| //==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the AArch64PromoteConstant pass which promotes constants | 
 | // to global variables when this is likely to be more efficient. Currently only | 
 | // types related to constant vector (i.e., constant vector, array of constant | 
 | // vectors, constant structure with a constant vector field, etc.) are promoted | 
 | // to global variables. Constant vectors are likely to be lowered in target | 
 | // constant pool during instruction selection already; therefore, the access | 
 | // will remain the same (memory load), but the structure types are not split | 
 | // into different constant pool accesses for each field. A bonus side effect is | 
 | // that created globals may be merged by the global merge pass. | 
 | // | 
 | // FIXME: This pass may be useful for other targets too. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "AArch64.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/Constant.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/Dominators.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/GlobalValue.h" | 
 | #include "llvm/IR/GlobalVariable.h" | 
 | #include "llvm/IR/IRBuilder.h" | 
 | #include "llvm/IR/InlineAsm.h" | 
 | #include "llvm/IR/InstIterator.h" | 
 | #include "llvm/IR/Instruction.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <utility> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "aarch64-promote-const" | 
 |  | 
 | // Stress testing mode - disable heuristics. | 
 | static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden, | 
 |                             cl::desc("Promote all vector constants")); | 
 |  | 
 | STATISTIC(NumPromoted, "Number of promoted constants"); | 
 | STATISTIC(NumPromotedUses, "Number of promoted constants uses"); | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                       AArch64PromoteConstant | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 |  | 
 | /// Promotes interesting constant into global variables. | 
 | /// The motivating example is: | 
 | /// static const uint16_t TableA[32] = { | 
 | ///   41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768, | 
 | ///   31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215, | 
 | ///   25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846, | 
 | ///   21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725, | 
 | /// }; | 
 | /// | 
 | /// uint8x16x4_t LoadStatic(void) { | 
 | ///   uint8x16x4_t ret; | 
 | ///   ret.val[0] = vld1q_u16(TableA +  0); | 
 | ///   ret.val[1] = vld1q_u16(TableA +  8); | 
 | ///   ret.val[2] = vld1q_u16(TableA + 16); | 
 | ///   ret.val[3] = vld1q_u16(TableA + 24); | 
 | ///   return ret; | 
 | /// } | 
 | /// | 
 | /// The constants in this example are folded into the uses. Thus, 4 different | 
 | /// constants are created. | 
 | /// | 
 | /// As their type is vector the cheapest way to create them is to load them | 
 | /// for the memory. | 
 | /// | 
 | /// Therefore the final assembly final has 4 different loads. With this pass | 
 | /// enabled, only one load is issued for the constants. | 
 | class AArch64PromoteConstant : public ModulePass { | 
 | public: | 
 |   struct PromotedConstant { | 
 |     bool ShouldConvert = false; | 
 |     GlobalVariable *GV = nullptr; | 
 |   }; | 
 |   using PromotionCacheTy = SmallDenseMap<Constant *, PromotedConstant, 16>; | 
 |  | 
 |   struct UpdateRecord { | 
 |     Constant *C; | 
 |     Instruction *User; | 
 |     unsigned Op; | 
 |  | 
 |     UpdateRecord(Constant *C, Instruction *User, unsigned Op) | 
 |         : C(C), User(User), Op(Op) {} | 
 |   }; | 
 |  | 
 |   static char ID; | 
 |  | 
 |   AArch64PromoteConstant() : ModulePass(ID) { | 
 |     initializeAArch64PromoteConstantPass(*PassRegistry::getPassRegistry()); | 
 |   } | 
 |  | 
 |   StringRef getPassName() const override { return "AArch64 Promote Constant"; } | 
 |  | 
 |   /// Iterate over the functions and promote the interesting constants into | 
 |   /// global variables with module scope. | 
 |   bool runOnModule(Module &M) override { | 
