blob: b531127cf892826adf136645321ef047b903eb50 [file] [log] [blame]
//===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Contains generic JIT-linker types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
#define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
#include "JITLinkMemoryManager.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include <map>
#include <string>
#include <system_error>
namespace llvm {
namespace jitlink {
class Symbol;
class Section;
/// Base class for errors originating in JIT linker, e.g. missing relocation
/// support.
class JITLinkError : public ErrorInfo<JITLinkError> {
public:
static char ID;
JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {}
void log(raw_ostream &OS) const override;
const std::string &getErrorMessage() const { return ErrMsg; }
std::error_code convertToErrorCode() const override;
private:
std::string ErrMsg;
};
/// Represents fixups and constraints in the LinkGraph.
class Edge {
public:
using Kind = uint8_t;
enum GenericEdgeKind : Kind {
Invalid, // Invalid edge value.
FirstKeepAlive, // Keeps target alive. Offset/addend zero.
KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness.
FirstRelocation // First architecture specific relocation.
};
using OffsetT = uint32_t;
using AddendT = int64_t;
Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend)
: Target(&Target), Offset(Offset), Addend(Addend), K(K) {}
OffsetT getOffset() const { return Offset; }
Kind getKind() const { return K; }
void setKind(Kind K) { this->K = K; }
bool isRelocation() const { return K >= FirstRelocation; }
Kind getRelocation() const {
assert(isRelocation() && "Not a relocation edge");
return K - FirstRelocation;
}
bool isKeepAlive() const { return K >= FirstKeepAlive; }
Symbol &getTarget() const { return *Target; }
void setTarget(Symbol &Target) { this->Target = &Target; }
AddendT getAddend() const { return Addend; }
void setAddend(AddendT Addend) { this->Addend = Addend; }
private:
Symbol *Target = nullptr;
OffsetT Offset = 0;
AddendT Addend = 0;
Kind K = 0;
};
/// Returns the string name of the given generic edge kind, or "unknown"
/// otherwise. Useful for debugging.
const char *getGenericEdgeKindName(Edge::Kind K);
/// Base class for Addressable entities (externals, absolutes, blocks).
class Addressable {
friend class LinkGraph;
protected:
Addressable(JITTargetAddress Address, bool IsDefined)
: Address(Address), IsDefined(IsDefined), IsAbsolute(false) {}
Addressable(JITTargetAddress Address)
: Address(Address), IsDefined(false), IsAbsolute(true) {
assert(!(IsDefined && IsAbsolute) &&
"Block cannot be both defined and absolute");
}
public:
Addressable(const Addressable &) = delete;
Addressable &operator=(const Addressable &) = default;
Addressable(Addressable &&) = delete;
Addressable &operator=(Addressable &&) = default;
JITTargetAddress getAddress() const { return Address; }
void setAddress(JITTargetAddress Address) { this->Address = Address; }
/// Returns true if this is a defined addressable, in which case you
/// can downcast this to a .
bool isDefined() const { return static_cast<bool>(IsDefined); }
bool isAbsolute() const { return static_cast<bool>(IsAbsolute); }
private:
JITTargetAddress Address = 0;
uint64_t IsDefined : 1;
uint64_t IsAbsolute : 1;
};
using BlockOrdinal = unsigned;
using SectionOrdinal = unsigned;
/// An Addressable with content and edges.
class Block : public Addressable {
friend class LinkGraph;
private:
/// Create a zero-fill defined addressable.
Block(Section &Parent, BlockOrdinal Ordinal, JITTargetAddress Size,
JITTargetAddress Address, uint64_t Alignment, uint64_t AlignmentOffset)
: Addressable(Address, true), Parent(Parent), Size(Size),
Ordinal(Ordinal) {
assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
assert(AlignmentOffset < Alignment &&
"Alignment offset cannot exceed alignment");
assert(AlignmentOffset <= MaxAlignmentOffset &&
"Alignment offset exceeds maximum");
P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
this->AlignmentOffset = AlignmentOffset;
}
/// Create a defined addressable for the given content.
