blob: e4902a73ed49df8217e8b0160bd272a6d2b5a65f [file] [log] [blame]
//===- ARCInstrFormats.td - ARC Instruction Formats --------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
class Encoding64 {
field bits<64> Inst;
field bits<64> SoftFail = 0;
}
// Address operands
class immU<int BSz> : Operand<i32>, PatLeaf<(imm),
"\n return isUInt<"#BSz#">(N->getSExtValue());"> {
}
def immU6 : immU<6>;
class immS<int BSz> : Operand<i32>, PatLeaf<(imm),
"\n return isInt<"#BSz#">(N->getSExtValue());"> {
let DecoderMethod = "DecodeSignedOperand<"#BSz#">";
}
// e.g. s3 field may encode the signed integers values -1 .. 6
// using binary codes 111, 000, 001, 010, 011, 100, 101, and 110, respectively
class immC<int BSz> : Operand<i32>, PatLeaf<(imm),
"\n return isInt<"#BSz#">(N->getSExtValue());"> {
let DecoderMethod = "DecodeFromCyclicRange<"#BSz#">";
}
def MEMii : Operand<i32> {
let MIOperandInfo = (ops i32imm, i32imm);
}
def MEMrs9 : Operand<iAny> {
let MIOperandInfo = (ops GPR32:$B, immS<9>:$S9);
let PrintMethod = "printMemOperandRI";
let DecoderMethod = "DecodeMEMrs9";
}
def MEMrlimm : Operand<iAny> {
let MIOperandInfo = (ops GPR32:$B, i32imm:$LImm);
let PrintMethod = "printMemOperandRI";
let DecoderMethod = "DecodeMEMrlimm";
}
def GPR32Reduced : Operand<iAny> {
let DecoderMethod = "DecodeGBR32ShortRegister";
}
// Helper classes for load/store instructions
class DataSizeMode<bits<2> mode, string instSfx, string asmSfx> {
bits<2> Value = mode;
string InstSuffix = instSfx;
string AsmSuffix = asmSfx;
}
class ExtMode<bit mode, string instSfx, string asmSfx> {
bit Value = mode;
string InstSuffix = instSfx;
string AsmSuffix = asmSfx;
}
class AddrMode<bits<2> mode, string instSfx, string asmSfx> {
bits<2> Value = mode;
string InstSuffix = instSfx;
string AsmSuffix = asmSfx;
}
class CacheMode<bit mode, string instSfx, string asmSfx> {
bit Value = mode;
string InstSuffix = instSfx;
string AsmSuffix = asmSfx;
}
def ByteSM : DataSizeMode<0b01, "B", "b">;
def HalfSM : DataSizeMode<0b10, "H", "h">;
def WordSM : DataSizeMode<0b00, "", "">;
def NoEM : ExtMode<0, "", "">;
def SignedEM : ExtMode<1, "_X", ".x">;
def NoAM : AddrMode<0b00, "", "">;
def PreIncAM : AddrMode<0b01, "_AW", ".aw">;
def PostIncAM : AddrMode<0b10, "_AB", ".ab">;
def NoCC : CacheMode<0b0, "", "">;
def UncachedCC : CacheMode<0b1, "_DI", ".di">;
class InstARC<int sz, dag outs, dag ins, string asmstr, list<dag> pattern>
: Instruction, Encoding64 {
let Namespace = "ARC";
dag OutOperandList = outs;
dag InOperandList = ins;
let AsmString = asmstr;
let Pattern = pattern;
let Size = sz;
// Load/Store instruction properties
DataSizeMode ZZ = WordSM;
ExtMode X = NoEM;
AddrMode AA = NoAM;
CacheMode DI = NoCC;
// Field used for relation models
string BaseOpcode = "";
//TSFlags
let TSFlags{1-0} = AA.Value;
}
// ARC pseudo instructions format
class PseudoInstARC<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstARC<0, outs, ins, asmstr, pattern> {
let isPseudo = 1;
}
//===----------------------------------------------------------------------===//
// Instruction formats
//===----------------------------------------------------------------------===//
// All 32-bit ARC instructions have a 5-bit "major" opcode class designator
// in bits 27-31.
//
// Some general naming conventions:
// N - Delay Slot bit. ARC v2 branch instructions have an optional delay slot
// which is encoded with this bit. When set, a delay slot exists.
