blob: 8991c24658630f97886b4c011a51f1803540b54f [file] [log] [blame]
//===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions determines the possibility of performing constant
// folding.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include <cerrno>
#include <cmath>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//
/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
/// from a global, return the global and the constant. Because of
/// constantexprs, this function is recursive.
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
int64_t &Offset, const TargetData &TD) {
// Trivial case, constant is the global.
if ((GV = dyn_cast<GlobalValue>(C))) {
Offset = 0;
return true;
}
// Otherwise, if this isn't a constant expr, bail out.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return false;
// Look through ptr->int and ptr->ptr casts.
if (CE->getOpcode() == Instruction::PtrToInt ||
CE->getOpcode() == Instruction::BitCast)
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
if (CE->getOpcode() == Instruction::GetElementPtr) {
// Cannot compute this if the element type of the pointer is missing size
// info.
if (!cast<PointerType>(CE->getOperand(0)->getType())->getElementType()->isSized())
return false;
// If the base isn't a global+constant, we aren't either.
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
return false;
// Otherwise, add any offset that our operands provide.
gep_type_iterator GTI = gep_type_begin(CE);
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i, ++GTI) {
ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(i));
if (!CI) return false; // Index isn't a simple constant?
if (CI->getZExtValue() == 0) continue; // Not adding anything.
if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
// N = N + Offset
Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
} else {
const SequentialType *SQT = cast<SequentialType>(*GTI);
Offset += TD.getTypeSize(SQT->getElementType())*CI->getSExtValue();
}
}
return true;
}
return false;
}
/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
/// these together. If target data info is available, it is provided as TD,
/// otherwise TD is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
Constant *Op1, const TargetData *TD){
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
// Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
// bits.
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
// constant. This happens frequently when iterating over a global array.
if (Opc == Instruction::Sub && TD) {
GlobalValue *GV1, *GV2;
int64_t Offs1, Offs2;
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
GV1 == GV2) {
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
return ConstantInt::get(Op0->getType(), Offs1-Offs2);
}
}
// TODO: Fold icmp setne/seteq as well.
return 0;
}
/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
/// constant expression, do so.
static Constant *SymbolicallyEvaluateGEP(Constant** Ops, unsigned NumOps,
const Type *ResultTy,
const TargetData *TD) {
Constant *Ptr = Ops[0];
if (!cast<PointerType>(Ptr->getType())->getElementType()->isSized())
return 0;
if (TD && Ptr->isNullValue()) {
// If this is a constant expr gep that is effectively computing an
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
bool isFoldableGEP = true;
for (unsigned i = 1; i != NumOps; ++i)
if (!isa<ConstantInt>(Ops[i])) {
isFoldableGEP = false;
break;
}
if (isFoldableGEP) {
uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
(Value**)Ops+1, NumOps-1);
Constant *C = ConstantInt::get(TD->getIntPtrType(), Offset);
return ConstantExpr::getIntToPtr(C, ResultTy);
}
}
return 0;
}
//===----------------------------------------------------------------------===//
// Constant Folding public APIs
//===----------------------------------------------------------------------===//
/// ConstantFoldInstruction - Attempt to constant fold the specified
/// instruction. If successful, the constant result is returned, if not, null
/// is returned. Note that this function can only fail when attempting to fold
/// instructions like loads and stores, which have no constant expression form.
///
Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
if (PHINode *PN = dyn_cast<PHINode>(I)) {
if (PN->getNumIncomingValues() == 0)
return Constant::getNullValue(PN->getType());
Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
if (Result == 0) return 0;
// Handle PHI nodes specially here...
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
return 0; // Not all the same incoming constants...
// If we reach here, all incoming values are the same constant.
return Result;
}
// Scan the operand list, checking to see if they are all constants, if so,
// hand off to ConstantFoldInstOperands.
SmallVector<Constant*, 8> Ops;
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Constant *Op = dyn_cast<Constant>(I->getOperand(i)))
Ops.push_back(Op);
else
return 0; // All operands not constant!
return ConstantFoldInstOperands(I, &Ops[0], Ops.size(), TD);
}
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
/// specified opcode and operands. If successful, the constant result is
/// returned, if not, null is returned. Note that this function can fail when
/// attempting to fold instructions like loads and stores, which have no
/// constant expression form.