Block(Section &Parent, BlockOrdinal Ordinal, StringRef Content,
JITTargetAddress Address, uint64_t Alignment, uint64_t AlignmentOffset)
: Addressable(Address, true), Parent(Parent), Data(Content.data()),
Size(Content.size()), Ordinal(Ordinal) {
assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
assert(AlignmentOffset < Alignment &&
"Alignment offset cannot exceed alignment");
assert(AlignmentOffset <= MaxAlignmentOffset &&
"Alignment offset exceeds maximum");
P2Align = Alignment ? countTrailingZeros(Alignment) : 0;
this->AlignmentOffset = AlignmentOffset;
}
public:
using EdgeVector = std::vector<Edge>;
using edge_iterator = EdgeVector::iterator;
using const_edge_iterator = EdgeVector::const_iterator;
Block(const Block &) = delete;
Block &operator=(const Block &) = delete;
Block(Block &&) = delete;
Block &operator=(Block &&) = delete;
/// Return the parent section for this block.
Section &getSection() const { return Parent; }
/// Return the ordinal for this block.
BlockOrdinal getOrdinal() const { return Ordinal; }
/// Returns true if this is a zero-fill block.
///
/// If true, getSize is callable but getContent is not (the content is
/// defined to be a sequence of zero bytes of length Size).
bool isZeroFill() const { return !Data; }
/// Returns the size of this defined addressable.
size_t getSize() const { return Size; }
/// Get the content for this block. Block must not be a zero-fill block.
StringRef getContent() const {
assert(Data && "Section does not contain content");
return StringRef(Data, Size);
}
/// Set the content for this block.
/// Caller is responsible for ensuring the underlying bytes are not
/// deallocated while pointed to by this block.
void setContent(StringRef Content) {
Data = Content.data();
Size = Content.size();
}
/// Get the alignment for this content.
uint64_t getAlignment() const { return 1ull << P2Align; }
/// Get the alignment offset for this content.
uint64_t getAlignmentOffset() const { return AlignmentOffset; }
/// Add an edge to this block.
void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target,
Edge::AddendT Addend) {
Edges.push_back(Edge(K, Offset, Target, Addend));
}
/// Return the list of edges attached to this content.
iterator_range<edge_iterator> edges() {
return make_range(Edges.begin(), Edges.end());
}
/// Returns the list of edges attached to this content.
iterator_range<const_edge_iterator> edges() const {
return make_range(Edges.begin(), Edges.end());
}
/// Return the size of the edges list.
size_t edges_size() const { return Edges.size(); }
/// Returns true if the list of edges is empty.
bool edges_empty() const { return Edges.empty(); }
private:
static constexpr uint64_t MaxAlignmentOffset = (1ULL << 57) - 1;
uint64_t P2Align : 5;
uint64_t AlignmentOffset : 57;
Section &Parent;
const char *Data = nullptr;
size_t Size = 0;
BlockOrdinal Ordinal = 0;
std::vector<Edge> Edges;
};
/// Describes symbol linkage. This can be used to make resolve definition
/// clashes.
enum class Linkage : uint8_t {
Strong,
Weak,
};
/// For errors and debugging output.
const char *getLinkageName(Linkage L);
/// Defines the scope in which this symbol should be visible:
/// Default -- Visible in the public interface of the linkage unit.
/// Hidden -- Visible within the linkage unit, but not exported from it.
/// Local -- Visible only within the LinkGraph.
enum class Scope : uint8_t { Default, Hidden, Local };
/// For debugging output.
const char *getScopeName(Scope S);
raw_ostream &operator<<(raw_ostream &OS, const Block &B);
/// Symbol representation.
///
/// Symbols represent locations within Addressable objects.
/// They can be either Named or Anonymous.
/// Anonymous symbols have neither linkage nor visibility, and must point at
/// ContentBlocks.
/// Named symbols may be in one of four states:
/// - Null: Default initialized. Assignable, but otherwise unusable.
/// - Defined: Has both linkage and visibility and points to a ContentBlock
/// - Common: Has both linkage and visibility, points to a null Addressable.
/// - External: Has neither linkage nor visibility, points to an external
/// Addressable.
