blob: c1e5d3e707ce8cd470e031ad3a616936b195f5a3 [file] [log] [blame]
//===--------------------- Dispatch.cpp -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements methods declared by class RegisterFile, DispatchUnit
/// and RetireControlUnit.
///
//===----------------------------------------------------------------------===//
#include "Dispatch.h"
#include "Backend.h"
#include "HWEventListener.h"
#include "Scheduler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "llvm-mca"
namespace mca {
void RegisterFile::addRegisterFile(ArrayRef<unsigned> RegisterClasses,
unsigned NumTemps) {
unsigned RegisterFileIndex = RegisterFiles.size();
assert(RegisterFileIndex < 32 && "Too many register files!");
RegisterFiles.emplace_back(NumTemps);
// Special case where there are no register classes specified.
// An empty register class set means *all* registers.
if (RegisterClasses.empty()) {
for (std::pair<WriteState *, unsigned> &Mapping : RegisterMappings)
Mapping.second |= 1U << RegisterFileIndex;
} else {
for (const unsigned RegClassIndex : RegisterClasses) {
const MCRegisterClass &RC = MRI.getRegClass(RegClassIndex);
for (const MCPhysReg Reg : RC)
RegisterMappings[Reg].second |= 1U << RegisterFileIndex;
}
}
}
void RegisterFile::createNewMappings(unsigned RegisterFileMask,
MutableArrayRef<unsigned> UsedPhysRegs) {
assert(RegisterFileMask && "RegisterFileMask cannot be zero!");
// Notify each register file that contains RegID.
do {
unsigned NextRegisterFile = llvm::PowerOf2Floor(RegisterFileMask);
unsigned RegisterFileIndex = llvm::countTrailingZeros(NextRegisterFile);
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
RMT.NumUsedMappings++;
UsedPhysRegs[RegisterFileIndex]++;
RegisterFileMask ^= NextRegisterFile;
} while (RegisterFileMask);
}
void RegisterFile::removeMappings(unsigned RegisterFileMask,
MutableArrayRef<unsigned> FreedPhysRegs) {
assert(RegisterFileMask && "RegisterFileMask cannot be zero!");
// Notify each register file that contains RegID.
do {
unsigned NextRegisterFile = llvm::PowerOf2Floor(RegisterFileMask);
unsigned RegisterFileIndex = llvm::countTrailingZeros(NextRegisterFile);
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
assert(RMT.NumUsedMappings);
RMT.NumUsedMappings--;
FreedPhysRegs[RegisterFileIndex]++;
RegisterFileMask ^= NextRegisterFile;
} while (RegisterFileMask);
}
void RegisterFile::addRegisterMapping(WriteState &WS,
MutableArrayRef<unsigned> UsedPhysRegs) {
unsigned RegID = WS.getRegisterID();
assert(RegID && "Adding an invalid register definition?");
RegisterMapping &Mapping = RegisterMappings[RegID];
Mapping.first = &WS;
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I)
RegisterMappings[*I].first = &WS;
createNewMappings(Mapping.second, UsedPhysRegs);
// If this is a partial update, then we are done.
if (!WS.fullyUpdatesSuperRegs())
return;
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I)
RegisterMappings[*I].first = &WS;
}
void RegisterFile::invalidateRegisterMapping(
const WriteState &WS, MutableArrayRef<unsigned> FreedPhysRegs) {
unsigned RegID = WS.getRegisterID();
bool ShouldInvalidateSuperRegs = WS.fullyUpdatesSuperRegs();
assert(RegID != 0 && "Invalidating an already invalid register?");
assert(WS.getCyclesLeft() != -512 &&
"Invalidating a write of unknown cycles!");
assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!");
RegisterMapping &Mapping = RegisterMappings[RegID];
if (!Mapping.first)
return;
removeMappings(Mapping.second, FreedPhysRegs);
if (Mapping.first == &WS)
Mapping.first = nullptr;
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I)
if (RegisterMappings[*I].first == &WS)
RegisterMappings[*I].first = nullptr;
if (!ShouldInvalidateSuperRegs)
return;
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I)
if (RegisterMappings[*I].first == &WS)
RegisterMappings[*I].first = nullptr;
}
void RegisterFile::collectWrites(SmallVectorImpl<WriteState *> &Writes,
unsigned RegID) const {
assert(RegID && RegID < RegisterMappings.size());
WriteState *WS = RegisterMappings[RegID].first;
if (WS) {
DEBUG(dbgs() << "Found a dependent use of RegID=" << RegID << '\n');
Writes.push_back(WS);
}
// Handle potential partial register updates.