 |     LLVM_DEBUG(dbgs() << getPassName() << '\n'); | 
 |     if (skipModule(M)) | 
 |       return false; | 
 |     bool Changed = false; | 
 |     PromotionCacheTy PromotionCache; | 
 |     for (auto &MF : M) { | 
 |       Changed |= runOnFunction(MF, PromotionCache); | 
 |     } | 
 |     return Changed; | 
 |   } | 
 |  | 
 | private: | 
 |   /// Look for interesting constants used within the given function. | 
 |   /// Promote them into global variables, load these global variables within | 
 |   /// the related function, so that the number of inserted load is minimal. | 
 |   bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache); | 
 |  | 
 |   // This transformation requires dominator info | 
 |   void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |     AU.setPreservesCFG(); | 
 |     AU.addRequired<DominatorTreeWrapperPass>(); | 
 |     AU.addPreserved<DominatorTreeWrapperPass>(); | 
 |   } | 
 |  | 
 |   /// Type to store a list of Uses. | 
 |   using Uses = SmallVector<std::pair<Instruction *, unsigned>, 4>; | 
 |   /// Map an insertion point to all the uses it dominates. | 
 |   using InsertionPoints = DenseMap<Instruction *, Uses>; | 
 |  | 
 |   /// Find the closest point that dominates the given Use. | 
 |   Instruction *findInsertionPoint(Instruction &User, unsigned OpNo); | 
 |  | 
 |   /// Check if the given insertion point is dominated by an existing | 
 |   /// insertion point. | 
 |   /// If true, the given use is added to the list of dominated uses for | 
 |   /// the related existing point. | 
 |   /// \param NewPt the insertion point to be checked | 
 |   /// \param User the user of the constant | 
 |   /// \param OpNo the operand number of the use | 
 |   /// \param InsertPts existing insertion points | 
 |   /// \pre NewPt and all instruction in InsertPts belong to the same function | 
 |   /// \return true if one of the insertion point in InsertPts dominates NewPt, | 
 |   ///         false otherwise | 
 |   bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo, | 
 |                    InsertionPoints &InsertPts); | 
 |  | 
 |   /// Check if the given insertion point can be merged with an existing | 
 |   /// insertion point in a common dominator. | 
 |   /// If true, the given use is added to the list of the created insertion | 
 |   /// point. | 
 |   /// \param NewPt the insertion point to be checked | 
 |   /// \param User the user of the constant | 
 |   /// \param OpNo the operand number of the use | 
 |   /// \param InsertPts existing insertion points | 
 |   /// \pre NewPt and all instruction in InsertPts belong to the same function | 
 |   /// \pre isDominated returns false for the exact same parameters. | 
 |   /// \return true if it exists an insertion point in InsertPts that could | 
 |   ///         have been merged with NewPt in a common dominator, | 
 |   ///         false otherwise | 
 |   bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo, | 
 |                    InsertionPoints &InsertPts); | 
 |  | 
 |   /// Compute the minimal insertion points to dominates all the interesting | 
 |   /// uses of value. | 
 |   /// Insertion points are group per function and each insertion point | 
 |   /// contains a list of all the uses it dominates within the related function | 
 |   /// \param User the user of the constant | 
 |   /// \param OpNo the operand number of the constant | 
 |   /// \param[out] InsertPts output storage of the analysis | 
 |   void computeInsertionPoint(Instruction *User, unsigned OpNo, | 
 |                              InsertionPoints &InsertPts); | 
 |  | 
 |   /// Insert a definition of a new global variable at each point contained in | 
 |   /// InsPtsPerFunc and update the related uses (also contained in | 
 |   /// InsPtsPerFunc). | 
 |   void insertDefinitions(Function &F, GlobalVariable &GV, | 
 |                          InsertionPoints &InsertPts); | 
 |  | 
 |   /// Do the constant promotion indicated by the Updates records, keeping track | 
 |   /// of globals in PromotionCache. | 