///
class Symbol {
friend class LinkGraph;
private:
Symbol(Addressable &Base, JITTargetAddress Offset, StringRef Name,
JITTargetAddress Size, Linkage L, Scope S, bool IsLive,
bool IsCallable)
: Name(Name), Base(&Base), Offset(Offset), Size(Size) {
setLinkage(L);
setScope(S);
setLive(IsLive);
setCallable(IsCallable);
}
static Symbol &constructCommon(void *SymStorage, Block &Base, StringRef Name,
JITTargetAddress Size, Scope S, bool IsLive) {
assert(SymStorage && "Storage cannot be null");
assert(!Name.empty() && "Common symbol name cannot be empty");
assert(Base.isDefined() &&
"Cannot create common symbol from undefined block");
assert(static_cast<Block &>(Base).getSize() == Size &&
"Common symbol size should match underlying block size");
auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
new (Sym) Symbol(Base, 0, Name, Size, Linkage::Weak, S, IsLive, false);
return *Sym;
}
static Symbol &constructExternal(void *SymStorage, Addressable &Base,
StringRef Name, JITTargetAddress Size) {
assert(SymStorage && "Storage cannot be null");
assert(!Base.isDefined() &&
"Cannot create external symbol from defined block");
assert(!Name.empty() && "External symbol name cannot be empty");
auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
new (Sym) Symbol(Base, 0, Name, Size, Linkage::Strong, Scope::Default,
false, false);
return *Sym;
}
static Symbol &constructAbsolute(void *SymStorage, Addressable &Base,
StringRef Name, JITTargetAddress Size,
Linkage L, Scope S, bool IsLive) {
assert(SymStorage && "Storage cannot be null");
assert(!Base.isDefined() &&
"Cannot create absolute symbol from a defined block");
auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false);
return *Sym;
}
static Symbol &constructAnonDef(void *SymStorage, Block &Base,
JITTargetAddress Offset,
JITTargetAddress Size, bool IsCallable,
bool IsLive) {
assert(SymStorage && "Storage cannot be null");
auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong,
Scope::Local, IsLive, IsCallable);
return *Sym;
}
static Symbol &constructNamedDef(void *SymStorage, Block &Base,
JITTargetAddress Offset, StringRef Name,
JITTargetAddress Size, Linkage L, Scope S,
bool IsLive, bool IsCallable) {
assert(SymStorage && "Storage cannot be null");
assert(!Name.empty() && "Name cannot be empty");
auto *Sym = reinterpret_cast<Symbol *>(SymStorage);
new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable);
return *Sym;
}
public:
/// Create a null Symbol. This allows Symbols to be default initialized for
/// use in containers (e.g. as map values). Null symbols are only useful for
/// assigning to.
Symbol() = default;
// Symbols are not movable or copyable.
Symbol(const Symbol &) = delete;
Symbol &operator=(const Symbol &) = delete;
Symbol(Symbol &&) = delete;
Symbol &operator=(Symbol &&) = delete;
/// Returns true if this symbol has a name.
bool hasName() const { return !Name.empty(); }
/// Returns the name of this symbol (empty if the symbol is anonymous).
StringRef getName() const {
assert((!Name.empty() || getScope() == Scope::Local) &&
"Anonymous symbol has non-local scope");
return Name;
}
/// Returns true if this Symbol has content (potentially) defined within this
/// object file (i.e. is anything but an external or absolute symbol).
bool isDefined() const {
assert(Base && "Attempt to access null symbol");
return Base->isDefined();
}
/// Returns true if this symbol is live (i.e. should be treated as a root for
/// dead stripping).
bool isLive() const {
assert(Base && "Attempting to access null symbol");
return IsLive;
}
/// Set this symbol's live bit.
void setLive(bool IsLive) { this->IsLive = IsLive; }
/// Returns true is this symbol is callable.
bool isCallable() const { return IsCallable; }
/// Set this symbol's callable bit.
void setCallable(bool IsCallable) { this->IsCallable = IsCallable; }
/// Returns true if the underlying addressable is an unresolved external.
bool isExternal() const {
assert(Base && "Attempt to access null symbol");
return !Base->isDefined() && !Base->isAbsolute();
}
/// Returns true if the underlying addressable is an absolute symbol.
bool isAbsolute() const {
assert(Base && "Attempt to access null symbol");
return !Base->isDefined() && Base->isAbsolute();
}
/// Return the addressable that this symbol points to.
