterMCAsmParser<PPCAsmParser> A(getThePPC32Target());
RegisterMCAsmParser<PPCAsmParser> B(getThePPC64Target());
RegisterMCAsmParser<PPCAsmParser> C(getThePPC64LETarget());
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "PPCGenAsmMatcher.inc"
// Define this matcher function after the auto-generated include so we
// have the match class enum definitions.
unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned Kind) {
// If the kind is a token for a literal immediate, check if our asm
// operand matches. This is for InstAliases which have a fixed-value
// immediate in the syntax.
int64_t ImmVal;
switch (Kind) {
case MCK_0: ImmVal = 0; break;
case MCK_1: ImmVal = 1; break;
case MCK_2: ImmVal = 2; break;
case MCK_3: ImmVal = 3; break;
case MCK_4: ImmVal = 4; break;
case MCK_5: ImmVal = 5; break;
case MCK_6: ImmVal = 6; break;
case MCK_7: ImmVal = 7; break;
default: return Match_InvalidOperand;
}
PPCOperand &Op = static_cast<PPCOperand &>(AsmOp);
if (Op.isImm() && Op.getImm() == ImmVal)
return Match_Success;
return Match_InvalidOperand;
}
const MCExpr *
PPCAsmParser::applyModifierToExpr(const MCExpr *E,
MCSymbolRefExpr::VariantKind Variant,
MCContext &Ctx) {
switch (Variant) {
case MCSymbolRefExpr::VK_PPC_LO:
return PPCMCExpr::create(PPCMCExpr::VK_PPC_LO, E, false, Ctx);
case MCSymbolRefExpr::VK_PPC_HI:
return PPCMCExpr::create(PPCMCExpr::VK_PPC_HI, E, false, Ctx);
case MCSymbolRefExpr::VK_PPC_HA:
return PPCMCExpr::create(PPCMCExpr::VK_PPC_HA, E, false, Ctx);
case MCSymbolRefExpr::VK_PPC_HIGH:
return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGH, E, false, Ctx);
case MCSymbolRefExpr::VK_PPC_HIGHA:
return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHA, E, false, Ctx);
case MCSymbolRefExpr::VK_PPC_HIGHER:
return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHER, E, false, Ctx);
case MCSymbolRefExpr::VK_PPC_HIGHERA:
return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHERA, E, false, Ctx);
case MCSymbolRefExpr::VK_PPC_HIGHEST:
return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHEST, E, false, Ctx);
case MCSymbolRefExpr::VK_PPC_HIGHESTA:
return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHESTA, E, false, Ctx);
default:
return nullptr;
}
}