blob: 2a660e3c4dd1512f606703e0af4a9234822ec1ac [file] [log] [blame]
//===- ARCInstrInfo.cpp - ARC Instruction Information -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARC implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "ARCInstrInfo.h"
#include "ARC.h"
#include "ARCMachineFunctionInfo.h"
#include "ARCSubtarget.h"
#include "MCTargetDesc/ARCInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
#define GET_INSTRINFO_CTOR_DTOR
#include "ARCGenInstrInfo.inc"
#define DEBUG_TYPE "arc-inst-info"
enum AddrIncType {
NoAddInc = 0,
PreInc = 1,
PostInc = 2,
Scaled = 3
};
enum TSFlagsConstants {
TSF_AddrModeOff = 0,
TSF_AddModeMask = 3
};
// Pin the vtable to this file.
void ARCInstrInfo::anchor() {}
ARCInstrInfo::ARCInstrInfo()
: ARCGenInstrInfo(ARC::ADJCALLSTACKDOWN, ARC::ADJCALLSTACKUP), RI() {}
static bool isZeroImm(const MachineOperand &Op) {
return Op.isImm() && Op.getImm() == 0;
}
static bool isLoad(int Opcode) {
return Opcode == ARC::LD_rs9 || Opcode == ARC::LDH_rs9 ||
Opcode == ARC::LDB_rs9;
}
static bool isStore(int Opcode) {
return Opcode == ARC::ST_rs9 || Opcode == ARC::STH_rs9 ||
Opcode == ARC::STB_rs9;
}
/// If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
unsigned ARCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
int Opcode = MI.getOpcode();
if (isLoad(Opcode)) {
if ((MI.getOperand(1).isFI()) && // is a stack slot
(MI.getOperand(2).isImm()) && // the imm is zero
(isZeroImm(MI.getOperand(2)))) {
FrameIndex = MI.getOperand(1).getIndex();
return MI.getOperand(0).getReg();
}
}
return 0;
}
/// If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot. If
/// not, return 0. This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
unsigned ARCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
int Opcode = MI.getOpcode();
if (isStore(Opcode)) {
if ((MI.getOperand(1).isFI()) && // is a stack slot
(MI.getOperand(2).isImm()) && // the imm is zero
(isZeroImm(MI.getOperand(2)))) {
FrameIndex = MI.getOperand(1).getIndex();
return MI.getOperand(0).getReg();
}
}
return 0;
}
/// Return the inverse of passed condition, i.e. turning COND_E to COND_NE.
static ARCCC::CondCode GetOppositeBranchCondition(ARCCC::CondCode CC) {
switch (CC) {
default:
llvm_unreachable("Illegal condition code!");
case ARCCC::EQ:
return ARCCC::NE;
case ARCCC::NE:
return ARCCC::EQ;
case ARCCC::LO:
return ARCCC::HS;
case ARCCC::HS:
return ARCCC::LO;
case ARCCC::GT:
return ARCCC::LE;
case ARCCC::GE:
return ARCCC::LT;
case ARCCC::VS:
return ARCCC::VC;
case ARCCC::VC:
return ARCCC::VS;
case ARCCC::LT:
return ARCCC::GE;
case ARCCC::LE:
return ARCCC::GT;
case ARCCC::HI:
return ARCCC::LS;
case ARCCC::LS:
return ARCCC::HI;
case ARCCC::NZ:
return ARCCC::Z;
case ARCCC::Z:
return ARCCC::NZ;
}
}
static bool isUncondBranchOpcode(int Opc) { return Opc == ARC::BR; }
static bool isCondBranchOpcode(int Opc) {
return Opc == ARC::BRcc_rr_p || Opc == ARC::BRcc_ru6_p;
}
static bool isJumpOpcode(int Opc) { return Opc == ARC::J; }
/// Analyze the branching code at the end of MBB, returning
/// true if it cannot be understood (e.g. it's a switch dispatch or isn't
/// implemented for a target). Upon success, this returns false and returns
/// with the following information in various cases:
///
/// 1. If this block ends with no branches (it just falls through to its succ)
/// just return false, leaving TBB/FBB null.
/// 2. If this block ends with only an unconditional branch, it sets TBB to be
/// the destination block.