Addressable &getAddressable() {
assert(Base && "Cannot get underlying addressable for null symbol");
return *Base;
}
/// Return the addressable that thsi symbol points to.
const Addressable &getAddressable() const {
assert(Base && "Cannot get underlying addressable for null symbol");
return *Base;
}
/// Return the Block for this Symbol (Symbol must be defined).
Block &getBlock() {
assert(Base && "Cannot get block for null symbol");
assert(Base->isDefined() && "Not a defined symbol");
return static_cast<Block &>(*Base);
}
/// Return the Block for this Symbol (Symbol must be defined).
const Block &getBlock() const {
assert(Base && "Cannot get block for null symbol");
assert(Base->isDefined() && "Not a defined symbol");
return static_cast<const Block &>(*Base);
}
/// Returns the offset for this symbol within the underlying addressable.
JITTargetAddress getOffset() const { return Offset; }
/// Returns the address of this symbol.
JITTargetAddress getAddress() const { return Base->getAddress() + Offset; }
/// Returns the size of this symbol.
JITTargetAddress getSize() const { return Size; }
/// Returns true if this symbol is backed by a zero-fill block.
/// This method may only be called on defined symbols.
bool isSymbolZeroFill() const { return getBlock().isZeroFill(); }
/// Returns the content in the underlying block covered by this symbol.
/// This method may only be called on defined non-zero-fill symbols.
StringRef getSymbolContent() const {
return getBlock().getContent().substr(Offset, Size);
}
/// Get the linkage for this Symbol.
Linkage getLinkage() const { return static_cast<Linkage>(L); }
/// Set the linkage for this Symbol.
void setLinkage(Linkage L) {
assert((L == Linkage::Strong || (Base->isDefined() && !Name.empty())) &&
"Linkage can only be applied to defined named symbols");
this->L = static_cast<uint8_t>(L);
}
/// Get the visibility for this Symbol.
Scope getScope() const { return static_cast<Scope>(S); }
/// Set the visibility for this Symbol.
void setScope(Scope S) {
assert((S == Scope::Default || Base->isDefined() || Base->isAbsolute()) &&
"Invalid visibility for symbol type");
this->S = static_cast<uint8_t>(S);
}
private:
void makeExternal(Addressable &A) {
assert(!A.isDefined() && "Attempting to make external with defined block");
Base = &A;
Offset = 0;
setLinkage(Linkage::Strong);
setScope(Scope::Default);
IsLive = 0;
// note: Size and IsCallable fields left unchanged.
}
static constexpr uint64_t MaxOffset = (1ULL << 59) - 1;
// FIXME: A char* or SymbolStringPtr may pack better.
StringRef Name;
Addressable *Base = nullptr;
uint64_t Offset : 59;
uint64_t L : 1;
uint64_t S : 2;
uint64_t IsLive : 1;
uint64_t IsCallable : 1;
JITTargetAddress Size = 0;
};
raw_ostream &operator<<(raw_ostream &OS, const Symbol &A);
void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
StringRef EdgeKindName);
/// Represents an object file section.
class Section {
friend class LinkGraph;
private:
Section(StringRef Name, sys::Memory::ProtectionFlags Prot,
SectionOrdinal SecOrdinal)
: Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {}
using SymbolSet = DenseSet<Symbol *>;
using BlockSet = DenseSet<Block *>;
public:
using symbol_iterator = SymbolSet::iterator;
using const_symbol_iterator = SymbolSet::const_iterator;
using block_iterator = BlockSet::iterator;
using const_block_iterator = BlockSet::const_iterator;
~Section();
/// Returns the name of this section.
StringRef getName() const { return Name; }
/// Returns the protection flags for this section.
sys::Memory::ProtectionFlags getProtectionFlags() const { return Prot; }
/// Returns the ordinal for this section.
SectionOrdinal getOrdinal() const { return SecOrdinal; }
/// Returns an iterator over the symbols defined in this section.
iterator_range<symbol_iterator> symbols() {
return make_range(Symbols.begin(), Symbols.end());
}
/// Returns an iterator over the symbols defined in this section.
iterator_range<const_symbol_iterator> symbols() const {
return make_range(Symbols.begin(), Symbols.end());
}
/// Return the number of symbols in this section.