 |   void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates, | 
 |                         PromotionCacheTy &PromotionCache); | 
 |  | 
 |   /// Transfer the list of dominated uses of IPI to NewPt in InsertPts. | 
 |   /// Append Use to this list and delete the entry of IPI in InsertPts. | 
 |   static void appendAndTransferDominatedUses(Instruction *NewPt, | 
 |                                              Instruction *User, unsigned OpNo, | 
 |                                              InsertionPoints::iterator &IPI, | 
 |                                              InsertionPoints &InsertPts) { | 
 |     // Record the dominated use. | 
 |     IPI->second.emplace_back(User, OpNo); | 
 |     // Transfer the dominated uses of IPI to NewPt | 
 |     // Inserting into the DenseMap may invalidate existing iterator. | 
 |     // Keep a copy of the key to find the iterator to erase.  Keep a copy of the | 
 |     // value so that we don't have to dereference IPI->second. | 
 |     Instruction *OldInstr = IPI->first; | 
 |     Uses OldUses = std::move(IPI->second); | 
 |     InsertPts[NewPt] = std::move(OldUses); | 
 |     // Erase IPI. | 
 |     InsertPts.erase(OldInstr); | 
 |   } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char AArch64PromoteConstant::ID = 0; | 
 |  | 
 | INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const", | 
 |                       "AArch64 Promote Constant Pass", false, false) | 
 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
 | INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const", | 
 |                     "AArch64 Promote Constant Pass", false, false) | 
 |  | 
 | ModulePass *llvm::createAArch64PromoteConstantPass() { | 
 |   return new AArch64PromoteConstant(); | 
 | } | 
 |  | 
 | /// Check if the given type uses a vector type. | 
 | static bool isConstantUsingVectorTy(const Type *CstTy) { | 
 |   if (CstTy->isVectorTy()) | 
 |     return true; | 
 |   if (CstTy->isStructTy()) { | 
 |     for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements(); | 
 |          EltIdx < EndEltIdx; ++EltIdx) | 
 |       if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx))) | 
 |         return true; | 
 |   } else if (CstTy->isArrayTy()) | 
 |     return isConstantUsingVectorTy(CstTy->getArrayElementType()); | 
 |   return false; | 
 | } | 
 |  | 
 | /// Check if the given use (Instruction + OpIdx) of Cst should be converted into | 
 | /// a load of a global variable initialized with Cst. | 
 | /// A use should be converted if it is legal to do so. | 
 | /// For instance, it is not legal to turn the mask operand of a shuffle vector | 
 | /// into a load of a global variable. | 
 | static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr, | 
 |                              unsigned OpIdx) { | 
 |   // shufflevector instruction expects a const for the mask argument, i.e., the | 
 |   // third argument. Do not promote this use in that case. | 
 |   if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2) | 
 |     return false; | 
 |  | 
 |   // extractvalue instruction expects a const idx. | 
 |   if (isa<const ExtractValueInst>(Instr) && OpIdx > 0) | 
 |     return false; | 
 |  | 
 |   // extractvalue instruction expects a const idx. | 
 |   if (isa<const InsertValueInst>(Instr) && OpIdx > 1) | 
 |     return false; | 
 |  | 
 |   if (isa<const AllocaInst>(Instr) && OpIdx > 0) | 
 |     return false; | 
 |  | 
 |   // Alignment argument must be constant. | 
 |   if (isa<const LoadInst>(Instr) && OpIdx > 0) | 
 |     return false; | 
 |  | 
 |   // Alignment argument must be constant. | 
 |   if (isa<const StoreInst>(Instr) && OpIdx > 1) | 
 |     return false; | 
 |  | 
 |   // Index must be constant. | 
 |   if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0) | 
 |     return false; | 
 |  | 
 |   // Personality function and filters must be constant. | 
 |   // Give up on that instruction. | 
 |   if (isa<const LandingPadInst>(Instr)) | 
 |     return false; | 
 |  | 
 |   // Switch instruction expects constants to compare to. | 