// cc - Condition code.
// SX - Signed X-bit immediate.
// UX - Unsigned X-bit immediate.
//
// [ABC] - 32-bit register operand. These are 6-bit fields. This encodes the
// standard 32 general purpose registers, and allows use of additional
// (extension) registers. This also encodes an instruction that uses
// a 32-bit Long Immediate (LImm), using 0x3e==62 as the field value.
// This makes 32-bit format instructions with Long Immediates
// 64-bit instructions, with the Long Immediate in bits 32-63.
// A - Inst[5-0] = A[5-0], when the format has A. A is always a register.
// B - Inst[14-12] = B[5-3], Inst[26-24] = B[2-0], when the format has B.
// B is always a register.
// C - Inst[11-6] = C[5-0], when the format has C. C can either be a register,
// or a 6-bit unsigned immediate (immU6), depending on the format.
// F - Many instructions specify a flag bit. When set, the result of these
// instructions will set the ZNCV flags of the STATUS32 register
// (Zero/Negative/Carry/oVerflow).
// Branch Instructions.
class F32_BR<bits<5> major, dag outs, dag ins, bit b16, string asmstr,
list<dag> pattern> :
InstARC<4, outs, ins, asmstr, pattern> {
bit N;
let Inst{31-27} = major;
let Inst{16} = b16;
let Inst{5} = N;
}
class F32_BR_COND<bits<5> major, dag outs, dag ins, bit b16, string asmstr,
list<dag> pattern> :
F32_BR<major, outs, ins, b16, asmstr, pattern> {
bits<21> S21; // 2-byte aligned 21-bit byte-offset.
bits<5> cc;
let Inst{26-18} = S21{10-2};
let Inst{15-6} = S21{20-11};
let Inst{4-0} = cc;
}
class F32_BR_UCOND_FAR<bits<5> major, dag outs, dag ins, bit b16, string asmstr,
list<dag> pattern> :
F32_BR<major, outs, ins, b16, asmstr, pattern> {
bits<25> S25; // 2-byte aligned 25-bit byte-offset.
let Inst{26-18} = S25{10-2};
let Inst{15-6} = S25{20-11};
let Inst{4} = 0;
let Inst{3-0} = S25{24-21};
}
class F32_BR0_COND<dag outs, dag ins, string asmstr, list<dag> pat> :
F32_BR_COND<0b00000, outs, ins, 0, asmstr, pat> {
let Inst{17} = S21{1};
}
// Branch targets are 2-byte aligned, so S25[0] is implied 0.
// |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0 |
// |S25[10-1] | 1|S25[20-11] |N|0|S25[24-21]|
class F32_BR0_UCOND_FAR<dag outs, dag ins, string asmstr, list<dag> pat> :
F32_BR_UCOND_FAR<0b00000, outs, ins, 1, asmstr, pat> {
let Inst{17} = S25{1};
}
// BL targets (functions) are 4-byte aligned, so S25[1-0] = 0b00
// |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0 |
// |S25[10-2] | 1| 0|S25[20-11] |N|0|S25[24-21]|
class F32_BR1_BL_UCOND_FAR<dag outs, dag ins, string asmstr, list<dag> pat> :
F32_BR_UCOND_FAR<0b00001, outs, ins, 0, asmstr, pat> {
let Inst{17} = 1;
}
// BLcc targets have 21 bit range, and are 4-byte aligned.
// |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|
// |S25[10-2] | 0| 0|S25[20-11] |N|0|cc |
class F32_BR1_BL_COND<dag outs, dag ins, string asmstr, list<dag> pat> :
F32_BR_COND<0b00001, outs, ins, 0, asmstr, pat> {
let Inst{17} = 0;
}
// BRcc targets have limited 9-bit range. These are for compare and branch
// in single instruction. Their targets are 2-byte aligned. They also use
// a different (3-bit) set of condition codes.