SymbolSet::size_type symbols_size() { return Symbols.size(); }
/// Return true if this section contains no symbols.
bool symbols_empty() const { return Symbols.empty(); }
/// Returns the ordinal for the next block.
BlockOrdinal getNextBlockOrdinal() { return NextBlockOrdinal++; }
private:
void addSymbol(Symbol &Sym) {
assert(!Symbols.count(&Sym) && "Symbol is already in this section");
Symbols.insert(&Sym);
}
void removeSymbol(Symbol &Sym) {
assert(Symbols.count(&Sym) && "symbol is not in this section");
Symbols.erase(&Sym);
}
StringRef Name;
sys::Memory::ProtectionFlags Prot;
SectionOrdinal SecOrdinal = 0;
BlockOrdinal NextBlockOrdinal = 0;
SymbolSet Symbols;
};
/// Represents a section address range via a pair of Block pointers
/// to the first and last Blocks in the section.
class SectionRange {
public:
SectionRange() = default;
SectionRange(const Section &Sec) {
if (Sec.symbols_empty())
return;
First = Last = *Sec.symbols().begin();
for (auto *Sym : Sec.symbols()) {
if (Sym->getAddress() < First->getAddress())
First = Sym;
if (Sym->getAddress() > Last->getAddress())
Last = Sym;
}
}
Symbol *getFirstSymbol() const {
assert((!Last || First) && "First can not be null if end is non-null");
return First;
}
Symbol *getLastSymbol() const {
assert((First || !Last) && "Last can not be null if start is non-null");
return Last;
}
bool isEmpty() const {
assert((First || !Last) && "Last can not be null if start is non-null");
return !First;
}
JITTargetAddress getStart() const {
return First ? First->getBlock().getAddress() : 0;
}
JITTargetAddress getEnd() const {
return Last ? Last->getBlock().getAddress() + Last->getBlock().getSize()
: 0;
}
uint64_t getSize() const { return getEnd() - getStart(); }
private:
Symbol *First = nullptr;
Symbol *Last = nullptr;
};
class LinkGraph {
private:
using SectionList = std::vector<std::unique_ptr<Section>>;
using ExternalSymbolSet = DenseSet<Symbol *>;
using BlockSet = DenseSet<Block *>;
template <typename... ArgTs>
Addressable &createAddressable(ArgTs &&... Args) {
Addressable *A =
reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>());
new (A) Addressable(std::forward<ArgTs>(Args)...);
return *A;
}
void destroyAddressable(Addressable &A) {
A.~Addressable();
Allocator.Deallocate(&A);
}
template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) {
Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>());
new (B) Block(std::forward<ArgTs>(Args)...);
Blocks.insert(B);
return *B;
}
void destroyBlock(Block &B) {
Blocks.erase(&B);
B.~Block();
Allocator.Deallocate(&B);
}
void destroySymbol(Symbol &S) {
S.~Symbol();
Allocator.Deallocate(&S);
}
public:
using external_symbol_iterator = ExternalSymbolSet::iterator;
using block_iterator = BlockSet::iterator;
using section_iterator = pointee_iterator<SectionList::iterator>;
using const_section_iterator = pointee_iterator<SectionList::const_iterator>;
template <typename SectionItrT, typename SymbolItrT, typename T>
class defined_symbol_iterator_impl
: public iterator_facade_base<
defined_symbol_iterator_impl<SectionItrT, SymbolItrT, T>,
std::forward_iterator_tag, T> {
public:
defined_symbol_iterator_impl() = default;
defined_symbol_iterator_impl(SectionItrT SecI, SectionItrT SecE)
: SecI(SecI), SecE(SecE),
SymI(SecI != SecE ? SecI->symbols().begin() : SymbolItrT()) {
moveToNextSymbolOrEnd();
}
bool operator==(const defined_symbol_iterator_impl &RHS) const {
return (SecI == RHS.SecI) && (SymI == RHS.SymI);
}
T operator*() const {
assert(SymI != SecI->symbols().end() && "Dereferencing end?");
return *SymI;
}
defined_symbol_iterator_impl operator++() {
++SymI;
moveToNextSymbolOrEnd();
return *this;
}
private:
void moveToNextSymbolOrEnd() {
while (SecI != SecE && SymI == SecI->symbols().end()) {
++SecI;
SymI = SecI == SecE ? SymbolItrT() : SecI->symbols().begin();
}
}
SectionItrT SecI, SecE;
SymbolItrT SymI;
};
using defined_symbol_iterator =
defined_symbol_iterator_impl<const_section_iterator,
Section::symbol_iterator, Symbol *>;
using const_defined_symbol_iterator = defined_symbol_iterator_impl<
const_section_iterator, Section::const_symbol_iterator, const Symbol *>;
LinkGraph(std::string Name, unsigned PointerSize,
support::endianness Endianness)
: Name(std::move(Name)), PointerSize(PointerSize),
Endianness(Endianness) {}
~LinkGraph();
/// Returns the name of this graph (usually the name of the original
/// underlying MemoryBuffer).