///
Constant *llvm::ConstantFoldInstOperands(const Instruction* I,
Constant** Ops, unsigned NumOps,
const TargetData *TD) {
unsigned Opc = I->getOpcode();
const Type *DestTy = I->getType();
// Handle easy binops first.
if (isa<BinaryOperator>(I)) {
if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
if (Constant *C = SymbolicallyEvaluateBinop(I->getOpcode(), Ops[0],
Ops[1], TD))
return C;
return ConstantExpr::get(Opc, Ops[0], Ops[1]);
}
switch (Opc) {
default: return 0;
case Instruction::Call:
if (Function *F = dyn_cast<Function>(Ops[0]))
if (canConstantFoldCallTo(F))
return ConstantFoldCall(F, Ops+1, NumOps-1);
return 0;
case Instruction::ICmp:
case Instruction::FCmp:
return ConstantExpr::getCompare(cast<CmpInst>(I)->getPredicate(), Ops[0],
Ops[1]);
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
return ConstantExpr::getCast(Opc, Ops[0], DestTy);
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, I->getType(), TD))
return C;
return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
}
}
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
/// getelementptr constantexpr, return the constant value being addressed by the
/// constant expression, or null if something is funny and we can't decide.
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
ConstantExpr *CE) {
if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
return 0; // Do not allow stepping over the value!
// Loop over all of the operands, tracking down which value we are
// addressing...
gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
for (++I; I != E; ++I)
if (const StructType *STy = dyn_cast<StructType>(*I)) {
ConstantInt *CU = cast<ConstantInt>(I.getOperand());
assert(CU->getZExtValue() < STy->getNumElements() &&
"Struct index out of range!");
unsigned El = (unsigned)CU->getZExtValue();
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
C = CS->getOperand(El);
} else if (isa<ConstantAggregateZero>(C)) {
C = Constant::getNullValue(STy->getElementType(El));
} else if (isa<UndefValue>(C)) {
C = UndefValue::get(STy->getElementType(El));
} else {
return 0;
}
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
if (CI->getZExtValue() >= ATy->getNumElements())
return 0;
if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
C = CA->getOperand(CI->getZExtValue());
else if (isa<ConstantAggregateZero>(C))
C = Constant::getNullValue(ATy->getElementType());
else if (isa<UndefValue>(C))
C = UndefValue::get(ATy->getElementType());
else
return 0;
} else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
if (CI->getZExtValue() >= PTy->getNumElements())
return 0;
if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
C = CP->getOperand(CI->getZExtValue());
else if (isa<ConstantAggregateZero>(C))
C = Constant::getNullValue(PTy->getElementType());
else if (isa<UndefValue>(C))
C = UndefValue::get(PTy->getElementType());
else
return 0;
} else {
return 0;
}
} else {
return 0;
}
return C;
}
//===----------------------------------------------------------------------===//
// Constant Folding for Calls
//
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
/// the specified function.
bool
llvm::canConstantFoldCallTo(Function *F) {
const std::string &Name = F->getName();
switch (F->getIntrinsicID()) {
case Intrinsic::sqrt_f32:
case Intrinsic::sqrt_f64:
case Intrinsic::powi_f32:
case Intrinsic::powi_f64:
case Intrinsic::bswap:
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
return true;
default: break;
}
switch (Name[0])
{
case 'a':
return Name == "acos" || Name == "asin" || Name == "atan" ||
Name == "atan2";
case 'c':
return Name == "ceil" || Name == "cos" || Name == "cosf" ||
Name == "cosh";
case 'e':
return Name == "exp";
case 'f':
return Name == "fabs" || Name == "fmod" || Name == "floor";
case 'l':
return Name == "log" || Name == "log10";
case 'p':
return Name == "pow";
case 's':
return Name == "sin" || Name == "sinh" ||
Name == "sqrt" || Name == "sqrtf";
case 't':
return Name == "tan" || Name == "tanh";
default:
return false;
}
}
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
const Type *Ty) {
errno = 0;
V = NativeFP(V);
if (errno == 0)
return ConstantFP::get(Ty, V);
errno = 0;
return 0;
}
/// ConstantFoldCall - Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.