// |26|25|24|23|22|21|20|19|18|17|16|15 |14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|
// |B[2-0] |S9[7-1] | 1|S9[8]|B[5-3] |C |N|u|0|cc |
class F32_BR1_BCC<dag outs, dag ins, string asmstr, bit IsU6,
list<dag> pattern> :
InstARC<4, outs, ins, asmstr, pattern> {
bits<3> cc;
bits<6> B;
bits<6> C;
bit N;
bits<9> S9; // 2-byte aligned 9-bit byte-offset.
let Inst{31-27} = 0b00001;
let Inst{26-24} = B{2-0};
let Inst{23-17} = S9{7-1};
let Inst{16} = 1;
let Inst{15} = S9{8};
let Inst{14-12} = B{5-3};
let Inst{11-6} = C;
let Inst{5} = N;
let Inst{4} = IsU6;
let Inst{3} = 0;
let Inst{2-0} = cc;
}
// General operations instructions.
// Single Operand Instructions. Inst[5-0] specifies the specific operation
// for this format.
// |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|
// |B[2-0] | 0| 0| 1| 0| 1| 1| 1| 1| F|B[5-3] |C |subop |
class F32_SOP_RR<bits<5> major, bits<6> subop, bit F, dag outs, dag ins,
string asmstr, list<dag> pattern> :
InstARC<4, outs, ins, asmstr, pattern> {
bits<6> C;
bits<6> B;
let Inst{31-27} = major;
let Inst{26-24} = B{2-0};
let Inst{23-22} = 0b00;
let Inst{21-16} = 0b101111;
let Inst{15} = F;
let Inst{14-12} = B{5-3};
let Inst{11-6} = C;
let Inst{5-0} = subop;
}
// Dual Operand Instructions. Inst[21-16] specifies the specific operation
// for this format.
// 3-register Dual Operand instruction.
// |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|
// |B[2-0] | 0| 0| subop| F|B[5-3] |C |A |
class F32_DOP_RR<bits<5> major, bits<6> subop, bit F, dag outs, dag ins,
string asmstr, list<dag> pattern> :
InstARC<4, outs, ins, asmstr, pattern> {
bits<6> C;
bits<6> B;
bits<6> A;
let Inst{31-27} = major;
let Inst{26-24} = B{2-0};
let Inst{23-22} = 0b00;
let Inst{21-16} = subop;
let Inst{15} = F;
let Inst{14-12} = B{5-3};
let Inst{11-6} = C;
let Inst{5-0} = A;
}
// Conditional Dual Operand instruction. This instruction uses B as the
// first 2 operands (i.e, add.cc B, B, C).
// |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|
// |B[2-0] | 1| 1| subop| F|B[5-3] |C |A |
class F32_DOP_CC_RR<bits<5> major, bits<6> subop, bit F, dag outs, dag ins,
string asmstr, list<dag> pattern> :
InstARC<4, outs, ins, asmstr, pattern> {
bits<5> cc;
bits<6> C;
bits<6> B;
let Inst{31-27} = major;
let Inst{26-24} = B{2-0};
let Inst{23-22} = 0b11;
let Inst{21-16} = subop;
let Inst{15} = F;
let Inst{14-12} = B{5-3};
let Inst{11-6} = C;
let Inst{5} = 0;
let Inst{4-0} = cc;
}
// 2-register, unsigned 6-bit immediate Dual Operand instruction.
// |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|
// |B[2-0] | 0| 1| subop| F|B[5-3] |U6 |A |
class F32_DOP_RU6<bits<5> major, bits<6> subop, bit F, dag outs, dag ins,
string asmstr, list<dag> pattern> :
InstARC<4, outs, ins, asmstr, pattern> {
bits<6> U6;
bits<6> B;
bits<6> A;
let Inst{31-27} = major;
let Inst{26-24} = B{2-0};
let Inst{23-22} = 0b01;
let Inst{21-16} = subop;
let Inst{15} = F;
let Inst{14-12} = B{5-3};
let Inst{11-6} = U6;
let Inst{5-0} = A;
}
// 2-register, signed 12-bit immediate Dual Operand instruction.
// This instruction uses B as the first 2 operands (i.e., add B, B, -128).
// |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|
// |B[2-0] | 1| 0| subop| F|B[5-3] |S12[5-0] |S12[11-6] |
class F32_DOP_RS12<bits<5> major, bits<6> subop, bit F, dag outs, dag ins,
string asmstr, list<dag> pattern> :
InstARC<4, outs, ins, asmstr, pattern> {
bits<6> B;
bits<12> S12;
let Inst{31-27} = major;
let Inst{26-24} = B{2-0};
let Inst{23-22} = 0b10;
let Inst{21-16} = subop;
let Inst{15} = F;
let Inst{14-12} = B{5-3};
let Inst{11-6} = S12{5-0};
let Inst{5-0} = S12{11-6};
}
// 2-register, 32-bit immediate (LImm) Dual Operand instruction.
