| //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the TargetLowering class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetSubtargetInfo.h" |
| #include <cctype> |
| using namespace llvm; |
| |
| /// NOTE: The TargetMachine owns TLOF. |
| TargetLowering::TargetLowering(const TargetMachine &tm) |
| : TargetLoweringBase(tm) {} |
| |
| const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| return nullptr; |
| } |
| |
| bool TargetLowering::isPositionIndependent() const { |
| return getTargetMachine().isPositionIndependent(); |
| } |
| |
| /// Check whether a given call node is in tail position within its function. If |
| /// so, it sets Chain to the input chain of the tail call. |
| bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, |
| SDValue &Chain) const { |
| const Function *F = DAG.getMachineFunction().getFunction(); |
| |
| // Conservatively require the attributes of the call to match those of |
| // the return. Ignore noalias because it doesn't affect the call sequence. |
| AttributeList CallerAttrs = F->getAttributes(); |
| if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) |
| .removeAttribute(Attribute::NoAlias) |
| .hasAttributes()) |
| return false; |
| |
| // It's not safe to eliminate the sign / zero extension of the return value. |
| if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || |
| CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) |
| return false; |
| |
| // Check if the only use is a function return node. |
| return isUsedByReturnOnly(Node, Chain); |
| } |
| |
| bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, |
| const uint32_t *CallerPreservedMask, |
| const SmallVectorImpl<CCValAssign> &ArgLocs, |
| const SmallVectorImpl<SDValue> &OutVals) const { |
| for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
| const CCValAssign &ArgLoc = ArgLocs[I]; |
| if (!ArgLoc.isRegLoc()) |
| continue; |
| unsigned Reg = ArgLoc.getLocReg(); |
| // Only look at callee saved registers. |
| if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) |
| continue; |
| // Check that we pass the value used for the caller. |
| // (We look for a CopyFromReg reading a virtual register that is used |
| // for the function live-in value of register Reg) |
| SDValue Value = OutVals[I]; |
| if (Value->getOpcode() != ISD::CopyFromReg) |
| return false; |
| unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); |
| if (MRI.getLiveInPhysReg(ArgReg) != Reg) |
| return false; |
| } |
| return true; |
| } |
| |
| /// \brief Set CallLoweringInfo attribute flags based on a call instruction |
| /// and called function attributes. |
| void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, |
| unsigned ArgIdx) { |
| IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); |
| IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); |
| IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); |
| IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); |
| IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); |
| IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); |
| IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); |
| IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); |
| IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); |
| IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); |
| Alignment = CS->getParamAlignment(ArgIdx); |
| } |
| |
| /// Generate a libcall taking the given operands as arguments and returning a |
| /// result of type RetVT. |
| std::pair<SDValue, SDValue> |
| TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, |
| ArrayRef<SDValue> Ops, bool isSigned, |
| const SDLoc &dl, bool doesNotReturn, |
| bool isReturnValueUsed) const { |
| TargetLowering::ArgListTy Args; |
| Args.reserve(Ops.size()); |
| |
| TargetLowering::ArgListEntry Entry; |
| for (SDValue Op : Ops) { |
| Entry.Node = Op; |
| Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); |
| Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); |
| Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); |
| Args.push_back(Entry); |
| } |
| |
| if (LC == RTLIB::UNKNOWN_LIBCALL) |
| report_fatal_error("Unsupported library call operation!"); |
| SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), |
| getPointerTy(DAG.getDataLayout())); |
| |
| Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); |
| CLI.setDebugLoc(dl) |
| .setChain(DAG.getEntryNode()) |
| .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) |
| .setNoReturn(doesNotReturn) |
| .setDiscardResult(!isReturnValueUsed) |
| .setSExtResult(signExtend) |
| .setZExtResult(!signExtend); |
| return LowerCallTo(CLI); |
| } |
| |
| /// Soften the operands of a comparison. This code is shared among BR_CC, |
| /// SELECT_CC, and SETCC handlers. |
| void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, |
| SDValue &NewLHS, SDValue &NewRHS, |
| ISD::CondCode &CCCode, |
| const SDLoc &dl) const { |
| assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) |
| && "Unsupported setcc type!"); |
| |
| // Expand into one or more soft-fp libcall(s). |
| RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; |
| bool ShouldInvertCC = false; |
| switch (CCCode) { |
| case ISD::SETEQ: |
| case ISD::SETOEQ: |
| LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : |
| (VT == MVT::f64) ? RTLIB::OEQ_F64 : |
| (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; |
| break; |
| case ISD::SETNE: |
| case ISD::SETUNE: |
| LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : |
| (VT == MVT::f64) ? RTLIB::UNE_F64 : |
| (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; |
| break; |
| case ISD::SETGE: |
| case ISD::SETOGE: |
| LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : |
| (VT == MVT::f64) ? RTLIB::OGE_F64 : |
| (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; |
| break; |
| case ISD::SETLT: |
| case ISD::SETOLT: |
| LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : |
| (VT == MVT::f64) ? RTLIB::OLT_F64 : |
| (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; |
| break; |
| case ISD::SETLE: |
| case ISD::SETOLE: |
| LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : |
| (VT == MVT::f64) ? RTLIB::OLE_F64 : |
| (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; |
| break; |
| case ISD::SETGT: |
| case ISD::SETOGT: |
| LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : |
| (VT == MVT::f64) ? RTLIB::OGT_F64 : |
| (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; |
| break; |
| case ISD::SETUO: |
| LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : |
| (VT == MVT::f64) ? RTLIB::UO_F64 : |
| (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; |
| break; |
| case ISD::SETO: |
| LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : |
| (VT == MVT::f64) ? RTLIB::O_F64 : |
| (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; |
| break; |
| case ISD::SETONE: |
| // SETONE = SETOLT | SETOGT |
| LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : |
| (VT == MVT::f64) ? RTLIB::OLT_F64 : |
| (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; |
| LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : |
| (VT == MVT::f64) ? RTLIB::OGT_F64 : |
| (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; |
| break; |
| case ISD::SETUEQ: |
| LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : |
| (VT == MVT::f64) ? RTLIB::UO_F64 : |
| (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; |
| LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : |
| (VT == MVT::f64) ? RTLIB::OEQ_F64 : |
| (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; |
| break; |
| default: |
| // Invert CC for unordered comparisons |
| ShouldInvertCC = true; |
| switch (CCCode) { |
| case ISD::SETULT: |
| LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : |
| (VT == MVT::f64) ? RTLIB::OGE_F64 : |
| (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; |
| break; |
| case ISD::SETULE: |
| LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : |
| (VT == MVT::f64) ? RTLIB::OGT_F64 : |
| (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; |
| break; |
| case ISD::SETUGT: |
| LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : |
| (VT == MVT::f64) ? RTLIB::OLE_F64 : |
| (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; |
| break; |
| case ISD::SETUGE: |
| LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : |
| (VT == MVT::f64) ? RTLIB::OLT_F64 : |
| (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; |
| break; |
| default: llvm_unreachable("Do not know how to soften this setcc!"); |
| } |
| } |
| |
| // Use the target specific return value for comparions lib calls. |
| EVT RetVT = getCmpLibcallReturnType(); |
| SDValue Ops[2] = {NewLHS, NewRHS}; |
| NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, |
| dl).first; |
| NewRHS = DAG.getConstant(0, dl, RetVT); |
| |
| CCCode = getCmpLibcallCC(LC1); |
| if (ShouldInvertCC) |
| CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); |
| |
| if (LC2 != RTLIB::UNKNOWN_LIBCALL) { |
| SDValue Tmp = DAG.getNode( |
| ISD::SETCC, dl, |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), |
| NewLHS, NewRHS, DAG.getCondCode(CCCode)); |
| NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, |
| dl).first; |
| NewLHS = DAG.getNode( |
| ISD::SETCC, dl, |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), |
| NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); |
| NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); |
| NewRHS = SDValue(); |
| } |
| } |
| |
| /// Return the entry encoding for a jump table in the current function. The |
| /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. |
| unsigned TargetLowering::getJumpTableEncoding() const { |
| // In non-pic modes, just use the address of a block. |
| if (!isPositionIndependent()) |
| return MachineJumpTableInfo::EK_BlockAddress; |
| |
| // In PIC mode, if the target supports a GPRel32 directive, use it. |
| if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) |
| return MachineJumpTableInfo::EK_GPRel32BlockAddress; |
| |
| // Otherwise, use a label difference. |
| return MachineJumpTableInfo::EK_LabelDifference32; |
| } |
| |
| SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const { |
| // If our PIC model is GP relative, use the global offset table as the base. |
| unsigned JTEncoding = getJumpTableEncoding(); |
| |
| if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || |
| (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) |
| return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); |
| |
| return Table; |
| } |
| |
| /// This returns the relocation base for the given PIC jumptable, the same as |
| /// getPICJumpTableRelocBase, but as an MCExpr. |
| const MCExpr * |
| TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, |
| unsigned JTI,MCContext &Ctx) const{ |
| // The normal PIC reloc base is the label at the start of the jump table. |
| return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); |
| } |
| |
| bool |
| TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| const TargetMachine &TM = getTargetMachine(); |
| const GlobalValue *GV = GA->getGlobal(); |
| |
| // If the address is not even local to this DSO we will have to load it from |
| // a got and then add the offset. |
| if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) |
| return false; |
| |
| // If the code is position independent we will have to add a base register. |
| if (isPositionIndependent()) |
| return false; |
| |
| // Otherwise we can do it. |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Optimization Methods |
| //===----------------------------------------------------------------------===// |
| |
| /// If the specified instruction has a constant integer operand and there are |
| /// bits set in that constant that are not demanded, then clear those bits and |
| /// return true. |
| bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, |
| TargetLoweringOpt &TLO) const { |
| SelectionDAG &DAG = TLO.DAG; |
| SDLoc DL(Op); |
| unsigned Opcode = Op.getOpcode(); |
| |
| // Do target-specific constant optimization. |
| if (targetShrinkDemandedConstant(Op, Demanded, TLO)) |
| return TLO.New.getNode(); |
| |
| // FIXME: ISD::SELECT, ISD::SELECT_CC |
| switch (Opcode) { |
| default: |
| break; |
| case ISD::XOR: |
| case ISD::AND: |
| case ISD::OR: { |
| auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| if (!Op1C) |
| return false; |
| |
| // If this is a 'not' op, don't touch it because that's a canonical form. |
| const APInt &C = Op1C->getAPIntValue(); |
| if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) |
| return false; |
| |
| if (!C.isSubsetOf(Demanded)) { |
| EVT VT = Op.getValueType(); |
| SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); |
| SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); |
| return TLO.CombineTo(Op, NewOp); |
| } |
| |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. |
| /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be |
| /// generalized for targets with other types of implicit widening casts. |
| bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, |
| const APInt &Demanded, |
| TargetLoweringOpt &TLO) const { |
| assert(Op.getNumOperands() == 2 && |
| "ShrinkDemandedOp only supports binary operators!"); |
| assert(Op.getNode()->getNumValues() == 1 && |
| "ShrinkDemandedOp only supports nodes with one result!"); |
| |
| SelectionDAG &DAG = TLO.DAG; |
| SDLoc dl(Op); |
| |
| // Early return, as this function cannot handle vector types. |
| if (Op.getValueType().isVector()) |
| return false; |
| |
| // Don't do this if the node has another user, which may require the |
| // full value. |
| if (!Op.getNode()->hasOneUse()) |
| return false; |
| |
| // Search for the smallest integer type with free casts to and from |
| // Op's type. For expedience, just check power-of-2 integer types. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| unsigned DemandedSize = Demanded.getActiveBits(); |
| unsigned SmallVTBits = DemandedSize; |
| if (!isPowerOf2_32(SmallVTBits)) |
| SmallVTBits = NextPowerOf2(SmallVTBits); |
| for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { |
| EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); |
| if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && |
| TLI.isZExtFree(SmallVT, Op.getValueType())) { |
| // We found a type with free casts. |
| SDValue X = DAG.getNode( |
| Op.getOpcode(), dl, SmallVT, |
| DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), |
| DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); |
| assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); |
| SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); |
| return TLO.CombineTo(Op, Z); |
| } |
| } |
| return false; |
| } |
| |
| bool |
| TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx, |
| const APInt &Demanded, |
| DAGCombinerInfo &DCI, |
| TargetLoweringOpt &TLO) const { |
| SDValue Op = User->getOperand(OpIdx); |
| KnownBits Known; |
| |
| if (!SimplifyDemandedBits(Op, Demanded, Known, TLO, 0, true)) |
| return false; |
| |
| |
| // Old will not always be the same as Op. For example: |
| // |
| // Demanded = 0xffffff |
| // Op = i64 truncate (i32 and x, 0xffffff) |
| // In this case simplify demand bits will want to replace the 'and' node |
| // with the value 'x', which will give us: |
| // Old = i32 and x, 0xffffff |
| // New = x |
| if (TLO.Old.hasOneUse()) { |
| // For the one use case, we just commit the change. |
| DCI.CommitTargetLoweringOpt(TLO); |
| return true; |
| } |
| |
| // If Old has more than one use then it must be Op, because the |
| // AssumeSingleUse flag is not propogated to recursive calls of |
| // SimplifyDemanded bits, so the only node with multiple use that |
| // it will attempt to combine will be Op. |
| assert(TLO.Old == Op); |
| |
| SmallVector <SDValue, 4> NewOps; |
| for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { |
| if (i == OpIdx) { |
| NewOps.push_back(TLO.New); |
| continue; |
| } |
| NewOps.push_back(User->getOperand(i)); |
| } |
| User = TLO.DAG.UpdateNodeOperands(User, NewOps); |
| // Op has less users now, so we may be able to perform additional combines |
| // with it. |
| DCI.AddToWorklist(Op.getNode()); |
| // User's operands have been updated, so we may be able to do new combines |
| // with it. |
| DCI.AddToWorklist(User); |
| return true; |
| } |
| |
| bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, |
| DAGCombinerInfo &DCI) const { |
| |
| SelectionDAG &DAG = DCI.DAG; |
| TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| !DCI.isBeforeLegalizeOps()); |