 |   if (isa<const SwitchInst>(Instr)) | 
 |     return false; | 
 |  | 
 |   // Expected address must be a constant. | 
 |   if (isa<const IndirectBrInst>(Instr)) | 
 |     return false; | 
 |  | 
 |   // Do not mess with intrinsics. | 
 |   if (isa<const IntrinsicInst>(Instr)) | 
 |     return false; | 
 |  | 
 |   // Do not mess with inline asm. | 
 |   const CallInst *CI = dyn_cast<const CallInst>(Instr); | 
 |   return !(CI && isa<const InlineAsm>(CI->getCalledValue())); | 
 | } | 
 |  | 
 | /// Check if the given Cst should be converted into | 
 | /// a load of a global variable initialized with Cst. | 
 | /// A constant should be converted if it is likely that the materialization of | 
 | /// the constant will be tricky. Thus, we give up on zero or undef values. | 
 | /// | 
 | /// \todo Currently, accept only vector related types. | 
 | /// Also we give up on all simple vector type to keep the existing | 
 | /// behavior. Otherwise, we should push here all the check of the lowering of | 
 | /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging | 
 | /// constant via global merge and the fact that the same constant is stored | 
 | /// only once with this method (versus, as many function that uses the constant | 
 | /// for the regular approach, even for float). | 
 | /// Again, the simplest solution would be to promote every | 
 | /// constant and rematerialize them when they are actually cheap to create. | 
 | static bool shouldConvertImpl(const Constant *Cst) { | 
 |   if (isa<const UndefValue>(Cst)) | 
 |     return false; | 
 |  | 
 |   // FIXME: In some cases, it may be interesting to promote in memory | 
 |   // a zero initialized constant. | 
 |   // E.g., when the type of Cst require more instructions than the | 
 |   // adrp/add/load sequence or when this sequence can be shared by several | 
 |   // instances of Cst. | 
 |   // Ideally, we could promote this into a global and rematerialize the constant | 
 |   // when it was a bad idea. | 
 |   if (Cst->isZeroValue()) | 
 |     return false; | 
 |  | 
 |   if (Stress) | 
 |     return true; | 
 |  | 
 |   // FIXME: see function \todo | 
 |   if (Cst->getType()->isVectorTy()) | 
 |     return false; | 
 |   return isConstantUsingVectorTy(Cst->getType()); | 
 | } | 
 |  | 
 | static bool | 
 | shouldConvert(Constant &C, | 
 |               AArch64PromoteConstant::PromotionCacheTy &PromotionCache) { | 
 |   auto Converted = PromotionCache.insert( | 
 |       std::make_pair(&C, AArch64PromoteConstant::PromotedConstant())); | 
 |   if (Converted.second) | 
 |     Converted.first->second.ShouldConvert = shouldConvertImpl(&C); | 
 |   return Converted.first->second.ShouldConvert; | 
 | } | 
 |  | 
 | Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User, | 
 |                                                         unsigned OpNo) { | 
 |   // If this user is a phi, the insertion point is in the related | 
 |   // incoming basic block. | 
 |   if (PHINode *PhiInst = dyn_cast<PHINode>(&User)) | 
 |     return PhiInst->getIncomingBlock(OpNo)->getTerminator(); | 
 |  | 
 |   return &User; | 
 | } | 
 |  | 
 | bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User, | 
 |                                          unsigned OpNo, | 
 |                                          InsertionPoints &InsertPts) { | 
 |   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( | 
 |       *NewPt->getParent()->getParent()).getDomTree(); | 
 |  | 
 |   // Traverse all the existing insertion points and check if one is dominating | 
 |   // NewPt. If it is, remember that. | 
 |   for (auto &IPI : InsertPts) { | 
 |     if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) || | 
 |         // When IPI.first is a terminator instruction, DT may think that | 
 |         // the result is defined on the edge. | 
 |         // Here we are testing the insertion point, not the definition. | 
 |         (IPI.first->getParent() != NewPt->getParent() && | 
 |          DT.dominates(IPI.first->getParent(), NewPt->getParent()))) { | 