// This instruction has the 32-bit immediate in bits 32-63, and
// 62 in the C register operand slot, but is otherwise F32_DOP_RR.
class F32_DOP_RLIMM<bits<5> major, bits<6> subop, bit F, dag outs, dag ins,
string asmstr, list<dag> pattern> :
InstARC<8, outs, ins, asmstr, pattern> {
bits<6> B;
bits<6> A;
bits<32> LImm;
let Inst{63-32} = LImm;
let Inst{31-27} = major;
let Inst{26-24} = B{2-0};
let Inst{23-22} = 0b00;
let Inst{21-16} = subop;
let Inst{15} = F;
let Inst{14-12} = B{5-3};
let Inst{11-6} = 0b111110;
let Inst{5-0} = A;
}
// Load and store instructions.
// In addition to the previous naming conventions, load and store instructions
// have:
// di - Uncached bit. When set, loads/stores bypass the cache and access
// memory directly.
// aa - Incrementing mode. Loads and stores can write-back address pre- or
// post- memory operation.
// zz - Memory size (can be 8/16/32 bit load/store).
// x - Sign-extending. When set, short loads can be sign-extended to 32-bits.
// Loads and Stores support different memory addressing modes:
// Base Register + Signed 9-bit Immediate: Both Load/Store.
// LImm: Both Load/Store (Load/Store from a fixed 32-bit address).
// Register + Register: Load Only.
// Register + LImm: Load Only.
// Register + S9 Load. (B + S9)
// |26|25|24|23|22|21|20|19|18|17|16|15 |14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|
// |B[2-0] |S9[7-0] |S9[8]|B[5-3] |di|aa |zz |x|A |
class F32_LD_RS9<bit x, bits<2> aa, bit di, bits<2> zz, dag outs, dag ins,
string asmstr, list<dag> pattern> :
InstARC<4, outs, ins, asmstr, pattern> {
bits<6> B;
bits<6> A;
bits<9> S9;
let Inst{31-27} = 0b00010;
let Inst{26-24} = B{2-0};
let Inst{23-16} = S9{7-0};
let Inst{15} = S9{8};
let Inst{14-12} = B{5-3};
let Inst{11} = di;
let Inst{10-9} = aa;
let Inst{8-7} = zz;
let Inst{6} = x;
let Inst{5-0} = A;
let BaseOpcode = "ld_rs9";
}
class F32_LD_ADDR<bit x, bits<2> aa, bit di, bits<2> zz, dag outs, dag ins,
string asmstr, list<dag> pattern> :
F32_LD_RS9<x, aa, di, zz, outs, ins, asmstr, pattern> {
bits<15> addr;
let B = addr{14-9};
let S9 = addr{8-0};
let BaseOpcode = "ld_rs9";
}
// LImm Load. The 32-bit immediate address is in Inst[63-32].
// |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|
// | 1| 1| 0| 0 | 1| 1| 1|di| 0|0|zz |x|A |
class F32_LD_LIMM<bit x, bit di, bits<2> zz, dag outs, dag ins,
string asmstr, list<dag> pattern> :
InstARC<8, outs, ins, asmstr, pattern> {
bits<6> LImmReg = 0b111110;
bits<6> A;
bits<32> LImm;
let Inst{63-32} = LImm;
let Inst{31-27} = 0b00010;
let Inst{26-24} = LImmReg{2-0};
let Inst{23-15} = 0;
let Inst{14-12} = LImmReg{5-3};
let Inst{11} = di;
let Inst{10-9} = 0;
let Inst{8-7} = zz;
let Inst{6} = x;
let Inst{5-0} = A;
let DecoderMethod = "DecodeLdLImmInstruction";
let BaseOpcode = "ld_limm";
}
// Register + LImm load. The 32-bit immediate address is in Inst[63-32].