| KnownBits Known; |
| |
| bool Simplified = SimplifyDemandedBits(Op, DemandedMask, Known, TLO); |
| if (Simplified) |
| DCI.CommitTargetLoweringOpt(TLO); |
| return Simplified; |
| } |
| |
| /// Look at Op. At this point, we know that only the DemandedMask bits of the |
| /// result of Op are ever used downstream. If we can use this information to |
| /// simplify Op, create a new simplified DAG node and return true, returning the |
| /// original and new nodes in Old and New. Otherwise, analyze the expression and |
| /// return a mask of Known bits for the expression (used to simplify the |
| /// caller). The Known bits may only be accurate for those bits in the |
| /// DemandedMask. |
| bool TargetLowering::SimplifyDemandedBits(SDValue Op, |
| const APInt &DemandedMask, |
| KnownBits &Known, |
| TargetLoweringOpt &TLO, |
| unsigned Depth, |
| bool AssumeSingleUse) const { |
| unsigned BitWidth = DemandedMask.getBitWidth(); |
| assert(Op.getScalarValueSizeInBits() == BitWidth && |
| "Mask size mismatches value type size!"); |
| APInt NewMask = DemandedMask; |
| SDLoc dl(Op); |
| auto &DL = TLO.DAG.getDataLayout(); |
| |
| // Don't know anything. |
| Known = KnownBits(BitWidth); |
| |
| if (Op.getOpcode() == ISD::Constant) { |
| // We know all of the bits for a constant! |
| Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); |
| Known.Zero = ~Known.One; |
| return false; |
| } |
| |
| // Other users may use these bits. |
| if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { |
| if (Depth != 0) { |
| // If not at the root, Just compute the Known bits to |
| // simplify things downstream. |
| TLO.DAG.computeKnownBits(Op, Known, Depth); |
| return false; |
| } |
| // If this is the root being simplified, allow it to have multiple uses, |
| // just set the NewMask to all bits. |
| NewMask = APInt::getAllOnesValue(BitWidth); |
| } else if (DemandedMask == 0) { |
| // Not demanding any bits from Op. |
| if (!Op.isUndef()) |
| return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); |
| return false; |
| } else if (Depth == 6) { // Limit search depth. |
| return false; |
| } |
| |
| KnownBits Known2, KnownOut; |
| switch (Op.getOpcode()) { |
| case ISD::BUILD_VECTOR: |
| // Collect the known bits that are shared by every constant vector element. |
| Known.Zero.setAllBits(); Known.One.setAllBits(); |
| for (SDValue SrcOp : Op->ops()) { |
| if (!isa<ConstantSDNode>(SrcOp)) { |
| // We can only handle all constant values - bail out with no known bits. |
| Known = KnownBits(BitWidth); |
| return false; |
| } |
| Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); |
| Known2.Zero = ~Known2.One; |
| |
| // BUILD_VECTOR can implicitly truncate sources, we must handle this. |
| if (Known2.One.getBitWidth() != BitWidth) { |
| assert(Known2.getBitWidth() > BitWidth && |
| "Expected BUILD_VECTOR implicit truncation"); |
| Known2 = Known2.trunc(BitWidth); |
| } |
| |
| // Known bits are the values that are shared by every element. |
| // TODO: support per-element known bits. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| } |
| return false; // Don't fall through, will infinitely loop. |
| case ISD::AND: |
| // If the RHS is a constant, check to see if the LHS would be zero without |
| // using the bits from the RHS. Below, we use knowledge about the RHS to |
| // simplify the LHS, here we're using information from the LHS to simplify |
| // the RHS. |
| if (ConstantSDNode *RHSC = isConstOrConstSplat(Op.getOperand(1))) { |
| SDValue Op0 = Op.getOperand(0); |
| KnownBits LHSKnown; |
| // Do not increment Depth here; that can cause an infinite loop. |
| TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth); |
| // If the LHS already has zeros where RHSC does, this and is dead. |
| if ((LHSKnown.Zero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) |
| return TLO.CombineTo(Op, Op0); |
| |
| // If any of the set bits in the RHS are known zero on the LHS, shrink |
| // the constant. |
| if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & NewMask, TLO)) |
| return true; |
| |
| // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its |
| // constant, but if this 'and' is only clearing bits that were just set by |
| // the xor, then this 'and' can be eliminated by shrinking the mask of |
| // the xor. For example, for a 32-bit X: |
| // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 |
| if (isBitwiseNot(Op0) && Op0.hasOneUse() && |
| LHSKnown.One == ~RHSC->getAPIntValue()) { |
| SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(), |
| Op0.getOperand(0), Op.getOperand(1)); |
| return TLO.CombineTo(Op, Xor); |
| } |
| } |
| |
| if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| if (SimplifyDemandedBits(Op.getOperand(0), ~Known.Zero & NewMask, |
| Known2, TLO, Depth+1)) |
| return true; |
| assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If all of the demanded bits are known one on one side, return the other. |
| // These bits cannot contribute to the result of the 'and'. |
| if (NewMask.isSubsetOf(Known2.Zero | Known.One)) |
| return TLO.CombineTo(Op, Op.getOperand(0)); |
| if (NewMask.isSubsetOf(Known.Zero | Known2.One)) |
| return TLO.CombineTo(Op, Op.getOperand(1)); |
| // If all of the demanded bits in the inputs are known zeros, return zero. |
| if (NewMask.isSubsetOf(Known.Zero | Known2.Zero)) |
| return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); |
| // If the RHS is a constant, see if we can simplify it. |
| if (ShrinkDemandedConstant(Op, ~Known2.Zero & NewMask, TLO)) |
| return true; |
| // If the operation can be done in a smaller type, do so. |
| if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) |
| return true; |
| |
| // Output known-1 bits are only known if set in both the LHS & RHS. |
| Known.One &= Known2.One; |
| // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| Known.Zero |= Known2.Zero; |
| break; |
| case ISD::OR: |
| if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| if (SimplifyDemandedBits(Op.getOperand(0), ~Known.One & NewMask, |
| Known2, TLO, Depth+1)) |
| return true; |
| assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If all of the demanded bits are known zero on one side, return the other. |
| // These bits cannot contribute to the result of the 'or'. |
| if (NewMask.isSubsetOf(Known2.One | Known.Zero)) |
| return TLO.CombineTo(Op, Op.getOperand(0)); |
| if (NewMask.isSubsetOf(Known.One | Known2.Zero)) |
| return TLO.CombineTo(Op, Op.getOperand(1)); |
| // If the RHS is a constant, see if we can simplify it. |
| if (ShrinkDemandedConstant(Op, NewMask, TLO)) |
| return true; |
| // If the operation can be done in a smaller type, do so. |
| if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) |
| return true; |
| |
| // Output known-0 bits are only known if clear in both the LHS & RHS. |
| Known.Zero &= Known2.Zero; |
| // Output known-1 are known to be set if set in either the LHS | RHS. |
| Known.One |= Known2.One; |
| break; |
| case ISD::XOR: { |
| if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| if (SimplifyDemandedBits(Op.getOperand(0), NewMask, Known2, TLO, Depth+1)) |
| return true; |
| assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If all of the demanded bits are known zero on one side, return the other. |
| // These bits cannot contribute to the result of the 'xor'. |
| if (NewMask.isSubsetOf(Known.Zero)) |
| return TLO.CombineTo(Op, Op.getOperand(0)); |
| if (NewMask.isSubsetOf(Known2.Zero)) |
| return TLO.CombineTo(Op, Op.getOperand(1)); |
| // If the operation can be done in a smaller type, do so. |
| if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) |
| return true; |
| |
| // If all of the unknown bits are known to be zero on one side or the other |
| // (but not both) turn this into an *inclusive* or. |
| // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| if ((NewMask & ~Known.Zero & ~Known2.Zero) == 0) |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), |
| Op.getOperand(0), |
| Op.getOperand(1))); |
| |
| // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); |
| // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); |
| |
| // If all of the demanded bits on one side are known, and all of the set |