/// 3. If this block ends with a conditional branch and it falls through to a
/// successor block, it sets TBB to be the branch destination block and a
/// list of operands that evaluate the condition. These operands can be
/// passed to other TargetInstrInfo methods to create new branches.
/// 4. If this block ends with a conditional branch followed by an
/// unconditional branch, it returns the 'true' destination in TBB, the
/// 'false' destination in FBB, and a list of operands that evaluate the
/// condition. These operands can be passed to other TargetInstrInfo
/// methods to create new branches.
///
/// Note that RemoveBranch and InsertBranch must be implemented to support
/// cases where this method returns success.
///
/// If AllowModify is true, then this routine is allowed to modify the basic
/// block (e.g. delete instructions after the unconditional branch).
bool ARCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
TBB = FBB = nullptr;
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin())
return false;
--I;
while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
// Flag to be raised on unanalyzeable instructions. This is useful in cases
// where we want to clean up on the end of the basic block before we bail
// out.
bool CantAnalyze = false;
// Skip over DEBUG values and predicated nonterminators.
while (I->isDebugInstr() || !I->isTerminator()) {
if (I == MBB.begin())
return false;
--I;
}
if (isJumpOpcode(I->getOpcode())) {
// Indirect branches and jump tables can't be analyzed, but we still want
// to clean up any instructions at the tail of the basic block.
CantAnalyze = true;
} else if (isUncondBranchOpcode(I->getOpcode())) {
TBB = I->getOperand(0).getMBB();
} else if (isCondBranchOpcode(I->getOpcode())) {
// Bail out if we encounter multiple conditional branches.
if (!Cond.empty())
return true;
assert(!FBB && "FBB should have been null.");
FBB = TBB;
TBB = I->getOperand(0).getMBB();
Cond.push_back(I->getOperand(1));
Cond.push_back(I->getOperand(2));
Cond.push_back(I->getOperand(3));
} else if (I->isReturn()) {
// Returns can't be analyzed, but we should run cleanup.
CantAnalyze = !isPredicated(*I);
} else {
// We encountered other unrecognized terminator. Bail out immediately.
return true;
}
// Cleanup code - to be run for unpredicated unconditional branches and
// returns.
if (!isPredicated(*I) && (isUncondBranchOpcode(I->getOpcode()) ||
isJumpOpcode(I->getOpcode()) || I->isReturn())) {
// Forget any previous condition branch information - it no longer
// applies.
Cond.clear();
FBB = nullptr;
// If we can modify the function, delete everything below this
// unconditional branch.
if (AllowModify) {
MachineBasicBlock::iterator DI = std::next(I);
while (DI != MBB.end()) {
MachineInstr &InstToDelete = *DI;
++DI;
InstToDelete.eraseFromParent();
}
}
}
if (CantAnalyze)
return true;
if (I == MBB.begin())
return false;
--I;
}
// We made it past the terminators without bailing out - we must have
// analyzed this branch successfully.
return false;
}
unsigned ARCInstrInfo::removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved) const {
assert(!BytesRemoved && "Code size not handled");
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
if (I == MBB.end())
return 0;
if (!isUncondBranchOpcode(I->getOpcode()) &&
!isCondBranchOpcode(I->getOpcode()))
return 0;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
if (I == MBB.begin())
return 1;
--I;
if (!isCondBranchOpcode(I->getOpcode()))
return 1;
// Remove the branch.