// |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|
// |B[2-0] |aa | 1| 1| 0|zz | x|di|B[5-3] | 1| 1|1|1|1|0|A |
class F32_LD_RLIMM<bit x, bits<2> aa, bit di, bits<2> zz, dag outs, dag ins,
string asmstr, list<dag> pattern> :
InstARC<8, outs, ins, asmstr, pattern> {
bits<6> LImmReg = 0b111110;
bits<32> LImm;
bits<6> B;
bits<6> A;
bits<38> addr;
let B = addr{37-32};
let LImm = addr{31-0};
let Inst{63-32} = LImm;
let Inst{31-27} = 0b00100;
let Inst{26-24} = B{2-0};
let Inst{23-22} = aa;
let Inst{21-19} = 0b110;
let Inst{18-17} = zz;
let Inst{16} = x;
let Inst{15} = di;
let Inst{14-12} = B{5-3};
let Inst{11-6} = LImmReg;
let Inst{5-0} = A;
let DecoderMethod = "DecodeLdRLImmInstruction";
let BaseOpcode = "ld_rlimm";
}
// Register + S9 Store. (B + S9)
// |26|25|24|23|22|21|20|19|18|17|16|15 |14|13|12|11|10|9|8|7|6|5 |4|3|2|1|0|
// |B[2-0] |S9[7-0] |S9[8]|B[5-3] |C |di|aa |zz |0|
class F32_ST_RS9<bits<2> aa, bit di, bits<2> zz, dag outs, dag ins,
string asmstr, list<dag> pattern> :
InstARC<4, outs, ins, asmstr, pattern> {
bits<6> B;
bits<6> C;
bits<9> S9;
let Inst{31-27} = 0b00011;
let Inst{26-24} = B{2-0};
let Inst{23-16} = S9{7-0};
let Inst{15} = S9{8};
let Inst{14-12} = B{5-3};
let Inst{11-6} = C;
let Inst{5} = di;
let Inst{4-3} = aa;
let Inst{2-1} = zz;
let Inst{0} = 0;
let BaseOpcode = "st_rs9";
}
class F32_ST_ADDR<bits<2> aa, bit di, bits<2> zz, dag outs, dag ins,
string asmstr, list<dag> pattern> :
F32_ST_RS9<aa, di, zz, outs, ins, asmstr, pattern> {
bits<15> addr;
let B = addr{14-9};
let S9 = addr{8-0};
let BaseOpcode = "st_rs9";
}
// LImm Store.
// |26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9|8|7|6|5 |4|3|2|1|0|
// | 1| 1| 0| 0 | 1| 1| 1|C |di|0|0|zz |0|
class F32_ST_LIMM<bit di, bits<2> zz, dag outs, dag ins,
string asmstr, list<dag> pattern> :
InstARC<8, outs, ins, asmstr, pattern> {
bits<6> LImmReg = 0b111110;
bits<6> C;
bits<32> LImm;
let Inst{63-32} = LImm;
let Inst{31-27} = 0b00011;
let Inst{26-24} = LImmReg{2-0};
let Inst{23-15} = 0;
let Inst{14-12} = LImmReg{5-3};
let Inst{11-6} = C;
let Inst{5} = di;
let Inst{4-3} = 0;
let Inst{2-1} = zz;
let Inst{0} = 0;
let DecoderMethod = "DecodeStLImmInstruction";
let BaseOpcode = "st_limm";
}
// Compact Move/Load.
// |10|9|8|7|6|5|4|3|2|1|0|
// | |h | |i|H |
class F16_COMPACT<bits<1> i, dag outs, dag ins,
string asmstr> :
InstARC<2, outs, ins, asmstr, []> {
bits<5> h;
let Inst{15-11} = 0b01000;
let Inst{7-5} = h{2-0};
let Inst{2} = i;
let Inst{1-0} = h{4-3};
}
// Compact Load/Add/Sub.
class F16_LD_ADD_SUB<dag outs, dag ins, string asmstr> :
InstARC<2, outs, ins, asmstr, []> {
bits<3> b;
let Inst{15-11} = 0b01001;
let Inst{10-8} = b;
}
class F16_LD_SUB<bit i, string asmstr> :
F16_LD_ADD_SUB<(outs GPR32:$a), (ins GPR32:$b, GPR32:$c),
asmstr> {
bits<3> a;
bits<3> c;
let Inst{7-5} = c;
let Inst{4} = i;
let Inst{3} = 0;
let Inst{2-0} = a;
}
class F16_ADD :
F16_LD_ADD_SUB<(outs GPR32:$r), (ins GPR32:$b, immU<6>:$u6),
"add_s\t$r, $b, $u6"> {
bit r;
bits<6> u6;
let Inst{7} = r;
let Inst{6-4} = u6{5-3};
let Inst{3} = 1;
let Inst{2-0} = u6{2-0};
}
// Compact Load/Store.