| // bits on that side are also known to be set on the other side, turn this |
| // into an AND, as we know the bits will be cleared. |
| // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
| // NB: it is okay if more bits are known than are requested |
| if (NewMask.isSubsetOf(Known.Zero|Known.One)) { // all known on one side |
| if (Known.One == Known2.One) { // set bits are the same on both sides |
| EVT VT = Op.getValueType(); |
| SDValue ANDC = TLO.DAG.getConstant(~Known.One & NewMask, dl, VT); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, |
| Op.getOperand(0), ANDC)); |
| } |
| } |
| |
| // If the RHS is a constant, see if we can change it. Don't alter a -1 |
| // constant because that's a 'not' op, and that is better for combining and |
| // codegen. |
| ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1)); |
| if (C && !C->isAllOnesValue()) { |
| if (NewMask.isSubsetOf(C->getAPIntValue())) { |
| // We're flipping all demanded bits. Flip the undemanded bits too. |
| SDValue New = TLO.DAG.getNOT(dl, Op.getOperand(0), Op.getValueType()); |
| return TLO.CombineTo(Op, New); |
| } |
| // If we can't turn this into a 'not', try to shrink the constant. |
| if (ShrinkDemandedConstant(Op, NewMask, TLO)) |
| return true; |
| } |
| |
| Known = std::move(KnownOut); |
| break; |
| } |
| case ISD::SELECT: |
| if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known, TLO, Depth+1)) |
| return true; |
| if (SimplifyDemandedBits(Op.getOperand(1), NewMask, Known2, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If the operands are constants, see if we can simplify them. |
| if (ShrinkDemandedConstant(Op, NewMask, TLO)) |
| return true; |
| |
| // Only known if known in both the LHS and RHS. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| break; |
| case ISD::SELECT_CC: |
| if (SimplifyDemandedBits(Op.getOperand(3), NewMask, Known, TLO, Depth+1)) |
| return true; |
| if (SimplifyDemandedBits(Op.getOperand(2), NewMask, Known2, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If the operands are constants, see if we can simplify them. |
| if (ShrinkDemandedConstant(Op, NewMask, TLO)) |
| return true; |
| |
| // Only known if known in both the LHS and RHS. |
| Known.One &= Known2.One; |
| Known.Zero &= Known2.Zero; |
| break; |
| case ISD::SETCC: { |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| // If (1) we only need the sign-bit, (2) the setcc operands are the same |
| // width as the setcc result, and (3) the result of a setcc conforms to 0 or |
| // -1, we may be able to bypass the setcc. |
| if (NewMask.isSignMask() && Op0.getScalarValueSizeInBits() == BitWidth && |
| getBooleanContents(Op.getValueType()) == |
| BooleanContent::ZeroOrNegativeOneBooleanContent) { |
| // If we're testing X < 0, then this compare isn't needed - just use X! |
| // FIXME: We're limiting to integer types here, but this should also work |
| // if we don't care about FP signed-zero. The use of SETLT with FP means |
| // that we don't care about NaNs. |
| if (CC == ISD::SETLT && Op1.getValueType().isInteger() && |
| (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) |
| return TLO.CombineTo(Op, Op0); |
| |
| // TODO: Should we check for other forms of sign-bit comparisons? |
| // Examples: X <= -1, X >= 0 |
| } |
| if (getBooleanContents(Op0.getValueType()) == |
| TargetLowering::ZeroOrOneBooleanContent && |
| BitWidth > 1) |
| Known.Zero.setBitsFrom(1); |
| break; |
| } |
| case ISD::SHL: |
| if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { |
| SDValue InOp = Op.getOperand(0); |
| |
| // If the shift count is an invalid immediate, don't do anything. |
| if (SA->getAPIntValue().uge(BitWidth)) |
| break; |
| |
| unsigned ShAmt = SA->getZExtValue(); |
| |
| // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a |
| // single shift. We can do this if the bottom bits (which are shifted |
| // out) are never demanded. |
| if (InOp.getOpcode() == ISD::SRL) { |
| if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { |
| if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { |
| if (SA2->getAPIntValue().ult(BitWidth)) { |
| unsigned C1 = SA2->getZExtValue(); |
| unsigned Opc = ISD::SHL; |
| int Diff = ShAmt-C1; |
| if (Diff < 0) { |
| Diff = -Diff; |
| Opc = ISD::SRL; |
| } |
| |
| SDValue NewSA = |
| TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); |
| EVT VT = Op.getValueType(); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, |
| InOp.getOperand(0), |
| NewSA)); |
| } |
| } |
| } |
| } |
| |
| if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), Known, TLO, Depth+1)) |
| return true; |
| |
| // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits |
| // are not demanded. This will likely allow the anyext to be folded away. |
| if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { |
| SDValue InnerOp = InOp.getOperand(0); |
| EVT InnerVT = InnerOp.getValueType(); |
| unsigned InnerBits = InnerVT.getScalarSizeInBits(); |
| if (ShAmt < InnerBits && NewMask.getActiveBits() <= InnerBits && |
| isTypeDesirableForOp(ISD::SHL, InnerVT)) { |
| EVT ShTy = getShiftAmountTy(InnerVT, DL); |
| if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) |
| ShTy = InnerVT; |
| SDValue NarrowShl = |
| TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, |
| TLO.DAG.getConstant(ShAmt, dl, ShTy)); |
| return |
| TLO.CombineTo(Op, |
| TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), |
| NarrowShl)); |
| } |
| // Repeat the SHL optimization above in cases where an extension |
| // intervenes: (shl (anyext (shr x, c1)), c2) to |
| // (shl (anyext x), c2-c1). This requires that the bottom c1 bits |
| // aren't demanded (as above) and that the shifted upper c1 bits of |
| // x aren't demanded. |
| if (InOp.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && |
| InnerOp.hasOneUse()) { |
| if (ConstantSDNode *SA2 = isConstOrConstSplat(InnerOp.getOperand(1))) { |
| unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); |
| if (InnerShAmt < ShAmt && |
| InnerShAmt < InnerBits && |
| NewMask.getActiveBits() <= (InnerBits - InnerShAmt + ShAmt) && |
| NewMask.countTrailingZeros() >= ShAmt) { |
| SDValue NewSA = |
| TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, |
| Op.getOperand(1).getValueType()); |
| EVT VT = Op.getValueType(); |
| SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, |
| InnerOp.getOperand(0)); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, |
| NewExt, NewSA)); |
| } |
| } |
| } |
| } |
| |
| Known.Zero <<= ShAmt; |
| Known.One <<= ShAmt; |
| // low bits known zero. |
| Known.Zero.setLowBits(ShAmt); |
| } |
| break; |
| case ISD::SRL: |
| if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { |
| SDValue InOp = Op.getOperand(0); |
| |
| // If the shift count is an invalid immediate, don't do anything. |
| if (SA->getAPIntValue().uge(BitWidth)) |
| break; |
| |
| unsigned ShAmt = SA->getZExtValue(); |
| APInt InDemandedMask = (NewMask << ShAmt); |
| |
| // If the shift is exact, then it does demand the low bits (and knows that |
| // they are zero). |
| if (Op->getFlags().hasExact()) |
| InDemandedMask.setLowBits(ShAmt); |
| |
| // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a |
| // single shift. We can do this if the top bits (which are shifted out) |
| // are never demanded. |
| if (InOp.getOpcode() == ISD::SHL) { |
| if (ConstantSDNode *SA2 = isConstOrConstSplat(InOp.getOperand(1))) { |
| if (ShAmt && |
| (NewMask & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { |
| if (SA2->getAPIntValue().ult(BitWidth)) { |
| unsigned C1 = SA2->getZExtValue(); |
| unsigned Opc = ISD::SRL; |
| int Diff = ShAmt-C1; |
| if (Diff < 0) { |
| Diff = -Diff; |
| Opc = ISD::SHL; |
| } |
| |
| SDValue NewSA = |
| TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); |
| EVT VT = Op.getValueType(); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, |
| InOp.getOperand(0), |
| NewSA)); |
| } |
| } |
| } |
| } |
| |
| // Compute the new bits that are at the top now. |
| if (SimplifyDemandedBits(InOp, InDemandedMask, Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| Known.Zero.lshrInPlace(ShAmt); |
| Known.One.lshrInPlace(ShAmt); |
| |
| Known.Zero.setHighBits(ShAmt); // High bits known zero. |
| } |
| break; |
| case ISD::SRA: |
| // If this is an arithmetic shift right and only the low-bit is set, we can |
