| //===-- TargetMachine.cpp - General Target Information ---------------------==// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file describes the general parts of a Target machine. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Analysis/TargetTransformInfo.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/GlobalAlias.h" | 
 | #include "llvm/IR/GlobalValue.h" | 
 | #include "llvm/IR/GlobalVariable.h" | 
 | #include "llvm/IR/LegacyPassManager.h" | 
 | #include "llvm/IR/Mangler.h" | 
 | #include "llvm/MC/MCAsmInfo.h" | 
 | #include "llvm/MC/MCContext.h" | 
 | #include "llvm/MC/MCInstrInfo.h" | 
 | #include "llvm/MC/MCSectionMachO.h" | 
 | #include "llvm/MC/MCTargetOptions.h" | 
 | #include "llvm/MC/SectionKind.h" | 
 | #include "llvm/Target/TargetLoweringObjectFile.h" | 
 | using namespace llvm; | 
 |  | 
 | //--------------------------------------------------------------------------- | 
 | // TargetMachine Class | 
 | // | 
 |  | 
 | TargetMachine::TargetMachine(const Target &T, StringRef DataLayoutString, | 
 |                              const Triple &TT, StringRef CPU, StringRef FS, | 
 |                              const TargetOptions &Options) | 
 |     : TheTarget(T), DL(DataLayoutString), TargetTriple(TT), TargetCPU(CPU), | 
 |       TargetFS(FS), AsmInfo(nullptr), MRI(nullptr), MII(nullptr), STI(nullptr), | 
 |       RequireStructuredCFG(false), DefaultOptions(Options), Options(Options) { | 
 | } | 
 |  | 
 | TargetMachine::~TargetMachine() = default; | 
 |  | 
 | bool TargetMachine::isPositionIndependent() const { | 
 |   return getRelocationModel() == Reloc::PIC_; | 
 | } | 
 |  | 
 | /// Reset the target options based on the function's attributes. | 
 | // FIXME: This function needs to go away for a number of reasons: | 
 | // a) global state on the TargetMachine is terrible in general, | 
 | // b) these target options should be passed only on the function | 
 | //    and not on the TargetMachine (via TargetOptions) at all. | 
 | void TargetMachine::resetTargetOptions(const Function &F) const { | 
 | #define RESET_OPTION(X, Y)                                                     \ | 
 |   do {                                                                         \ | 
 |     if (F.hasFnAttribute(Y))                                                   \ | 
 |       Options.X = (F.getFnAttribute(Y).getValueAsString() == "true");          \ | 
 |     else                                                                       \ | 
 |       Options.X = DefaultOptions.X;                                            \ | 
 |   } while (0) | 
 |  | 
 |   RESET_OPTION(UnsafeFPMath, "unsafe-fp-math"); | 
 |   RESET_OPTION(NoInfsFPMath, "no-infs-fp-math"); | 
 |   RESET_OPTION(NoNaNsFPMath, "no-nans-fp-math"); | 
 |   RESET_OPTION(NoSignedZerosFPMath, "no-signed-zeros-fp-math"); | 
 |   RESET_OPTION(NoTrappingFPMath, "no-trapping-math"); | 
 |  | 
 |   StringRef Denormal = | 
 |     F.getFnAttribute("denormal-fp-math").getValueAsString(); | 
 |   if (Denormal == "ieee") | 
 |     Options.FPDenormalMode = FPDenormal::IEEE; | 
 |   else if (Denormal == "preserve-sign") | 
 |     Options.FPDenormalMode = FPDenormal::PreserveSign; | 
 |   else if (Denormal == "positive-zero") | 
 |     Options.FPDenormalMode = FPDenormal::PositiveZero; | 
 |   else | 
 |     Options.FPDenormalMode = DefaultOptions.FPDenormalMode; | 
 | } | 
 |  | 
 | /// Returns the code generation relocation model. The choices are static, PIC, | 
 | /// and dynamic-no-pic. | 
 | Reloc::Model TargetMachine::getRelocationModel() const { return RM; } | 
 |  | 
 | /// Returns the code model. The choices are small, kernel, medium, large, and | 
 | /// target default. | 
 | CodeModel::Model TargetMachine::getCodeModel() const { return CMModel; } | 
 |  | 
 | /// Get the IR-specified TLS model for Var. | 
 | static TLSModel::Model getSelectedTLSModel(const GlobalValue *GV) { | 
 |   switch (GV->getThreadLocalMode()) { | 
 |   case GlobalVariable::NotThreadLocal: | 