class F16_LD_ST_1<dag outs, dag ins, string asmstr> :
InstARC<2, outs, ins, asmstr, []> {
let Inst{15-11} = 0b01010;
}
class F16_LD_ST_s11<bit i, string asmstr> :
F16_LD_ST_1<(outs), (ins immS<11>:$s11), asmstr> {
bits<11> s11;
let Inst{10-5} = s11{10-5};
let Inst{4} = i;
let Inst{3} = 0;
let Inst{2-0} = s11{4-2};
let s11{1-0} = 0b00;
}
class F16_LDI_u7 :
F16_LD_ST_1<(outs GPR32:$b), (ins immU<7>:$u7),
"ldi_s\t$b, [$u7]"> {
bits<3> b;
bits<7> u7;
let Inst{10-8} = b;
let Inst{7-4} = u7{6-3};
let Inst{3} = 1;
let Inst{2-0} = u7{2-0};
}
// Indexed Jump or Execute.
class F16_JLI_EI<bit i, string asmstr> :
InstARC<2, (outs), (ins immU<10>:$u10),
!strconcat(asmstr, "\t$u10"), []> {
bits<10> u10;
let Inst{15-11} = 0b01011;
let Inst{10} = i;
let Inst{9-0} = u10;
}
// Load/Add Register-Register.
class F16_LD_ADD_RR<bits<2> i, string asmstr> :
InstARC<2, (outs GPR32:$a), (ins GPR32:$b, GPR32:$c),
asmstr, []> {
bits<3> a;
bits<3> b;
bits<3> c;
let Inst{15-11} = 0b01100;
let Inst{10-8} = b;
let Inst{7-5} = c;
let Inst{4-3} = i;
let Inst{2-0} = a;
}
// Load/Add GP-Relative.
class F16_GP_LD_ADD<bits<2> i, dag ins, string asmstr> :
InstARC<2, (outs), ins, asmstr, []> {
let Inst{15-11} = 0b11001;
let Inst{10-9} = i;
}
// Add/Sub/Shift Register-Immediate.
// |10|9|8|7|6|5|4|3|2|1|0|
// |b |c |i |u |
class F16_ADD_IMM<bits<2> i, string asmstr> :
InstARC<2, (outs GPR32:$c), (ins GPR32:$b, immU<3>:$u3),
!strconcat(asmstr, "\t$c, $b, $u3"), []> {
bits<3> b;
bits<3> c;
bits<3> u3;
let Inst{15-11} = 0b01101;
let Inst{10-8} = b;
let Inst{7-5} = c;
let Inst{4-3} = i;
let Inst{2-0} = u3;
}
// Dual Register Operations.
// |10|9|8|7|6|5|4|3|2|1|0|
// |b/s |h |i |H |
class F16_OP_HREG<bits<3> i, dag outs, dag ins, string asmstr> :
InstARC<2, outs, ins, asmstr, []> {
bits<3> b_s3;
bits<5> h;
let Inst{15-11} = 0b01110;
let Inst{10-8} = b_s3;
let Inst{7-5} = h{2-0};
let Inst{4-2} = i;
let Inst{1-0} = h{4-3};
}
class F16_OP_HREG30<bits<3> i, dag outs, dag ins, string asmstr> :
F16_OP_HREG<i, outs, ins, asmstr> {
bits<5> LImmReg = 0b11110;
let Inst{7-5} = LImmReg{2-0};
let Inst{1-0} = LImmReg{4-3};
}
class F16_OP_HREG_LIMM<bits<3> i, dag outs, dag ins, string asmstr> :
F16_OP_HREG30<i, outs, ins, asmstr> {
bits<32> LImm;
let Inst{47-16} = LImm;
let Size = 6;
}
// General compact DOP format.