| // always convert this into a logical shr, even if the shift amount is |
| // variable. The low bit of the shift cannot be an input sign bit unless |
| // the shift amount is >= the size of the datatype, which is undefined. |
| if (NewMask.isOneValue()) |
| return TLO.CombineTo(Op, |
| TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), |
| Op.getOperand(0), Op.getOperand(1))); |
| |
| if (ConstantSDNode *SA = isConstOrConstSplat(Op.getOperand(1))) { |
| EVT VT = Op.getValueType(); |
| |
| // If the shift count is an invalid immediate, don't do anything. |
| if (SA->getAPIntValue().uge(BitWidth)) |
| break; |
| |
| unsigned ShAmt = SA->getZExtValue(); |
| APInt InDemandedMask = (NewMask << ShAmt); |
| |
| // If the shift is exact, then it does demand the low bits (and knows that |
| // they are zero). |
| if (Op->getFlags().hasExact()) |
| InDemandedMask.setLowBits(ShAmt); |
| |
| // If any of the demanded bits are produced by the sign extension, we also |
| // demand the input sign bit. |
| if (NewMask.countLeadingZeros() < ShAmt) |
| InDemandedMask.setSignBit(); |
| |
| if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, Known, TLO, |
| Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| Known.Zero.lshrInPlace(ShAmt); |
| Known.One.lshrInPlace(ShAmt); |
| |
| // If the input sign bit is known to be zero, or if none of the top bits |
| // are demanded, turn this into an unsigned shift right. |
| if (Known.Zero[BitWidth - ShAmt - 1] || |
| NewMask.countLeadingZeros() >= ShAmt) { |
| SDNodeFlags Flags; |
| Flags.setExact(Op->getFlags().hasExact()); |
| return TLO.CombineTo(Op, |
| TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), |
| Op.getOperand(1), Flags)); |
| } |
| |
| int Log2 = NewMask.exactLogBase2(); |
| if (Log2 >= 0) { |
| // The bit must come from the sign. |
| SDValue NewSA = |
| TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, |
| Op.getOperand(1).getValueType()); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, |
| Op.getOperand(0), NewSA)); |
| } |
| |
| if (Known.One[BitWidth - ShAmt - 1]) |
| // New bits are known one. |
| Known.One.setHighBits(ShAmt); |
| } |
| break; |
| case ISD::SIGN_EXTEND_INREG: { |
| EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| unsigned ExVTBits = ExVT.getScalarSizeInBits(); |
| |
| // If we only care about the highest bit, don't bother shifting right. |
| if (NewMask.isSignMask()) { |
| SDValue InOp = Op.getOperand(0); |
| bool AlreadySignExtended = |
| TLO.DAG.ComputeNumSignBits(InOp) >= BitWidth-ExVTBits+1; |
| // However if the input is already sign extended we expect the sign |
| // extension to be dropped altogether later and do not simplify. |
| if (!AlreadySignExtended) { |
| // Compute the correct shift amount type, which must be getShiftAmountTy |
| // for scalar types after legalization. |
| EVT ShiftAmtTy = Op.getValueType(); |
| if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) |
| ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); |
| |
| SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, |
| ShiftAmtTy); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, |
| Op.getValueType(), InOp, |
| ShiftAmt)); |
| } |
| } |
| |
| // If none of the extended bits are demanded, eliminate the sextinreg. |
| if (NewMask.getActiveBits() <= ExVTBits) |
| return TLO.CombineTo(Op, Op.getOperand(0)); |
| |
| APInt InputDemandedBits = NewMask.getLoBits(ExVTBits); |
| |
| // Since the sign extended bits are demanded, we know that the sign |
| // bit is demanded. |
| InputDemandedBits.setBit(ExVTBits - 1); |
| |
| if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, |
| Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If the sign bit of the input is known set or clear, then we know the |
| // top bits of the result. |
| |
| // If the input sign bit is known zero, convert this into a zero extension. |
| if (Known.Zero[ExVTBits - 1]) |
| return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( |
| Op.getOperand(0), dl, ExVT.getScalarType())); |
| |
| APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); |
| if (Known.One[ExVTBits - 1]) { // Input sign bit known set |
| Known.One.setBitsFrom(ExVTBits); |
| Known.Zero &= Mask; |
| } else { // Input sign bit unknown |
| Known.Zero &= Mask; |
| Known.One &= Mask; |
| } |
| break; |
| } |
| case ISD::BUILD_PAIR: { |
| EVT HalfVT = Op.getOperand(0).getValueType(); |
| unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); |
| |
| APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); |
| APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); |
| |
| KnownBits KnownLo, KnownHi; |
| |
| if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) |
| return true; |
| |
| if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) |
| return true; |
| |
| Known.Zero = KnownLo.Zero.zext(BitWidth) | |
| KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); |
| |
| Known.One = KnownLo.One.zext(BitWidth) | |
| KnownHi.One.zext(BitWidth).shl(HalfBitWidth); |
| break; |
| } |
| case ISD::ZERO_EXTEND: { |
| unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); |
| |
| // If none of the top bits are demanded, convert this into an any_extend. |
| if (NewMask.getActiveBits() <= OperandBitWidth) |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, |
| Op.getValueType(), |
| Op.getOperand(0))); |
| |
| APInt InMask = NewMask.trunc(OperandBitWidth); |
| if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| Known = Known.zext(BitWidth); |
| Known.Zero.setBitsFrom(OperandBitWidth); |
| break; |
| } |
| case ISD::SIGN_EXTEND: { |
| unsigned InBits = Op.getOperand(0).getValueType().getScalarSizeInBits(); |
| |
| // If none of the top bits are demanded, convert this into an any_extend. |
| if (NewMask.getActiveBits() <= InBits) |
| return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, |
| Op.getValueType(), |
| Op.getOperand(0))); |
| |
| // Since some of the sign extended bits are demanded, we know that the sign |
| // bit is demanded. |
| APInt InDemandedBits = NewMask.trunc(InBits); |
| InDemandedBits.setBit(InBits - 1); |
| |
| if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, Known, TLO, |
| Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| // If the sign bit is known one, the top bits match. |
| Known = Known.sext(BitWidth); |
| |
| // If the sign bit is known zero, convert this to a zero extend. |
| if (Known.isNonNegative()) |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, |
| Op.getValueType(), |
| Op.getOperand(0))); |
| break; |
| } |
| case ISD::ANY_EXTEND: { |
| unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); |
| APInt InMask = NewMask.trunc(OperandBitWidth); |
| if (SimplifyDemandedBits(Op.getOperand(0), InMask, Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| Known = Known.zext(BitWidth); |
| break; |
| } |
| case ISD::TRUNCATE: { |
| // Simplify the input, using demanded bit information, and compute the known |
| // zero/one bits live out. |
| unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); |
| APInt TruncMask = NewMask.zext(OperandBitWidth); |
| if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, Known, TLO, Depth+1)) |
| return true; |
| Known = Known.trunc(BitWidth); |
| |
| // If the input is only used by this truncate, see if we can shrink it based |
| // on the known demanded bits. |
| if (Op.getOperand(0).getNode()->hasOneUse()) { |
| SDValue In = Op.getOperand(0); |
| switch (In.getOpcode()) { |
| default: break; |
| case ISD::SRL: |
| // Shrink SRL by a constant if none of the high bits shifted in are |
| // demanded. |
| if (TLO.LegalTypes() && |
| !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) |
| // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is |
| // undesirable. |
| break; |
| ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); |
| if (!ShAmt) |
| break; |
| SDValue Shift = In.getOperand(1); |
| if (TLO.LegalTypes()) { |
| uint64_t ShVal = ShAmt->getZExtValue(); |
| Shift = TLO.DAG.getConstant(ShVal, dl, |
| getShiftAmountTy(Op.getValueType(), DL)); |
| } |
| |
| if (ShAmt->getZExtValue() < BitWidth) { |
| APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, |
| OperandBitWidth - BitWidth); |
| HighBits.lshrInPlace(ShAmt->getZExtValue()); |