const std::string &getName() { return Name; }
/// Returns the pointer size for use in this graph.
unsigned getPointerSize() const { return PointerSize; }
/// Returns the endianness of content in this graph.
support::endianness getEndianness() const { return Endianness; }
/// Create a section with the given name, protection flags, and alignment.
Section &createSection(StringRef Name, sys::Memory::ProtectionFlags Prot) {
std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size()));
Sections.push_back(std::move(Sec));
return *Sections.back();
}
/// Create a content block.
Block &createContentBlock(Section &Parent, StringRef Content,
uint64_t Address, uint64_t Alignment,
uint64_t AlignmentOffset) {
return createBlock(Parent, Parent.getNextBlockOrdinal(), Content, Address,
Alignment, AlignmentOffset);
}
/// Create a zero-fill block.
Block &createZeroFillBlock(Section &Parent, uint64_t Size, uint64_t Address,
uint64_t Alignment, uint64_t AlignmentOffset) {
return createBlock(Parent, Parent.getNextBlockOrdinal(), Size, Address,
Alignment, AlignmentOffset);
}
/// Add an external symbol.
/// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose
/// size is not known, you should substitute '0'.
Symbol &addExternalSymbol(StringRef Name, uint64_t Size) {
auto &Sym = Symbol::constructExternal(
Allocator.Allocate<Symbol>(), createAddressable(0, false), Name, Size);
ExternalSymbols.insert(&Sym);
return Sym;
}
/// Add an absolute symbol.
Symbol &addAbsoluteSymbol(StringRef Name, JITTargetAddress Address,
uint64_t Size, Linkage L, Scope S, bool IsLive) {
auto &Sym = Symbol::constructAbsolute(Allocator.Allocate<Symbol>(),
createAddressable(Address), Name,
Size, L, S, IsLive);
AbsoluteSymbols.insert(&Sym);
return Sym;
}
/// Convenience method for adding a weak zero-fill symbol.
Symbol &addCommonSymbol(StringRef Name, Scope S, Section &Section,
JITTargetAddress Address, uint64_t Size,
uint64_t Alignment, bool IsLive) {
auto &Sym = Symbol::constructCommon(
Allocator.Allocate<Symbol>(),
createBlock(Section, Section.getNextBlockOrdinal(), Address, Size,
Alignment, 0),
Name, Size, S, IsLive);
Section.addSymbol(Sym);
return Sym;
}
/// Add an anonymous symbol.
Symbol &addAnonymousSymbol(Block &Content, JITTargetAddress Offset,
JITTargetAddress Size, bool IsCallable,
bool IsLive) {
auto &Sym = Symbol::constructAnonDef(Allocator.Allocate<Symbol>(), Content,
Offset, Size, IsCallable, IsLive);
Content.getSection().addSymbol(Sym);
return Sym;
}
/// Add a named symbol.
Symbol &addDefinedSymbol(Block &Content, JITTargetAddress Offset,
StringRef Name, JITTargetAddress Size, Linkage L,
Scope S, bool IsCallable, bool IsLive) {
auto &Sym =
Symbol::constructNamedDef(Allocator.Allocate<Symbol>(), Content, Offset,
Name, Size, L, S, IsLive, IsCallable);
Content.getSection().addSymbol(Sym);
return Sym;
}
iterator_range<section_iterator> sections() {
return make_range(section_iterator(Sections.begin()),
section_iterator(Sections.end()));
}
/// Returns the section with the given name if it exists, otherwise returns
/// null.