class F16_GEN_DOP_BASE<bits<5> i, dag outs, dag ins, string asmstr> :
InstARC<2, outs, ins, asmstr, []> {
bits<3> b;
bits<3> c;
let Inst{15-11} = 0b01111;
let Inst{10-8} = b;
let Inst{7-5} = c;
let Inst{4-0} = i;
}
class F16_GEN_DOP<bits<5> i, string asmstr> :
F16_GEN_DOP_BASE<i, (outs GPR32:$b), (ins GPR32:$c),
!strconcat(asmstr, "\t$b, $b, $c")>;
class F16_GEN_DOP_NODST<bits<5> i, string asmstr> :
F16_GEN_DOP_BASE<i, (outs), (ins GPR32:$b, GPR32:$c),
!strconcat(asmstr, "\t$b, $c")>;
class F16_GEN_DOP_SINGLESRC<bits<5> i, string asmstr> :
F16_GEN_DOP_BASE<i, (outs GPR32:$b), (ins GPR32:$c),
!strconcat(asmstr, "\t$b, $c")>;
class F16_GEN_SOP_BASE<bits<3> i, dag outs, dag ins, string asmstr> :
F16_GEN_DOP_BASE<0b00000, outs, ins, asmstr> {
let c = i;
}
class F16_GEN_SOP<bits<3> i, string asmstr> :
F16_GEN_SOP_BASE<i, (outs), (ins GPR32:$b), asmstr>;
class F16_GEN_ZOP<bits<3> i, string asmstr> :
F16_GEN_SOP_BASE<0b111, (outs), (ins), asmstr> {
let b = i;
}
// Compact Load/Store with Offset Format.
class F16_LD_ST_OFF<bits<5> opc, dag outs, dag ins, string asmstr> :
InstARC<2, outs, ins, !strconcat(asmstr, "\t$c, [$b, $off]"), []> {
bits<3> b;
bits<3> c;
let Inst{15-11} = opc;
let Inst{10-8} = b;
let Inst{7-5} = c;
}
class F16_LD_ST_WORD_OFF<bits<5> opc, dag outs, dag ins, string asmstr> :
F16_LD_ST_OFF<opc, outs, ins, asmstr> {
bits<7> off;
let Inst{4-0} = off{6-2};
let off{1-0} = 0b00;
}
class F16_LD_ST_HALF_OFF<bits<5> opc, dag outs, dag ins, string asmstr> :
F16_LD_ST_OFF<opc, outs, ins, asmstr> {
bits<6> off;
let Inst{4-0} = off{5-1};
let off{0} = 0b0;
}
class F16_LD_ST_BYTE_OFF<bits<5> opc, dag outs, dag ins, string asmstr> :
F16_LD_ST_OFF<opc, outs, ins, asmstr> {
bits<5> off;
let Inst{4-0} = off;
}
// Shift/Subtract/Bit Immediate.
// |10|9|8|7|6|5|4|3|2|1|0|
// |b |i |u |
class F16_SH_SUB_BIT<bits<3> i, string asmstr> :
InstARC<2, (outs), (ins GPR32:$b, immU<5>:$u5), asmstr, []> {
bits<3> b;
bits<5> u5;
let Inst{15-11} = 0b10111;
let Inst{10-8} = b;
let Inst{7-5} = i;
let Inst{4-0} = u5;
}
class F16_SH_SUB_BIT_DST<bits<3> i, string asmstr> :
F16_SH_SUB_BIT<i, !strconcat(asmstr, "\t$b, $b, $u5")>;
// 16-bit stack-based operations.
// |10|9|8|7|6|5|4|3|2|1|0|
// |b |i |u |
class F16_SP_OPS<bits<3> i,
dag outs, dag ins, string asmstr> :
InstARC<2, outs, ins, asmstr, []> {
bits<3> fieldB;
bits<5> fieldU;
let Inst{15-11} = 0b11000;
let Inst{10-8} = fieldB;
let Inst{7-5} = i;
let Inst{4-0} = fieldU;
}
class F16_SP_OPS_u7_aligned<bits<3> i,
dag outs, dag ins, string asmstr> :
F16_SP_OPS<i, outs, ins, asmstr> {
bits<3> b3;
bits<7> u7;
let fieldB = b3;
let fieldU = u7{6-2};
let u7{1-0} = 0b00;
}
class F16_SP_OPS_bconst<bits<3> b, string asmop> :
F16_SP_OPS_u7_aligned<0b101,
(outs), (ins immU<7>:$u7),
!strconcat(asmop, "\t%sp, %sp, $u7")> {
let fieldB = b;
}
class F16_SP_OPS_uconst<bits<3> i,
dag outs, dag ins, string asmop> :
F16_SP_OPS_u7_aligned<i, outs, ins,
!strconcat(asmop, "\t$b3")> {
let fieldU = 0b00001;
}
class F16_SP_OPS_buconst<bits<3> i, string asmop> :
F16_SP_OPS_u7_aligned<i, (outs), (ins),
!strconcat(asmop, "\t%blink")> {
let fieldB = 0x000;
let fieldU = 0b10001;
}
class F16_SP_LD<bits<3> i, string asmop> : F16_SP_OPS_u7_aligned<i,
(outs GPR32Reduced:$b3), (ins immU<7>:$u7),
!strconcat(asmop, "\t$b3, [%sp, $u7]")>;
class F16_SP_ST<bits<3> i, string asmop> : F16_SP_OPS_u7_aligned<i,
(outs), (ins GPR32Reduced:$b3, immU<7>:$u7),
!strconcat(asmop, "\t$b3, [%sp, $u7]")>;
// Compact MOV/ADD/CMP Immediate Format.