 |       // No need to insert this point. Just record the dominated use. | 
 |       LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n"); | 
 |       LLVM_DEBUG(IPI.first->print(dbgs())); | 
 |       LLVM_DEBUG(dbgs() << '\n'); | 
 |       IPI.second.emplace_back(User, OpNo); | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User, | 
 |                                          unsigned OpNo, | 
 |                                          InsertionPoints &InsertPts) { | 
 |   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( | 
 |       *NewPt->getParent()->getParent()).getDomTree(); | 
 |   BasicBlock *NewBB = NewPt->getParent(); | 
 |  | 
 |   // Traverse all the existing insertion point and check if one is dominated by | 
 |   // NewPt and thus useless or can be combined with NewPt into a common | 
 |   // dominator. | 
 |   for (InsertionPoints::iterator IPI = InsertPts.begin(), | 
 |                                  EndIPI = InsertPts.end(); | 
 |        IPI != EndIPI; ++IPI) { | 
 |     BasicBlock *CurBB = IPI->first->getParent(); | 
 |     if (NewBB == CurBB) { | 
 |       // Instructions are in the same block. | 
 |       // By construction, NewPt is dominating the other. | 
 |       // Indeed, isDominated returned false with the exact same arguments. | 
 |       LLVM_DEBUG(dbgs() << "Merge insertion point with:\n"); | 
 |       LLVM_DEBUG(IPI->first->print(dbgs())); | 
 |       LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n"); | 
 |       appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); | 
 |       return true; | 
 |     } | 
 |  | 
 |     // Look for a common dominator | 
 |     BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB); | 
 |     // If none exists, we cannot merge these two points. | 
 |     if (!CommonDominator) | 
 |       continue; | 
 |  | 
 |     if (CommonDominator != NewBB) { | 
 |       // By construction, the CommonDominator cannot be CurBB. | 
 |       assert(CommonDominator != CurBB && | 
 |              "Instruction has not been rejected during isDominated check!"); | 
 |       // Take the last instruction of the CommonDominator as insertion point | 
 |       NewPt = CommonDominator->getTerminator(); | 
 |     } | 
 |     // else, CommonDominator is the block of NewBB, hence NewBB is the last | 
 |     // possible insertion point in that block. | 
 |     LLVM_DEBUG(dbgs() << "Merge insertion point with:\n"); | 
 |     LLVM_DEBUG(IPI->first->print(dbgs())); | 
 |     LLVM_DEBUG(dbgs() << '\n'); | 
 |     LLVM_DEBUG(NewPt->print(dbgs())); | 
 |     LLVM_DEBUG(dbgs() << '\n'); | 
 |     appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | void AArch64PromoteConstant::computeInsertionPoint( | 
 |     Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) { | 
 |   LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n"); | 
 |   LLVM_DEBUG(User->print(dbgs())); | 
 |   LLVM_DEBUG(dbgs() << '\n'); | 
 |  | 
 |   Instruction *InsertionPoint = findInsertionPoint(*User, OpNo); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Considered insertion point:\n"); | 
 |   LLVM_DEBUG(InsertionPoint->print(dbgs())); | 
 |   LLVM_DEBUG(dbgs() << '\n'); | 
 |  | 
 |   if (isDominated(InsertionPoint, User, OpNo, InsertPts)) | 
 |     return; | 
 |   // This insertion point is useful, check if we can merge some insertion | 
 |   // point in a common dominator or if NewPt dominates an existing one. | 
 |   if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts)) | 
 |     return; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Keep considered insertion point\n"); | 
 |  | 
 |   // It is definitely useful by its own | 
 |   InsertPts[InsertionPoint].emplace_back(User, OpNo); | 
 | } | 
 |  | 
 | static void ensurePromotedGV(Function &F, Constant &C, | 
 |                              AArch64PromoteConstant::PromotedConstant &PC) { | 
 |   assert(PC.ShouldConvert && | 
 |          "Expected that we should convert this to a global"); | 
 |   if (PC.GV) | 
 |     return; | 
 |   PC.GV = new GlobalVariable( | 
 |       *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr, | 