Section *findSectionByName(StringRef Name) {
for (auto &S : sections())
if (S.getName() == Name)
return &S;
return nullptr;
}
iterator_range<external_symbol_iterator> external_symbols() {
return make_range(ExternalSymbols.begin(), ExternalSymbols.end());
}
iterator_range<external_symbol_iterator> absolute_symbols() {
return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
}
iterator_range<defined_symbol_iterator> defined_symbols() {
return make_range(defined_symbol_iterator(Sections.begin(), Sections.end()),
defined_symbol_iterator(Sections.end(), Sections.end()));
}
iterator_range<const_defined_symbol_iterator> defined_symbols() const {
return make_range(
const_defined_symbol_iterator(Sections.begin(), Sections.end()),
const_defined_symbol_iterator(Sections.end(), Sections.end()));
}
iterator_range<block_iterator> blocks() {
return make_range(Blocks.begin(), Blocks.end());
}
/// Turn a defined symbol into an external one.
void makeExternal(Symbol &Sym) {
if (Sym.getAddressable().isAbsolute()) {
assert(AbsoluteSymbols.count(&Sym) &&
"Sym is not in the absolute symbols set");
AbsoluteSymbols.erase(&Sym);
} else {
assert(Sym.isDefined() && "Sym is not a defined symbol");
Section &Sec = Sym.getBlock().getSection();
Sec.removeSymbol(Sym);
}
Sym.makeExternal(createAddressable(false));
ExternalSymbols.insert(&Sym);
}
/// Removes an external symbol. Also removes the underlying Addressable.
void removeExternalSymbol(Symbol &Sym) {
assert(!Sym.isDefined() && !Sym.isAbsolute() &&
"Sym is not an external symbol");
assert(ExternalSymbols.count(&Sym) && "Symbol is not in the externals set");
ExternalSymbols.erase(&Sym);
Addressable &Base = *Sym.Base;
destroySymbol(Sym);
destroyAddressable(Base);
}
/// Remove an absolute symbol. Also removes the underlying Addressable.
void removeAbsoluteSymbol(Symbol &Sym) {
assert(!Sym.isDefined() && Sym.isAbsolute() &&
"Sym is not an absolute symbol");
assert(AbsoluteSymbols.count(&Sym) &&
"Symbol is not in the absolute symbols set");
AbsoluteSymbols.erase(&Sym);
Addressable &Base = *Sym.Base;
destroySymbol(Sym);
destroyAddressable(Base);
}
/// Removes defined symbols. Does not remove the underlying block.
void removeDefinedSymbol(Symbol &Sym) {
assert(Sym.isDefined() && "Sym is not a defined symbol");
Sym.getBlock().getSection().removeSymbol(Sym);
destroySymbol(Sym);
}
/// Remove a block.
void removeBlock(Block &B) {
Blocks.erase(&B);
destroyBlock(B);
}
/// Dump the graph.
///
/// If supplied, the EdgeKindToName function will be used to name edge
/// kinds in the debug output. Otherwise raw edge kind numbers will be
/// displayed.
void dump(raw_ostream &OS,
std::function<StringRef(Edge::Kind)> EdegKindToName =
std::function<StringRef(Edge::Kind)>());
private:
// Put the BumpPtrAllocator first so that we don't free any of the underlying
// memory until the Symbol/Addressable destructors have been run.
BumpPtrAllocator Allocator;
std::string Name;
unsigned PointerSize;
support::endianness Endianness;
BlockSet Blocks;
SectionList Sections;
ExternalSymbolSet ExternalSymbols;
ExternalSymbolSet AbsoluteSymbols;
};
/// A function for mutating LinkGraphs.
using LinkGraphPassFunction = std::function<Error(LinkGraph &)>;
/// A list of LinkGraph passes.
using LinkGraphPassList = std::vector<LinkGraphPassFunction>;
/// An LinkGraph pass configuration, consisting of a list of pre-prune,
/// post-prune, and post-fixup passes.
struct PassConfiguration {
/// Pre-prune passes.