 |     llvm_unreachable("getSelectedTLSModel for non-TLS variable"); | 
 |     break; | 
 |   case GlobalVariable::GeneralDynamicTLSModel: | 
 |     return TLSModel::GeneralDynamic; | 
 |   case GlobalVariable::LocalDynamicTLSModel: | 
 |     return TLSModel::LocalDynamic; | 
 |   case GlobalVariable::InitialExecTLSModel: | 
 |     return TLSModel::InitialExec; | 
 |   case GlobalVariable::LocalExecTLSModel: | 
 |     return TLSModel::LocalExec; | 
 |   } | 
 |   llvm_unreachable("invalid TLS model"); | 
 | } | 
 |  | 
 | bool TargetMachine::shouldAssumeDSOLocal(const Module &M, | 
 |                                          const GlobalValue *GV) const { | 
 |   // If the IR producer requested that this GV be treated as dso local, obey. | 
 |   if (GV && GV->isDSOLocal()) | 
 |     return true; | 
 |  | 
 |   // If we are not supossed to use a PLT, we cannot assume that intrinsics are | 
 |   // local since the linker can convert some direct access to access via plt. | 
 |   if (M.getRtLibUseGOT() && !GV) | 
 |     return false; | 
 |  | 
 |   // According to the llvm language reference, we should be able to | 
 |   // just return false in here if we have a GV, as we know it is | 
 |   // dso_preemptable.  At this point in time, the various IR producers | 
 |   // have not been transitioned to always produce a dso_local when it | 
 |   // is possible to do so. | 
 |   // In the case of intrinsics, GV is null and there is nowhere to put | 
 |   // dso_local. Returning false for those will produce worse code in some | 
 |   // architectures. For example, on x86 the caller has to set ebx before calling | 
 |   // a plt. | 
 |   // As a result we still have some logic in here to improve the quality of the | 
 |   // generated code. | 
 |   // FIXME: Add a module level metadata for whether intrinsics should be assumed | 
 |   // local. | 
 |  | 
 |   Reloc::Model RM = getRelocationModel(); | 
 |   const Triple &TT = getTargetTriple(); | 
 |  | 
 |   // DLLImport explicitly marks the GV as external. | 
 |   if (GV && GV->hasDLLImportStorageClass()) | 
 |     return false; | 
 |  | 
 |   // On MinGW, variables that haven't been declared with DLLImport may still | 
 |   // end up automatically imported by the linker. To make this feasible, | 
 |   // don't assume the variables to be DSO local unless we actually know | 
 |   // that for sure. This only has to be done for variables; for functions | 
 |   // the linker can insert thunks for calling functions from another DLL. | 
 |   if (TT.isWindowsGNUEnvironment() && GV && GV->isDeclarationForLinker() && | 
 |       isa<GlobalVariable>(GV)) | 
 |     return false; | 
 |  | 
 |   // Every other GV is local on COFF. | 
 |   // Make an exception for windows OS in the triple: Some firmware builds use | 
 |   // *-win32-macho triples. This (accidentally?) produced windows relocations | 
 |   // without GOT tables in older clang versions; Keep this behaviour. | 
 |   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) | 
 |     return true; | 
 |  | 
 |   // Most PIC code sequences that assume that a symbol is local cannot | 
 |   // produce a 0 if it turns out the symbol is undefined. While this | 
 |   // is ABI and relocation depended, it seems worth it to handle it | 
 |   // here. | 
 |   if (GV && isPositionIndependent() && GV->hasExternalWeakLinkage()) | 
 |     return false; | 
 |  | 
 |   if (GV && !GV->hasDefaultVisibility()) | 
 |     return true; | 
 |  | 
 |   if (TT.isOSBinFormatMachO()) { | 
 |     if (RM == Reloc::Static) | 
 |       return true; | 
 |     return GV && GV->isStrongDefinitionForLinker(); | 
 |   } | 
 |  | 
 |   assert(TT.isOSBinFormatELF()); | 
 |   assert(RM != Reloc::DynamicNoPIC); | 
 |  | 
 |   bool IsExecutable = | 
 |       RM == Reloc::Static || M.getPIELevel() != PIELevel::Default; | 
 |   if (IsExecutable) { | 
 |     // If the symbol is defined, it cannot be preempted. | 
 |     if (GV && !GV->isDeclarationForLinker()) | 
 |       return true; | 
