| //===- unittests/Support/EndianTest.cpp - Endian.h tests ------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/DataTypes.h" |
| #include "gtest/gtest.h" |
| #include <cstdlib> |
| #include <ctime> |
| using namespace llvm; |
| using namespace support; |
| |
| #undef max |
| |
| namespace { |
| |
| TEST(Endian, Read) { |
| // These are 5 bytes so we can be sure at least one of the reads is unaligned. |
| unsigned char bigval[] = {0x00, 0x01, 0x02, 0x03, 0x04}; |
| unsigned char littleval[] = {0x00, 0x04, 0x03, 0x02, 0x01}; |
| int32_t BigAsHost = 0x00010203; |
| EXPECT_EQ(BigAsHost, (endian::read<int32_t, big, unaligned>(bigval))); |
| int32_t LittleAsHost = 0x02030400; |
| EXPECT_EQ(LittleAsHost,(endian::read<int32_t, little, unaligned>(littleval))); |
| |
| EXPECT_EQ((endian::read<int32_t, big, unaligned>(bigval + 1)), |
| (endian::read<int32_t, little, unaligned>(littleval + 1))); |
| } |
| |
| TEST(Endian, ReadBitAligned) { |
| // Simple test to make sure we properly pull out the 0x0 word. |
| unsigned char littleval[] = {0x3f, 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff}; |
| unsigned char bigval[] = {0x00, 0x00, 0x00, 0x3f, 0xff, 0xff, 0xff, 0xc0}; |
| EXPECT_EQ( |
| (endian::readAtBitAlignment<int, little, unaligned>(&littleval[0], 6)), |
| 0x0); |
| EXPECT_EQ((endian::readAtBitAlignment<int, big, unaligned>(&bigval[0], 6)), |
| 0x0); |
| // Test to make sure that signed right shift of 0xf0000000 is masked |
| // properly. |
| unsigned char littleval2[] = {0x00, 0x00, 0x00, 0xf0, 0x00, 0x00, 0x00, 0x00}; |
| unsigned char bigval2[] = {0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; |
| EXPECT_EQ( |
| (endian::readAtBitAlignment<int, little, unaligned>(&littleval2[0], 4)), |
| 0x0f000000); |
| EXPECT_EQ((endian::readAtBitAlignment<int, big, unaligned>(&bigval2[0], 4)), |
| 0x0f000000); |
| // Test to make sure left shift of start bit doesn't overflow. |
| EXPECT_EQ( |
| (endian::readAtBitAlignment<int, little, unaligned>(&littleval2[0], 1)), |
| 0x78000000); |
| EXPECT_EQ((endian::readAtBitAlignment<int, big, unaligned>(&bigval2[0], 1)), |
| 0x78000000); |
| // Test to make sure 64-bit int doesn't overflow. |
| unsigned char littleval3[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; |
| unsigned char bigval3[] = {0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; |
| EXPECT_EQ((endian::readAtBitAlignment<int64_t, little, unaligned>( |
| &littleval3[0], 4)), |
| 0x0f00000000000000); |
| EXPECT_EQ( |
| (endian::readAtBitAlignment<int64_t, big, unaligned>(&bigval3[0], 4)), |
| 0x0f00000000000000); |
| } |
| |
| TEST(Endian, WriteBitAligned) { |
| // This test ensures that signed right shift of 0xffffaa is masked |
| // properly. |
| unsigned char bigval[8] = {0x00}; |
| endian::writeAtBitAlignment<int32_t, big, unaligned>(bigval, (int)0xffffaaaa, |
| 4); |
| EXPECT_EQ(bigval[0], 0xff); |
| EXPECT_EQ(bigval[1], 0xfa); |
| EXPECT_EQ(bigval[2], 0xaa); |
| EXPECT_EQ(bigval[3], 0xa0); |
| EXPECT_EQ(bigval[4], 0x00); |
| EXPECT_EQ(bigval[5], 0x00); |
| EXPECT_EQ(bigval[6], 0x00); |
| EXPECT_EQ(bigval[7], 0x0f); |
| |
| unsigned char littleval[8] = {0x00}; |
| endian::writeAtBitAlignment<int32_t, little, unaligned>(littleval, |
| (int)0xffffaaaa, 4); |
| EXPECT_EQ(littleval[0], 0xa0); |
| EXPECT_EQ(littleval[1], 0xaa); |
| EXPECT_EQ(littleval[2], 0xfa); |
| EXPECT_EQ(littleval[3], 0xff); |
| EXPECT_EQ(littleval[4], 0x0f); |
| EXPECT_EQ(littleval[5], 0x00); |
| EXPECT_EQ(littleval[6], 0x00); |
| EXPECT_EQ(littleval[7], 0x00); |
| |
| // This test makes sure 1<<31 doesn't overflow. |
| // Test to make sure left shift of start bit doesn't overflow. |
| unsigned char bigval2[8] = {0x00}; |
| endian::writeAtBitAlignment<int32_t, big, unaligned>(bigval2, (int)0xffffffff, |
| 1); |
| EXPECT_EQ(bigval2[0], 0xff); |
| EXPECT_EQ(bigval2[1], 0xff); |