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
WS = RegisterMappings[*I].first;
if (WS && std::find(Writes.begin(), Writes.end(), WS) == Writes.end()) {
DEBUG(dbgs() << "Found a dependent use of subReg " << *I << " (part of "
<< RegID << ")\n");
Writes.push_back(WS);
}
}
}
unsigned RegisterFile::isAvailable(ArrayRef<unsigned> Regs) const {
SmallVector<unsigned, 4> NumTemporaries(getNumRegisterFiles());
// Find how many new mappings must be created for each register file.
for (const unsigned RegID : Regs) {
unsigned RegisterFileMask = RegisterMappings[RegID].second;
do {
unsigned NextRegisterFileID = llvm::PowerOf2Floor(RegisterFileMask);
NumTemporaries[llvm::countTrailingZeros(NextRegisterFileID)]++;
RegisterFileMask ^= NextRegisterFileID;
} while (RegisterFileMask);
}
unsigned Response = 0;
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
unsigned Temporaries = NumTemporaries[I];
if (!Temporaries)
continue;
const RegisterMappingTracker &RMT = RegisterFiles[I];
if (!RMT.TotalMappings) {
// The register file has an unbound number of microarchitectural
// registers.
continue;
}
if (RMT.TotalMappings < Temporaries) {
// The current register file is too small. This may occur if the number of
// microarchitectural registers in register file #0 was changed by the
// users via flag -reg-file-size. Alternatively, the scheduling model
// specified a too small number of registers for this register file.
report_fatal_error(
"Not enough microarchitectural registers in the register file");
}
if (RMT.TotalMappings < RMT.NumUsedMappings + Temporaries)
Response |= (1U << I);
}
return Response;
}
#ifndef NDEBUG
void RegisterFile::dump() const {
for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) {
const RegisterMapping &RM = RegisterMappings[I];
dbgs() << MRI.getName(I) << ", " << I << ", Map=" << RM.second << ", ";
if (RM.first)
RM.first->dump();
else
dbgs() << "(null)\n";
}
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
dbgs() << "Register File #" << I;
const RegisterMappingTracker &RMT = RegisterFiles[I];
dbgs() << "\n TotalMappings: " << RMT.TotalMappings
<< "\n NumUsedMappings: " << RMT.NumUsedMappings << '\n';
}
}
#endif
// Reserves a number of slots, and returns a new token.
unsigned RetireControlUnit::reserveSlot(unsigned Index, unsigned NumMicroOps) {
assert(isAvailable(NumMicroOps));
unsigned NormalizedQuantity =
std::min(NumMicroOps, static_cast<unsigned>(Queue.size()));
// Zero latency instructions may have zero mOps. Artificially bump this
// value to 1. Although zero latency instructions don't consume scheduler
// resources, they still consume one slot in the retire queue.
NormalizedQuantity = std::max(NormalizedQuantity, 1U);
unsigned TokenID = NextAvailableSlotIdx;
Queue[NextAvailableSlotIdx] = {Index, NormalizedQuantity, false};
NextAvailableSlotIdx += NormalizedQuantity;
NextAvailableSlotIdx %= Queue.size();
AvailableSlots -= NormalizedQuantity;
return TokenID;
}
void DispatchUnit::notifyInstructionDispatched(
unsigned Index, ArrayRef<unsigned> UsedRegs) {
DEBUG(dbgs() << "[E] Instruction Dispatched: " << Index << '\n');
Owner->notifyInstructionEvent(HWInstructionDispatchedEvent(Index, UsedRegs));
}
void DispatchUnit::notifyInstructionRetired(unsigned Index) {
DEBUG(dbgs() << "[E] Instruction Retired: " << Index << '\n');
const Instruction &IS = Owner->getInstruction(Index);
SmallVector<unsigned, 4> FreedRegs(RAT->getNumRegisterFiles());
for (const std::unique_ptr<WriteState> &WS : IS.getDefs())
RAT->invalidateRegisterMapping(*WS.get(), FreedRegs);
Owner->notifyInstructionEvent(HWInstructionRetiredEvent(Index, FreedRegs));
Owner->eraseInstruction(Index);
}
void RetireControlUnit::cycleEvent() {
if (isEmpty())
return;
unsigned NumRetired = 0;
while (!isEmpty()) {
if (MaxRetirePerCycle != 0 && NumRetired == MaxRetirePerCycle)
break;
RUToken &Current = Queue[CurrentInstructionSlotIdx];
assert(Current.NumSlots && "Reserved zero slots?");
if (!Current.Executed)
break;
Owner->notifyInstructionRetired(Current.Index);
CurrentInstructionSlotIdx += Current.NumSlots;
CurrentInstructionSlotIdx %= Queue.size();
AvailableSlots += Current.NumSlots;
NumRetired++;
}
}
void RetireControlUnit::onInstructionExecuted(unsigned TokenID) {
assert(Queue.size() > TokenID);
assert(Queue[TokenID].Executed == false && Queue[TokenID].Index != ~0U);
Queue[TokenID].Executed = true;
}
#ifndef NDEBUG
void RetireControlUnit::dump() const {
dbgs() << "Retire Unit: { Total Slots=" << Queue.size()
<< ", Available Slots=" << AvailableSlots << " }\n";
}
#endif
bool DispatchUnit::checkRAT(unsigned Index, const Instruction &Instr) {
const InstrDesc &Desc = Instr.getDesc();
unsigned NumWrites = Desc.Writes.size();
unsigned RegisterMask = RAT->isAvailable(NumWrites);
// A mask with all zeroes means: register files are available.