I->eraseFromParent();
return 2;
}
void ARCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &dl, unsigned DestReg,
unsigned SrcReg, bool KillSrc) const {
assert(ARC::GPR32RegClass.contains(SrcReg) &&
"Only GPR32 src copy supported.");
assert(ARC::GPR32RegClass.contains(DestReg) &&
"Only GPR32 dest copy supported.");
BuildMI(MBB, I, dl, get(ARC::MOV_rr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
}
void ARCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned SrcReg, bool isKill,
int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc dl = MBB.findDebugLoc(I);
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned Align = MFI.getObjectAlignment(FrameIndex);
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo::getFixedStack(MF, FrameIndex),
MachineMemOperand::MOStore, MFI.getObjectSize(FrameIndex), Align);
assert(MMO && "Couldn't get MachineMemOperand for store to stack.");
assert(TRI->getSpillSize(*RC) == 4 &&
"Only support 4-byte stores to stack now.");
assert(ARC::GPR32RegClass.hasSubClassEq(RC) &&
"Only support GPR32 stores to stack now.");
LLVM_DEBUG(dbgs() << "Created store reg=" << printReg(SrcReg, TRI)
<< " to FrameIndex=" << FrameIndex << "\n");
BuildMI(MBB, I, dl, get(ARC::ST_rs9))
.addReg(SrcReg, getKillRegState(isKill))
.addFrameIndex(FrameIndex)
.addImm(0)
.addMemOperand(MMO);
}
void ARCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc dl = MBB.findDebugLoc(I);
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned Align = MFI.getObjectAlignment(FrameIndex);
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo::getFixedStack(MF, FrameIndex),
MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIndex), Align);
assert(MMO && "Couldn't get MachineMemOperand for store to stack.");
assert(TRI->getSpillSize(*RC) == 4 &&
"Only support 4-byte loads from stack now.");
assert(ARC::GPR32RegClass.hasSubClassEq(RC) &&
"Only support GPR32 stores to stack now.");
LLVM_DEBUG(dbgs() << "Created load reg=" << printReg(DestReg, TRI)
<< " from FrameIndex=" << FrameIndex << "\n");
BuildMI(MBB, I, dl, get(ARC::LD_rs9))
.addReg(DestReg, RegState::Define)
.addFrameIndex(FrameIndex)
.addImm(0)
.addMemOperand(MMO);
}
/// Return the inverse opcode of the specified Branch instruction.
bool ARCInstrInfo::reverseBranchCondition(
SmallVectorImpl<MachineOperand> &Cond) const {
assert((Cond.size() == 3) && "Invalid ARC branch condition!");
Cond[2].setImm(GetOppositeBranchCondition((ARCCC::CondCode)Cond[2].getImm()));
return false;
}
MachineBasicBlock::iterator
ARCInstrInfo::loadImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, unsigned Reg,
uint64_t Value) const {
DebugLoc dl = MBB.findDebugLoc(MI);
if (isInt<12>(Value)) {
return BuildMI(MBB, MI, dl, get(ARC::MOV_rs12), Reg)
.addImm(Value)
.getInstr();
}
llvm_unreachable("Need Arc long immediate instructions.");
}
unsigned ARCInstrInfo::insertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond,
const DebugLoc &dl, int *BytesAdded) const {
assert(!BytesAdded && "Code size not handled.");
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 3 || Cond.size() == 0) &&
"ARC branch conditions have two components!");
if (Cond.empty()) {
BuildMI(&MBB, dl, get(ARC::BR)).addMBB(TBB);
return 1;
}
int BccOpc = Cond[1].isImm() ? ARC::BRcc_ru6_p : ARC::BRcc_rr_p;
MachineInstrBuilder MIB = BuildMI(&MBB, dl, get(BccOpc));
MIB.addMBB(TBB);
for (unsigned i = 0; i < 3; i++) {
MIB.add(Cond[i]);
}
// One-way conditional branch.
if (!FBB) {
return 1;
}
// Two-way conditional branch.
BuildMI(&MBB, dl, get(ARC::BR)).addMBB(FBB);
return 2;
}
unsigned ARCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
if (MI.isInlineAsm()) {
const MachineFunction *MF = MI.getParent()->getParent();
const char *AsmStr = MI.getOperand(0).getSymbolName();
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
}
return MI.getDesc().getSize();
}
bool ARCInstrInfo::isPostIncrement(const MachineInstr &MI) const {
const MCInstrDesc &MID = MI.getDesc();
const uint64_t F = MID.TSFlags;
return ((F >> TSF_AddrModeOff) & TSF_AddModeMask) == PostInc;
}
bool ARCInstrInfo::isPreIncrement(const MachineInstr &MI) const {
const MCInstrDesc &MID = MI.getDesc();
const uint64_t F = MID.TSFlags;
return ((F >> TSF_AddrModeOff) & TSF_AddModeMask) == PreInc;
}
bool ARCInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
unsigned &BasePos,
unsigned &OffsetPos) const {
if (!MI.mayLoad() && !MI.mayStore())
return false;
BasePos = 1;
OffsetPos = 2;
if (isPostIncrement(MI) || isPreIncrement(MI)) {
BasePos++;
OffsetPos++;
}
if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
return false;
return true;
}