| HighBits = HighBits.trunc(BitWidth); |
| |
| if (!(HighBits & NewMask)) { |
| // None of the shifted in bits are needed. Add a truncate of the |
| // shift input, then shift it. |
| SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, |
| Op.getValueType(), |
| In.getOperand(0)); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, |
| Op.getValueType(), |
| NewTrunc, |
| Shift)); |
| } |
| } |
| break; |
| } |
| } |
| |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| break; |
| } |
| case ISD::AssertZext: { |
| // AssertZext demands all of the high bits, plus any of the low bits |
| // demanded by its users. |
| EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| APInt InMask = APInt::getLowBitsSet(BitWidth, |
| VT.getSizeInBits()); |
| if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, |
| Known, TLO, Depth+1)) |
| return true; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| |
| Known.Zero |= ~InMask; |
| break; |
| } |
| case ISD::BITCAST: |
| // If this is an FP->Int bitcast and if the sign bit is the only |
| // thing demanded, turn this into a FGETSIGN. |
| if (!TLO.LegalOperations() && |
| !Op.getValueType().isVector() && |
| !Op.getOperand(0).getValueType().isVector() && |
| NewMask == APInt::getSignMask(Op.getValueSizeInBits()) && |
| Op.getOperand(0).getValueType().isFloatingPoint()) { |
| bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); |
| bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); |
| if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && |
| Op.getOperand(0).getValueType() != MVT::f128) { |
| // Cannot eliminate/lower SHL for f128 yet. |
| EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; |
| // Make a FGETSIGN + SHL to move the sign bit into the appropriate |
| // place. We expect the SHL to be eliminated by other optimizations. |
| SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); |
| unsigned OpVTSizeInBits = Op.getValueSizeInBits(); |
| if (!OpVTLegal && OpVTSizeInBits > 32) |
| Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); |
| unsigned ShVal = Op.getValueSizeInBits() - 1; |
| SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); |
| return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, |
| Op.getValueType(), |
| Sign, ShAmt)); |
| } |
| } |
| break; |
| case ISD::ADD: |
| case ISD::MUL: |
| case ISD::SUB: { |
| // Add, Sub, and Mul don't demand any bits in positions beyond that |
| // of the highest bit demanded of them. |
| APInt LoMask = APInt::getLowBitsSet(BitWidth, |
| BitWidth - NewMask.countLeadingZeros()); |
| if (SimplifyDemandedBits(Op.getOperand(0), LoMask, Known2, TLO, Depth+1) || |
| SimplifyDemandedBits(Op.getOperand(1), LoMask, Known2, TLO, Depth+1) || |
| // See if the operation should be performed at a smaller bit width. |
| ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) { |
| SDNodeFlags Flags = Op.getNode()->getFlags(); |
| if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { |
| // Disable the nsw and nuw flags. We can no longer guarantee that we |
| // won't wrap after simplification. |
| Flags.setNoSignedWrap(false); |
| Flags.setNoUnsignedWrap(false); |
| SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), |
| Op.getOperand(0), Op.getOperand(1), |
| Flags); |
| return TLO.CombineTo(Op, NewOp); |
| } |
| return true; |
| } |
| LLVM_FALLTHROUGH; |
| } |
| default: |
| // Just use computeKnownBits to compute output bits. |
| TLO.DAG.computeKnownBits(Op, Known, Depth); |
| break; |
| } |
| |
| // If we know the value of all of the demanded bits, return this as a |
| // constant. |
| if (NewMask.isSubsetOf(Known.Zero|Known.One)) { |
| // Avoid folding to a constant if any OpaqueConstant is involved. |
| const SDNode *N = Op.getNode(); |
| for (SDNodeIterator I = SDNodeIterator::begin(N), |
| E = SDNodeIterator::end(N); I != E; ++I) { |
| SDNode *Op = *I; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) |
| if (C->isOpaque()) |
| return false; |
| } |
| return TLO.CombineTo(Op, |
| TLO.DAG.getConstant(Known.One, dl, Op.getValueType())); |
| } |
| |
| return false; |
| } |
| |
| /// Determine which of the bits specified in Mask are known to be either zero or |
| /// one and return them in the Known. |
| void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| "Should use MaskedValueIsZero if you don't know whether Op" |
| " is a target node!"); |
| Known.resetAll(); |
| } |
| |
| /// This method can be implemented by targets that want to expose additional |
| /// information about sign bits to the DAG Combiner. |
| unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, |
| const APInt &, |
| const SelectionDAG &, |
| unsigned Depth) const { |
| assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| "Should use ComputeNumSignBits if you don't know whether Op" |
| " is a target node!"); |
| return 1; |
| } |
| |
| // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must |
| // work with truncating build vectors and vectors with elements of less than |
| // 8 bits. |
| bool TargetLowering::isConstTrueVal(const SDNode *N) const { |
| if (!N) |
| return false; |
| |
| APInt CVal; |
| if (auto *CN = dyn_cast<ConstantSDNode>(N)) { |
| CVal = CN->getAPIntValue(); |
| } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { |
| auto *CN = BV->getConstantSplatNode(); |
| if (!CN) |
| return false; |
| |
| // If this is a truncating build vector, truncate the splat value. |
| // Otherwise, we may fail to match the expected values below. |
| unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); |
| CVal = CN->getAPIntValue(); |
| if (BVEltWidth < CVal.getBitWidth()) |
| CVal = CVal.trunc(BVEltWidth); |
| } else { |
| return false; |
| } |
| |
| switch (getBooleanContents(N->getValueType(0))) { |
| case UndefinedBooleanContent: |
| return CVal[0]; |
| case ZeroOrOneBooleanContent: |
| return CVal.isOneValue(); |
| case ZeroOrNegativeOneBooleanContent: |
| return CVal.isAllOnesValue(); |
| } |
| |
| llvm_unreachable("Invalid boolean contents"); |
| } |
| |
| SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT, |
| const SDLoc &DL) const { |
| unsigned ElementWidth = VT.getScalarSizeInBits(); |
| APInt TrueInt = |
| getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent |
| ? APInt(ElementWidth, 1) |
| : APInt::getAllOnesValue(ElementWidth); |
| return DAG.getConstant(TrueInt, DL, VT); |
| } |
| |
| bool TargetLowering::isConstFalseVal(const SDNode *N) const { |
| if (!N) |
| return false; |
| |
| const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); |
| if (!CN) { |
| const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); |
| if (!BV) |
| return false; |
| |
| // Only interested in constant splats, we don't care about undef |
| // elements in identifying boolean constants and getConstantSplatNode |
| // returns NULL if all ops are undef; |
| CN = BV->getConstantSplatNode(); |
| if (!CN) |
| return false; |
| } |
| |
| if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) |
| return !CN->getAPIntValue()[0]; |
| |
| return CN->isNullValue(); |
| } |
| |
| bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, |
| bool SExt) const { |
| if (VT == MVT::i1) |
| return N->isOne(); |
| |
| TargetLowering::BooleanContent Cnt = getBooleanContents(VT); |
| switch (Cnt) { |
| case TargetLowering::ZeroOrOneBooleanContent: |
| // An extended value of 1 is always true, unless its original type is i1, |
| // in which case it will be sign extended to -1. |
| return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); |
| case TargetLowering::UndefinedBooleanContent: |
| case TargetLowering::ZeroOrNegativeOneBooleanContent: |
| return N->isAllOnesValue() && SExt; |
| } |
| llvm_unreachable("Unexpected enumeration."); |
| } |
| |
| /// This helper function of SimplifySetCC tries to optimize the comparison when |
| /// either operand of the SetCC node is a bitwise-and instruction. |
| SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, |
| ISD::CondCode Cond, |
| DAGCombinerInfo &DCI, |
| const SDLoc &DL) const { |
| // Match these patterns in any of their permutations: |
| // (X & Y) == Y |
| // (X & Y) != Y |
| if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) |
| std::swap(N0, N1); |
| |
| EVT OpVT = N0.getValueType(); |
| if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || |
| (Cond != ISD::SETEQ && Cond != ISD::SETNE)) |
| return SDValue(); |
| |
| SDValue X, Y; |
| if (N0.getOperand(0) == N1) { |
| X = N0.getOperand(1); |
| Y = N0.getOperand(0); |
| } else if (N0.getOperand(1) == N1) { |
| X = N0.getOperand(0); |
| Y = N0.getOperand(1); |
| } else { |
| return SDValue(); |
| } |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue Zero = DAG.getConstant(0, DL, OpVT); |
| if (DAG.isKnownToBeAPowerOfTwo(Y)) { |
| // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. |
| // Note that where Y is variable and is known to have at most one bit set |
| // (for example, if it is Z & 1) we cannot do this; the expressions are not |
| // equivalent when Y == 0. |
| Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); |
| if (DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(Cond, N0.getSimpleValueType())) |
| return DAG.getSetCC(DL, VT, N0, Zero, Cond); |
| } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { |
| // If the target supports an 'and-not' or 'and-complement' logic operation, |
| // try to use that to make a comparison operation more efficient. |
| // But don't do this transform if the mask is a single bit because there are |
| // more efficient ways to deal with that case (for example, 'bt' on x86 or |
| // 'rlwinm' on PPC). |
| |
| // Bail out if the compare operand that we want to turn into a zero is |
| // already a zero (otherwise, infinite loop). |
| auto *YConst = dyn_cast<ConstantSDNode>(Y); |
| if (YConst && YConst->isNullValue()) |
| return SDValue(); |
| |
| // Transform this into: ~X & Y == 0. |
| SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); |
| SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); |
| return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Try to simplify a setcc built with the specified operands and cc. If it is |
| /// unable to simplify it, return a null SDValue. |
| SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, |
| ISD::CondCode Cond, bool foldBooleans, |
| DAGCombinerInfo &DCI, |
| const SDLoc &dl) const { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| // These setcc operations always fold. |
| switch (Cond) { |
| default: break; |
| case ISD::SETFALSE: |
| case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); |
| case ISD::SETTRUE: |
| case ISD::SETTRUE2: { |
| TargetLowering::BooleanContent Cnt = |
| getBooleanContents(N0->getValueType(0)); |
| return DAG.getConstant( |
| Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, |
| VT); |
| } |
| } |
| |
| // Ensure that the constant occurs on the RHS and fold constant comparisons. |
| ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); |
| if (isa<ConstantSDNode>(N0.getNode()) && |
| (DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) |
| return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); |
| |
| if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { |
| const APInt &C1 = N1C->getAPIntValue(); |
| |
| // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an |
| // equality comparison, then we're just comparing whether X itself is |
| // zero. |
| if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && |
| N0.getOperand(0).getOpcode() == ISD::CTLZ && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| const APInt &ShAmt |
| = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| ShAmt == Log2_32(N0.getValueSizeInBits())) { |
| if ((C1 == 0) == (Cond == ISD::SETEQ)) { |
| // (srl (ctlz x), 5) == 0 -> X != 0 |
| // (srl (ctlz x), 5) != 1 -> X != 0 |
| Cond = ISD::SETNE; |
| } else { |
| // (srl (ctlz x), 5) != 0 -> X == 0 |
| // (srl (ctlz x), 5) == 1 -> X == 0 |
| Cond = ISD::SETEQ; |
| } |
| SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); |
| return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), |
| Zero, Cond); |
| } |
| } |
| |
| SDValue CTPOP = N0; |
| // Look through truncs that don't change the value of a ctpop. |
| if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) |
| CTPOP = N0.getOperand(0); |
| |
| if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && |
| (N0 == CTPOP || |
| N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { |
| EVT CTVT = CTPOP.getValueType(); |
| SDValue CTOp = CTPOP.getOperand(0); |
| |
| // (ctpop x) u< 2 -> (x & x-1) == 0 |
| // (ctpop x) u> 1 -> (x & x-1) != 0 |
| if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ |
| SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, |
| DAG.getConstant(1, dl, CTVT)); |
| SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); |
| ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; |
| return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); |
| } |
| |
| // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. |
| } |
| |
| // (zext x) == C --> x == (trunc C) |
| // (sext x) == C --> x == (trunc C) |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| DCI.isBeforeLegalize() && N0->hasOneUse()) { |
| unsigned MinBits = N0.getValueSizeInBits(); |
| SDValue PreExt; |
| bool Signed = false; |
| if (N0->getOpcode() == ISD::ZERO_EXTEND) { |
| // ZExt |
| MinBits = N0->getOperand(0).getValueSizeInBits(); |
| PreExt = N0->getOperand(0); |
| } else if (N0->getOpcode() == ISD::AND) { |
| // DAGCombine turns costly ZExts into ANDs |
| if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) |
| if ((C->getAPIntValue()+1).isPowerOf2()) { |
| MinBits = C->getAPIntValue().countTrailingOnes(); |
| PreExt = N0->getOperand(0); |
| } |
| } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { |
| // SExt |
| MinBits = N0->getOperand(0).getValueSizeInBits(); |
| PreExt = N0->getOperand(0); |
| Signed = true; |
| } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { |
| // ZEXTLOAD / SEXTLOAD |
| if (LN0->getExtensionType() == ISD::ZEXTLOAD) { |
| MinBits = LN0->getMemoryVT().getSizeInBits(); |
| PreExt = N0; |
| } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { |
| Signed = true; |
| MinBits = LN0->getMemoryVT().getSizeInBits(); |
| PreExt = N0; |
| } |
| } |
| |
| // Figure out how many bits we need to preserve this constant. |
| unsigned ReqdBits = Signed ? |
| C1.getBitWidth() - C1.getNumSignBits() + 1 : |
| C1.getActiveBits(); |
| |
| // Make sure we're not losing bits from the constant. |
| if (MinBits > 0 && |
| MinBits < C1.getBitWidth() && |
| MinBits >= ReqdBits) { |
| EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); |
| if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { |
| // Will get folded away. |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); |
| if (MinBits == 1 && C1 == 1) |
| // Invert the condition. |
| return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), |
| Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); |
| return DAG.getSetCC(dl, VT, Trunc, C, Cond); |
| } |
| |
| // If truncating the setcc operands is not desirable, we can still |
| // simplify the expression in some cases: |
| // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) |
| // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) |
| // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) |
| // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) |
| // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) |
| // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) |
| SDValue TopSetCC = N0->getOperand(0); |
| unsigned N0Opc = N0->getOpcode(); |
| bool SExt = (N0Opc == ISD::SIGN_EXTEND); |
| if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && |
| TopSetCC.getOpcode() == ISD::SETCC && |
| (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && |
| (isConstFalseVal(N1C) || |
| isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { |
| |
| bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || |
| (!N1C->isNullValue() && Cond == ISD::SETNE); |
| |
| if (!Inverse) |
| return TopSetCC; |
| |
| ISD::CondCode InvCond = ISD::getSetCCInverse( |
| cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), |
| TopSetCC.getOperand(0).getValueType().isInteger()); |
| return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), |
| TopSetCC.getOperand(1), |
| InvCond); |
| } |
| } |
| } |
| |
| // If the LHS is '(and load, const)', the RHS is 0, the test is for |
| // equality or unsigned, and all 1 bits of the const are in the same |