Constant *
llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
const std::string &Name = F->getName();
const Type *Ty = F->getReturnType();
if (NumOperands == 1) {
if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
double V = Op->getValue();
switch (Name[0])
{
case 'a':
if (Name == "acos")
return ConstantFoldFP(acos, V, Ty);
else if (Name == "asin")
return ConstantFoldFP(asin, V, Ty);
else if (Name == "atan")
return ConstantFP::get(Ty, atan(V));
break;
case 'c':
if (Name == "ceil")
return ConstantFoldFP(ceil, V, Ty);
else if (Name == "cos")
return ConstantFP::get(Ty, cos(V));
else if (Name == "cosh")
return ConstantFP::get(Ty, cosh(V));
break;
case 'e':
if (Name == "exp")
return ConstantFP::get(Ty, exp(V));
break;
case 'f':
if (Name == "fabs")
return ConstantFP::get(Ty, fabs(V));
else if (Name == "floor")
return ConstantFoldFP(floor, V, Ty);
break;
case 'l':
if (Name == "log" && V > 0)
return ConstantFP::get(Ty, log(V));
else if (Name == "log10" && V > 0)
return ConstantFoldFP(log10, V, Ty);
else if (Name == "llvm.sqrt.f32" || Name == "llvm.sqrt.f64") {
if (V >= -0.0)
return ConstantFP::get(Ty, sqrt(V));
else // Undefined
return ConstantFP::get(Ty, 0.0);
}
break;
case 's':
if (Name == "sin")
return ConstantFP::get(Ty, sin(V));
else if (Name == "sinh")
return ConstantFP::get(Ty, sinh(V));
else if (Name == "sqrt" && V >= 0)
return ConstantFP::get(Ty, sqrt(V));
else if (Name == "sqrtf" && V >= 0)
return ConstantFP::get(Ty, sqrt((float)V));
break;
case 't':
if (Name == "tan")
return ConstantFP::get(Ty, tan(V));
else if (Name == "tanh")
return ConstantFP::get(Ty, tanh(V));
break;
default:
break;
}
} else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
if (Name.size() > 11 && !memcmp(&Name[0], "llvm.bswap", 10)) {
return ConstantInt::get(Op->getValue().byteSwap());
} else if (Name.size() > 11 && !memcmp(&Name[0],"llvm.ctpop",10)) {
uint64_t ctpop = Op->getValue().countPopulation();
return ConstantInt::get(Type::Int32Ty, ctpop);
} else if (Name.size() > 10 && !memcmp(&Name[0], "llvm.cttz", 9)) {
uint64_t cttz = Op->getValue().countTrailingZeros();
return ConstantInt::get(Type::Int32Ty, cttz);
} else if (Name.size() > 10 && !memcmp(&Name[0], "llvm.ctlz", 9)) {
uint64_t ctlz = Op->getValue().countLeadingZeros();
return ConstantInt::get(Type::Int32Ty, ctlz);
}
}
} else if (NumOperands == 2) {
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
double Op1V = Op1->getValue();
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
double Op2V = Op2->getValue();
if (Name == "pow") {
errno = 0;
double V = pow(Op1V, Op2V);
if (errno == 0)
return ConstantFP::get(Ty, V);
} else if (Name == "fmod") {
errno = 0;
double V = fmod(Op1V, Op2V);
if (errno == 0)
return ConstantFP::get(Ty, V);
} else if (Name == "atan2") {
return ConstantFP::get(Ty, atan2(Op1V,Op2V));
}
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
if (Name == "llvm.powi.f32") {
return ConstantFP::get(Ty, std::pow((float)Op1V,
(int)Op2C->getZExtValue()));
} else if (Name == "llvm.powi.f64") {
return ConstantFP::get(Ty, std::pow((double)Op1V,
(int)Op2C->getZExtValue()));
}
}
}
}
return 0;
}