class F16_OP_IMM<bits<5> opc, dag outs, dag ins, string asmstr> :
InstARC<2, outs, ins, asmstr, []> {
bits<3> b;
let Inst{15-11} = opc;
let Inst{10-8} = b;
}
class F16_OP_U7<bit i, string asmstr> :
F16_OP_IMM<0b11100, (outs GPR32:$b), (ins immU<7>:$u7), asmstr> {
bits<7> u7;
let Inst{7} = i;
let Inst{6-0} = u7;
}
// Special types for different instruction operands.
def cmovpred : Operand<i32>, PredicateOp,
ComplexPattern<i32, 2, "SelectCMOVPred"> {
let MIOperandInfo = (ops i32imm, i32imm);
let PrintMethod = "printPredicateOperand";
}
def ccond : Operand<i32> {
let MIOperandInfo = (ops i32imm);
let PrintMethod = "printPredicateOperand";
}
def brccond : Operand<i32> {
let MIOperandInfo = (ops i32imm);
let PrintMethod = "printBRCCPredicateOperand";
}
// Branch/call targets of different offset sizes.
class BCTarget<ValueType vt> : Operand<vt> {
let OperandType = "OPERAND_PCREL";
}
def btarget : BCTarget<OtherVT>;
class BCTargetSigned<ValueType vt, int BSz> : BCTarget<vt> {
let DecoderMethod = "DecodeBranchTargetS<"#BSz#">";
}
class BranchTargetS<int BSz> : BCTargetSigned<OtherVT, BSz>;
def btargetS7 : BranchTargetS<7>;
def btargetS8 : BranchTargetS<8>;
def btargetS9 : BranchTargetS<9>;
def btargetS10 : BranchTargetS<10>;
def btargetS13 : BranchTargetS<13>;
def btargetS21 : BranchTargetS<21>;
def btargetS25 : BranchTargetS<25>;
class CallTargetS<int BSz> : BCTargetSigned<i32, BSz>;
def calltargetS25: CallTargetS<25>;
// Compact Branch on Compare Register with Zero.
class F16_BCC_REG<bit i, string asmstr> :
InstARC<2, (outs), (ins GPR32:$b, btargetS8:$s8),
!strconcat(asmstr, "\t$b, 0, $s8"), []> {
bits<3> b;
bits<8> s8;
let Inst{15-11} = 0b11101;
let Inst{10-8} = b;
let Inst{7} = i;
let Inst{6-0} = s8{7-1};
let s8{0} = 0b0;
}
// Compact Branch Conditionally Format.
class F16_BCC<bits<2> i, dag ins, string asmstr> :
InstARC<2, (outs), ins, asmstr, []> {
let Inst{15-11} = 0b11110;
let Inst{10-9} = i;
}
class F16_BCC_s10<bits<2> i, string asmstr> :
F16_BCC<i, (ins btargetS10:$s),
!strconcat(asmstr, "\t$s")> {
bits<10> s;
let Inst{8-0} = s{9-1};
let s{0} = 0b0;
}
class F16_BCC_s7<bits<3> i, string asmstr> :
F16_BCC<0b11, (ins btargetS7:$s),
!strconcat(asmstr, "\t$s")> {
bits<7> s;
let Inst{8-6} = i;
let Inst{5-0} = s{6-1};
let s{0} = 0b0;
}