| EXPECT_EQ(bigval2[2], 0xff); |
| EXPECT_EQ(bigval2[3], 0xfe); |
| EXPECT_EQ(bigval2[4], 0x00); |
| EXPECT_EQ(bigval2[5], 0x00); |
| EXPECT_EQ(bigval2[6], 0x00); |
| EXPECT_EQ(bigval2[7], 0x01); |
| |
| unsigned char littleval2[8] = {0x00}; |
| endian::writeAtBitAlignment<int32_t, little, unaligned>(littleval2, |
| (int)0xffffffff, 1); |
| EXPECT_EQ(littleval2[0], 0xfe); |
| EXPECT_EQ(littleval2[1], 0xff); |
| EXPECT_EQ(littleval2[2], 0xff); |
| EXPECT_EQ(littleval2[3], 0xff); |
| EXPECT_EQ(littleval2[4], 0x01); |
| EXPECT_EQ(littleval2[5], 0x00); |
| EXPECT_EQ(littleval2[6], 0x00); |
| EXPECT_EQ(littleval2[7], 0x00); |
| |
| // Test to make sure 64-bit int doesn't overflow. |
| unsigned char bigval64[16] = {0x00}; |
| endian::writeAtBitAlignment<int64_t, big, unaligned>( |
| bigval64, (int64_t)0xffffffffffffffff, 1); |
| EXPECT_EQ(bigval64[0], 0xff); |
| EXPECT_EQ(bigval64[1], 0xff); |
| EXPECT_EQ(bigval64[2], 0xff); |
| EXPECT_EQ(bigval64[3], 0xff); |
| EXPECT_EQ(bigval64[4], 0xff); |
| EXPECT_EQ(bigval64[5], 0xff); |
| EXPECT_EQ(bigval64[6], 0xff); |
| EXPECT_EQ(bigval64[7], 0xfe); |
| EXPECT_EQ(bigval64[8], 0x00); |
| EXPECT_EQ(bigval64[9], 0x00); |
| EXPECT_EQ(bigval64[10], 0x00); |
| EXPECT_EQ(bigval64[11], 0x00); |
| EXPECT_EQ(bigval64[12], 0x00); |
| EXPECT_EQ(bigval64[13], 0x00); |
| EXPECT_EQ(bigval64[14], 0x00); |
| EXPECT_EQ(bigval64[15], 0x01); |
| |
| unsigned char littleval64[16] = {0x00}; |
| endian::writeAtBitAlignment<int64_t, little, unaligned>( |
| littleval64, (int64_t)0xffffffffffffffff, 1); |
| EXPECT_EQ(littleval64[0], 0xfe); |
| EXPECT_EQ(littleval64[1], 0xff); |
| EXPECT_EQ(littleval64[2], 0xff); |
| EXPECT_EQ(littleval64[3], 0xff); |
| EXPECT_EQ(littleval64[4], 0xff); |
| EXPECT_EQ(littleval64[5], 0xff); |
| EXPECT_EQ(littleval64[6], 0xff); |
| EXPECT_EQ(littleval64[7], 0xff); |
| EXPECT_EQ(littleval64[8], 0x01); |
| EXPECT_EQ(littleval64[9], 0x00); |
| EXPECT_EQ(littleval64[10], 0x00); |
| EXPECT_EQ(littleval64[11], 0x00); |
| EXPECT_EQ(littleval64[12], 0x00); |
| EXPECT_EQ(littleval64[13], 0x00); |
| EXPECT_EQ(littleval64[14], 0x00); |
| EXPECT_EQ(littleval64[15], 0x00); |
| } |
| |
| TEST(Endian, Write) { |
| unsigned char data[5]; |
| endian::write<int32_t, big, unaligned>(data, -1362446643); |
| EXPECT_EQ(data[0], 0xAE); |
| EXPECT_EQ(data[1], 0xCA); |
| EXPECT_EQ(data[2], 0xB6); |
| EXPECT_EQ(data[3], 0xCD); |
| endian::write<int32_t, big, unaligned>(data + 1, -1362446643); |
| EXPECT_EQ(data[1], 0xAE); |
| EXPECT_EQ(data[2], 0xCA); |
| EXPECT_EQ(data[3], 0xB6); |
| EXPECT_EQ(data[4], 0xCD); |
| |
| endian::write<int32_t, little, unaligned>(data, -1362446643); |
| EXPECT_EQ(data[0], 0xCD); |
| EXPECT_EQ(data[1], 0xB6); |
| EXPECT_EQ(data[2], 0xCA); |
| EXPECT_EQ(data[3], 0xAE); |
| endian::write<int32_t, little, unaligned>(data + 1, -1362446643); |
| EXPECT_EQ(data[1], 0xCD); |
| EXPECT_EQ(data[2], 0xB6); |
| EXPECT_EQ(data[3], 0xCA); |
| EXPECT_EQ(data[4], 0xAE); |
| } |
| |
| TEST(Endian, PackedEndianSpecificIntegral) { |
| // These are 5 bytes so we can be sure at least one of the reads is unaligned. |
| unsigned char big[] = {0x00, 0x01, 0x02, 0x03, 0x04}; |
| unsigned char little[] = {0x00, 0x04, 0x03, 0x02, 0x01}; |
| big32_t *big_val = |
| reinterpret_cast<big32_t *>(big + 1); |
| little32_t *little_val = |
| reinterpret_cast<little32_t *>(little + 1); |
| |
| EXPECT_EQ(*big_val, *little_val); |
| } |
| |
| TEST(Endian, PacketEndianSpecificIntegralAsEnum) { |
| enum class Test : uint16_t { ONETWO = 0x0102, TWOONE = 0x0201 }; |
| unsigned char bytes[] = {0x01, 0x02}; |
| using LittleTest = little_t<Test>; |
| using BigTest = big_t<Test>; |
| EXPECT_EQ(Test::TWOONE, *reinterpret_cast<LittleTest *>(bytes)); |
| EXPECT_EQ(Test::ONETWO, *reinterpret_cast<BigTest *>(bytes)); |
| } |
| |
| } // end anon namespace |