 |       "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal); | 
 |   PC.GV->setInitializer(&C); | 
 |   LLVM_DEBUG(dbgs() << "Global replacement: "); | 
 |   LLVM_DEBUG(PC.GV->print(dbgs())); | 
 |   LLVM_DEBUG(dbgs() << '\n'); | 
 |   ++NumPromoted; | 
 | } | 
 |  | 
 | void AArch64PromoteConstant::insertDefinitions(Function &F, | 
 |                                                GlobalVariable &PromotedGV, | 
 |                                                InsertionPoints &InsertPts) { | 
 | #ifndef NDEBUG | 
 |   // Do more checking for debug purposes. | 
 |   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); | 
 | #endif | 
 |   assert(!InsertPts.empty() && "Empty uses does not need a definition"); | 
 |  | 
 |   for (const auto &IPI : InsertPts) { | 
 |     // Create the load of the global variable. | 
 |     IRBuilder<> Builder(IPI.first); | 
 |     LoadInst *LoadedCst = | 
 |         Builder.CreateLoad(PromotedGV.getValueType(), &PromotedGV); | 
 |     LLVM_DEBUG(dbgs() << "**********\n"); | 
 |     LLVM_DEBUG(dbgs() << "New def: "); | 
 |     LLVM_DEBUG(LoadedCst->print(dbgs())); | 
 |     LLVM_DEBUG(dbgs() << '\n'); | 
 |  | 
 |     // Update the dominated uses. | 
 |     for (auto Use : IPI.second) { | 
 | #ifndef NDEBUG | 
 |       assert(DT.dominates(LoadedCst, | 
 |                           findInsertionPoint(*Use.first, Use.second)) && | 
 |              "Inserted definition does not dominate all its uses!"); | 
 | #endif | 
 |       LLVM_DEBUG({ | 
 |         dbgs() << "Use to update " << Use.second << ":"; | 
 |         Use.first->print(dbgs()); | 
 |         dbgs() << '\n'; | 
 |       }); | 
 |       Use.first->setOperand(Use.second, LoadedCst); | 
 |       ++NumPromotedUses; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void AArch64PromoteConstant::promoteConstants( | 
 |     Function &F, SmallVectorImpl<UpdateRecord> &Updates, | 
 |     PromotionCacheTy &PromotionCache) { | 
 |   // Promote the constants. | 
 |   for (auto U = Updates.begin(), E = Updates.end(); U != E;) { | 
 |     LLVM_DEBUG(dbgs() << "** Compute insertion points **\n"); | 
 |     auto First = U; | 
 |     Constant *C = First->C; | 
 |     InsertionPoints InsertPts; | 
 |     do { | 
 |       computeInsertionPoint(U->User, U->Op, InsertPts); | 
 |     } while (++U != E && U->C == C); | 
 |  | 
 |     auto &Promotion = PromotionCache[C]; | 
 |     ensurePromotedGV(F, *C, Promotion); | 
 |     insertDefinitions(F, *Promotion.GV, InsertPts); | 
 |   } | 
 | } | 
 |  | 
 | bool AArch64PromoteConstant::runOnFunction(Function &F, | 
 |                                            PromotionCacheTy &PromotionCache) { | 
 |   // Look for instructions using constant vector. Promote that constant to a | 
 |   // global variable. Create as few loads of this variable as possible and | 
 |   // update the uses accordingly. | 
 |   SmallVector<UpdateRecord, 64> Updates; | 
 |   for (Instruction &I : instructions(&F)) { | 
 |     // Traverse the operand, looking for constant vectors. Replace them by a | 
 |     // load of a global variable of constant vector type. | 
 |     for (Use &U : I.operands()) { | 
 |       Constant *Cst = dyn_cast<Constant>(U); | 
 |       // There is no point in promoting global values as they are already | 
 |       // global. Do not promote constant expressions either, as they may | 
 |       // require some code expansion. | 
 |       if (!Cst || isa<GlobalValue>(Cst) || isa<ConstantExpr>(Cst)) | 
 |         continue; | 
 |  | 
 |       // Check if this constant is worth promoting. | 
 |       if (!shouldConvert(*Cst, PromotionCache)) | 
 |         continue; | 
 |  | 
 |       // Check if this use should be promoted. | 
 |       unsigned OpNo = &U - I.op_begin(); | 
 |       if (!shouldConvertUse(Cst, &I, OpNo)) | 
 |         continue; | 
 |  | 
 |       Updates.emplace_back(Cst, &I, OpNo); | 
 |     } | 
 |   } | 
 |  | 
 |   if (Updates.empty()) | 
 |     return false; | 
 |  | 
 |   promoteConstants(F, Updates, PromotionCache); | 
 |   return true; | 
 | } |