///
/// These passes are called on the graph after it is built, and before any
/// symbols have been pruned.
///
/// Notable use cases: Marking symbols live or should-discard.
LinkGraphPassList PrePrunePasses;
/// Post-prune passes.
///
/// These passes are called on the graph after dead stripping, but before
/// fixups are applied.
///
/// Notable use cases: Building GOT, stub, and TLV symbols.
LinkGraphPassList PostPrunePasses;
/// Post-fixup passes.
///
/// These passes are called on the graph after block contents has been copied
/// to working memory, and fixups applied.
///
/// Notable use cases: Testing and validation.
LinkGraphPassList PostFixupPasses;
};
/// A map of symbol names to resolved addresses.
using AsyncLookupResult = DenseMap<StringRef, JITEvaluatedSymbol>;
/// A function object to call with a resolved symbol map (See AsyncLookupResult)
/// or an error if resolution failed.
class JITLinkAsyncLookupContinuation {
public:
virtual ~JITLinkAsyncLookupContinuation() {}
virtual void run(Expected<AsyncLookupResult> LR) = 0;
private:
virtual void anchor();
};
/// Create a lookup continuation from a function object.
template <typename Continuation>
std::unique_ptr<JITLinkAsyncLookupContinuation>
createLookupContinuation(Continuation Cont) {
class Impl final : public JITLinkAsyncLookupContinuation {
public:
Impl(Continuation C) : C(std::move(C)) {}
void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); }
private:
Continuation C;
};
return std::make_unique<Impl>(std::move(Cont));
}
/// Holds context for a single jitLink invocation.
class JITLinkContext {
public:
/// Destroy a JITLinkContext.
virtual ~JITLinkContext();
/// Return the MemoryManager to be used for this link.
virtual JITLinkMemoryManager &getMemoryManager() = 0;
/// Returns a StringRef for the object buffer.
/// This method can not be called once takeObjectBuffer has been called.
virtual MemoryBufferRef getObjectBuffer() const = 0;
/// Notify this context that linking failed.
/// Called by JITLink if linking cannot be completed.
virtual void notifyFailed(Error Err) = 0;
/// Called by JITLink to resolve external symbols. This method is passed a
/// lookup continutation which it must call with a result to continue the
/// linking process.
virtual void lookup(const DenseSet<StringRef> &Symbols,
std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0;
/// Called by JITLink once all defined symbols in the graph have been assigned
/// their final memory locations in the target process. At this point the
/// LinkGraph can be inspected to build a symbol table, however the block
/// content will not generally have been copied to the target location yet.
virtual void notifyResolved(LinkGraph &G) = 0;
/// Called by JITLink to notify the context that the object has been
/// finalized (i.e. emitted to memory and memory permissions set). If all of
/// this objects dependencies have also been finalized then the code is ready
/// to run.
virtual void
notifyFinalized(std::unique_ptr<JITLinkMemoryManager::Allocation> A) = 0;
/// Called by JITLink prior to linking to determine whether default passes for
/// the target should be added. The default implementation returns true.
/// If subclasses override this method to return false for any target then
/// they are required to fully configure the pass pipeline for that target.
virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const;
/// Returns the mark-live pass to be used for this link. If no pass is
/// returned (the default) then the target-specific linker implementation will
/// choose a conservative default (usually marking all symbols live).
/// This function is only called if shouldAddDefaultTargetPasses returns true,
/// otherwise the JITContext is responsible for adding a mark-live pass in
/// modifyPassConfig.
virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const;
/// Called by JITLink to modify the pass pipeline prior to linking.
/// The default version performs no modification.
virtual Error modifyPassConfig(const Triple &TT, PassConfiguration &Config);
};
/// Marks all symbols in a graph live. This can be used as a default,
/// conservative mark-live implementation.
Error markAllSymbolsLive(LinkGraph &G);
/// Basic JITLink implementation.
///
/// This function will use sensible defaults for GOT and Stub handling.
void jitLink(std::unique_ptr<JITLinkContext> Ctx);
} // end namespace jitlink
} // end namespace llvm
#endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H