 |  | 
 |     // A symbol marked nonlazybind should not be accessed with a plt. If the | 
 |     // symbol turns out to be external, the linker will convert a direct | 
 |     // access to an access via the plt, so don't assume it is local. | 
 |     const Function *F = dyn_cast_or_null<Function>(GV); | 
 |     if (F && F->hasFnAttribute(Attribute::NonLazyBind)) | 
 |       return false; | 
 |  | 
 |     bool IsTLS = GV && GV->isThreadLocal(); | 
 |     bool IsAccessViaCopyRelocs = | 
 |         GV && Options.MCOptions.MCPIECopyRelocations && isa<GlobalVariable>(GV); | 
 |     Triple::ArchType Arch = TT.getArch(); | 
 |     bool IsPPC = | 
 |         Arch == Triple::ppc || Arch == Triple::ppc64 || Arch == Triple::ppc64le; | 
 |     // Check if we can use copy relocations. PowerPC has no copy relocations. | 
 |     if (!IsTLS && !IsPPC && (RM == Reloc::Static || IsAccessViaCopyRelocs)) | 
 |       return true; | 
 |   } | 
 |  | 
 |   // ELF supports preemption of other symbols. | 
 |   return false; | 
 | } | 
 |  | 
 | bool TargetMachine::useEmulatedTLS() const { | 
 |   // Returns Options.EmulatedTLS if the -emulated-tls or -no-emulated-tls | 
 |   // was specified explicitly; otherwise uses target triple to decide default. | 
 |   if (Options.ExplicitEmulatedTLS) | 
 |     return Options.EmulatedTLS; | 
 |   return getTargetTriple().hasDefaultEmulatedTLS(); | 
 | } | 
 |  | 
 | TLSModel::Model TargetMachine::getTLSModel(const GlobalValue *GV) const { | 
 |   bool IsPIE = GV->getParent()->getPIELevel() != PIELevel::Default; | 
 |   Reloc::Model RM = getRelocationModel(); | 
 |   bool IsSharedLibrary = RM == Reloc::PIC_ && !IsPIE; | 
 |   bool IsLocal = shouldAssumeDSOLocal(*GV->getParent(), GV); | 
 |  | 
 |   TLSModel::Model Model; | 
 |   if (IsSharedLibrary) { | 
 |     if (IsLocal) | 
 |       Model = TLSModel::LocalDynamic; | 
 |     else | 
 |       Model = TLSModel::GeneralDynamic; | 
 |   } else { | 
 |     if (IsLocal) | 
 |       Model = TLSModel::LocalExec; | 
 |     else | 
 |       Model = TLSModel::InitialExec; | 
 |   } | 
 |  | 
 |   // If the user specified a more specific model, use that. | 
 |   TLSModel::Model SelectedModel = getSelectedTLSModel(GV); | 
 |   if (SelectedModel > Model) | 
 |     return SelectedModel; | 
 |  | 
 |   return Model; | 
 | } | 
 |  | 
 | /// Returns the optimization level: None, Less, Default, or Aggressive. | 
 | CodeGenOpt::Level TargetMachine::getOptLevel() const { return OptLevel; } | 
 |  | 
 | void TargetMachine::setOptLevel(CodeGenOpt::Level Level) { OptLevel = Level; } | 
 |  | 
 | TargetTransformInfo TargetMachine::getTargetTransformInfo(const Function &F) { | 
 |   return TargetTransformInfo(F.getParent()->getDataLayout()); | 
 | } | 
 |  | 
 | void TargetMachine::getNameWithPrefix(SmallVectorImpl<char> &Name, | 
 |                                       const GlobalValue *GV, Mangler &Mang, | 
 |                                       bool MayAlwaysUsePrivate) const { | 
 |   if (MayAlwaysUsePrivate || !GV->hasPrivateLinkage()) { | 
 |     // Simple case: If GV is not private, it is not important to find out if | 
 |     // private labels are legal in this case or not. | 
 |     Mang.getNameWithPrefix(Name, GV, false); | 
 |     return; | 
 |   } | 
 |   const TargetLoweringObjectFile *TLOF = getObjFileLowering(); | 
 |   TLOF->getNameWithPrefix(Name, GV, *this); | 
 | } | 
 |  | 
 | MCSymbol *TargetMachine::getSymbol(const GlobalValue *GV) const { | 
 |   const TargetLoweringObjectFile *TLOF = getObjFileLowering(); | 
 |   SmallString<128> NameStr; | 
 |   getNameWithPrefix(NameStr, GV, TLOF->getMangler()); | 
 |   return TLOF->getContext().getOrCreateSymbol(NameStr); | 
 | } | 
 |  | 
 | TargetIRAnalysis TargetMachine::getTargetIRAnalysis() { | 
 |   // Since Analysis can't depend on Target, use a std::function to invert the | 
 |   // dependency. | 
 |   return TargetIRAnalysis( | 
 |       [this](const Function &F) { return this->getTargetTransformInfo(F); }); | 
 | } |