if (RegisterMask) {
Owner->notifyStallEvent(
HWStallEvent(HWStallEvent::RegisterFileStall, Index));
return false;
}
return true;
}
bool DispatchUnit::checkRCU(unsigned Index, const InstrDesc &Desc) {
unsigned NumMicroOps = Desc.NumMicroOps;
if (RCU->isAvailable(NumMicroOps))
return true;
Owner->notifyStallEvent(
HWStallEvent(HWStallEvent::RetireControlUnitStall, Index));
return false;
}
bool DispatchUnit::checkScheduler(unsigned Index, const InstrDesc &Desc) {
// If this is a zero-latency instruction, then it bypasses
// the scheduler.
HWStallEvent::GenericEventType Type = HWStallEvent::Invalid;
switch (SC->canBeDispatched(Desc)) {
case Scheduler::HWS_AVAILABLE:
return true;
case Scheduler::HWS_QUEUE_UNAVAILABLE:
Type = HWStallEvent::SchedulerQueueFull;
break;
case Scheduler::HWS_LD_QUEUE_UNAVAILABLE:
Type = HWStallEvent::LoadQueueFull;
break;
case Scheduler::HWS_ST_QUEUE_UNAVAILABLE:
Type = HWStallEvent::StoreQueueFull;
break;
case Scheduler::HWS_DISPATCH_GROUP_RESTRICTION:
Type = HWStallEvent::DispatchGroupStall;
}
Owner->notifyStallEvent(HWStallEvent(Type, Index));
return false;
}
void DispatchUnit::updateRAWDependencies(ReadState &RS,
const MCSubtargetInfo &STI) {
SmallVector<WriteState *, 4> DependentWrites;
collectWrites(DependentWrites, RS.getRegisterID());
RS.setDependentWrites(DependentWrites.size());
DEBUG(dbgs() << "Found " << DependentWrites.size() << " dependent writes\n");
// We know that this read depends on all the writes in DependentWrites.
// For each write, check if we have ReadAdvance information, and use it
// to figure out in how many cycles this read becomes available.
const ReadDescriptor &RD = RS.getDescriptor();
if (!RD.HasReadAdvanceEntries) {
for (WriteState *WS : DependentWrites)
WS->addUser(&RS, /* ReadAdvance */ 0);
return;
}
const MCSchedModel &SM = STI.getSchedModel();
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
for (WriteState *WS : DependentWrites) {
unsigned WriteResID = WS->getWriteResourceID();
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.OpIndex, WriteResID);
WS->addUser(&RS, ReadAdvance);
}
// Prepare the set for another round.
DependentWrites.clear();
}
void DispatchUnit::dispatch(unsigned IID, Instruction *NewInst,
const MCSubtargetInfo &STI) {
assert(!CarryOver && "Cannot dispatch another instruction!");
unsigned NumMicroOps = NewInst->getDesc().NumMicroOps;
if (NumMicroOps > DispatchWidth) {
assert(AvailableEntries == DispatchWidth);
AvailableEntries = 0;
CarryOver = NumMicroOps - DispatchWidth;
} else {
assert(AvailableEntries >= NumMicroOps);
AvailableEntries -= NumMicroOps;
}
// Update RAW dependencies.
for (std::unique_ptr<ReadState> &RS : NewInst->getUses())
updateRAWDependencies(*RS, STI);
// Allocate new mappings.
SmallVector<unsigned, 4> RegisterFiles(RAT->getNumRegisterFiles());
for (std::unique_ptr<WriteState> &WS : NewInst->getDefs())
RAT->addRegisterMapping(*WS, RegisterFiles);
// Reserve slots in the RCU, and notify the instruction that it has been
// dispatched to the schedulers for execution.
NewInst->dispatch(RCU->reserveSlot(IID, NumMicroOps));
// Notify listeners of the "instruction dispatched" event.
notifyInstructionDispatched(IID, RegisterFiles);
// Now move the instruction into the scheduler's queue.
// The scheduler is responsible for checking if this is a zero-latency
// instruction that doesn't consume pipeline/scheduler resources.
SC->scheduleInstruction(IID, *NewInst);
}
#ifndef NDEBUG
void DispatchUnit::dump() const {
RAT->dump();
RCU->dump();
}
#endif
} // namespace mca