| // partial word, see if we can shorten the load. |
| if (DCI.isBeforeLegalize() && |
| !ISD::isSignedIntSetCC(Cond) && |
| N0.getOpcode() == ISD::AND && C1 == 0 && |
| N0.getNode()->hasOneUse() && |
| isa<LoadSDNode>(N0.getOperand(0)) && |
| N0.getOperand(0).getNode()->hasOneUse() && |
| isa<ConstantSDNode>(N0.getOperand(1))) { |
| LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); |
| APInt bestMask; |
| unsigned bestWidth = 0, bestOffset = 0; |
| if (!Lod->isVolatile() && Lod->isUnindexed()) { |
| unsigned origWidth = N0.getValueSizeInBits(); |
| unsigned maskWidth = origWidth; |
| // We can narrow (e.g.) 16-bit extending loads on 32-bit target to |
| // 8 bits, but have to be careful... |
| if (Lod->getExtensionType() != ISD::NON_EXTLOAD) |
| origWidth = Lod->getMemoryVT().getSizeInBits(); |
| const APInt &Mask = |
| cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); |
| for (unsigned width = origWidth / 2; width>=8; width /= 2) { |
| APInt newMask = APInt::getLowBitsSet(maskWidth, width); |
| for (unsigned offset=0; offset<origWidth/width; offset++) { |
| if (Mask.isSubsetOf(newMask)) { |
| if (DAG.getDataLayout().isLittleEndian()) |
| bestOffset = (uint64_t)offset * (width/8); |
| else |
| bestOffset = (origWidth/width - offset - 1) * (width/8); |
| bestMask = Mask.lshr(offset * (width/8) * 8); |
| bestWidth = width; |
| break; |
| } |
| newMask <<= width; |
| } |
| } |
| } |
| if (bestWidth) { |
| EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); |
| if (newVT.isRound()) { |
| EVT PtrType = Lod->getOperand(1).getValueType(); |
| SDValue Ptr = Lod->getBasePtr(); |
| if (bestOffset != 0) |
| Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), |
| DAG.getConstant(bestOffset, dl, PtrType)); |
| unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); |
| SDValue NewLoad = DAG.getLoad( |
| newVT, dl, Lod->getChain(), Ptr, |
| Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); |
| return DAG.getSetCC(dl, VT, |
| DAG.getNode(ISD::AND, dl, newVT, NewLoad, |
| DAG.getConstant(bestMask.trunc(bestWidth), |
| dl, newVT)), |
| DAG.getConstant(0LL, dl, newVT), Cond); |
| } |
| } |
| } |
| |
| // If the LHS is a ZERO_EXTEND, perform the comparison on the input. |
| if (N0.getOpcode() == ISD::ZERO_EXTEND) { |
| unsigned InSize = N0.getOperand(0).getValueSizeInBits(); |
| |
| // If the comparison constant has bits in the upper part, the |
| // zero-extended value could never match. |
| if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), |
| C1.getBitWidth() - InSize))) { |
| switch (Cond) { |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| case ISD::SETEQ: |
| return DAG.getConstant(0, dl, VT); |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETNE: |
| return DAG.getConstant(1, dl, VT); |
| case ISD::SETGT: |
| case ISD::SETGE: |
| // True if the sign bit of C1 is set. |
| return DAG.getConstant(C1.isNegative(), dl, VT); |
| case ISD::SETLT: |
| case ISD::SETLE: |
| // True if the sign bit of C1 isn't set. |
| return DAG.getConstant(C1.isNonNegative(), dl, VT); |
| default: |
| break; |
| } |
| } |
| |
| // Otherwise, we can perform the comparison with the low bits. |
| switch (Cond) { |
| case ISD::SETEQ: |
| case ISD::SETNE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| case ISD::SETULT: |
| case ISD::SETULE: { |
| EVT newVT = N0.getOperand(0).getValueType(); |
| if (DCI.isBeforeLegalizeOps() || |
| (isOperationLegal(ISD::SETCC, newVT) && |
| getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { |
| EVT NewSetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); |
| SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); |
| |
| SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), |
| NewConst, Cond); |
| return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); |
| } |
| break; |
| } |
| default: |
| break; // todo, be more careful with signed comparisons |
| } |
| } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
| EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); |
| unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); |
| EVT ExtDstTy = N0.getValueType(); |
| unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); |
| |
| // If the constant doesn't fit into the number of bits for the source of |
| // the sign extension, it is impossible for both sides to be equal. |
| if (C1.getMinSignedBits() > ExtSrcTyBits) |
| return DAG.getConstant(Cond == ISD::SETNE, dl, VT); |
| |
| SDValue ZextOp; |
| EVT Op0Ty = N0.getOperand(0).getValueType(); |
| if (Op0Ty == ExtSrcTy) { |
| ZextOp = N0.getOperand(0); |
| } else { |
| APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); |
| ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), |
| DAG.getConstant(Imm, dl, Op0Ty)); |
| } |
| if (!DCI.isCalledByLegalizer()) |
| DCI.AddToWorklist(ZextOp.getNode()); |
| // Otherwise, make this a use of a zext. |
| return DAG.getSetCC(dl, VT, ZextOp, |
| DAG.getConstant(C1 & APInt::getLowBitsSet( |
| ExtDstTyBits, |
| ExtSrcTyBits), |
| dl, ExtDstTy), |
| Cond); |
| } else if ((N1C->isNullValue() || N1C->isOne()) && |
| (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
| // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC |
| if (N0.getOpcode() == ISD::SETCC && |
| isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { |
| bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); |
| if (TrueWhenTrue) |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); |
| // Invert the condition. |
| ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); |
| CC = ISD::getSetCCInverse(CC, |
| N0.getOperand(0).getValueType().isInteger()); |
| if (DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); |
| } |
| |
| if ((N0.getOpcode() == ISD::XOR || |
| (N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::XOR && |
| N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && |
| isa<ConstantSDNode>(N0.getOperand(1)) && |
| cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { |
| // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We |
| // can only do this if the top bits are known zero. |
| unsigned BitWidth = N0.getValueSizeInBits(); |
| if (DAG.MaskedValueIsZero(N0, |
| APInt::getHighBitsSet(BitWidth, |
| BitWidth-1))) { |
| // Okay, get the un-inverted input value. |
| SDValue Val; |
| if (N0.getOpcode() == ISD::XOR) { |
| Val = N0.getOperand(0); |
| } else { |
| assert(N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::XOR); |
| // ((X^1)&1)^1 -> X & 1 |
| Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), |
| N0.getOperand(0).getOperand(0), |
| N0.getOperand(1)); |
| } |
| |
| return DAG.getSetCC(dl, VT, Val, N1, |
| Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| } |
| } else if (N1C->isOne() && |
| (VT == MVT::i1 || |
| getBooleanContents(N0->getValueType(0)) == |
| ZeroOrOneBooleanContent)) { |
| SDValue Op0 = N0; |
| if (Op0.getOpcode() == ISD::TRUNCATE) |
| Op0 = Op0.getOperand(0); |
| |
| if ((Op0.getOpcode() == ISD::XOR) && |
| Op0.getOperand(0).getOpcode() == ISD::SETCC && |
| Op0.getOperand(1).getOpcode() == ISD::SETCC) { |
| // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) |
| Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; |
| return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), |
| Cond); |
| } |
| if (Op0.getOpcode() == ISD::AND && |
| isa<ConstantSDNode>(Op0.getOperand(1)) && |
| cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { |
| // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. |
| if (Op0.getValueType().bitsGT(VT)) |
| Op0 = DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), |
| DAG.getConstant(1, dl, VT)); |
| else if (Op0.getValueType().bitsLT(VT)) |
| Op0 = DAG.getNode(ISD::AND, dl, VT, |
| DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), |
| DAG.getConstant(1, dl, VT)); |
| |
| return DAG.getSetCC(dl, VT, Op0, |
| DAG.getConstant(0, dl, Op0.getValueType()), |
| Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| } |
| if (Op0.getOpcode() == ISD::AssertZext && |
| cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) |
| return DAG.getSetCC(dl, VT, Op0, |
| DAG.getConstant(0, dl, Op0.getValueType()), |
| Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| } |
| } |
| |
| APInt MinVal, MaxVal; |
| unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); |
| if (ISD::isSignedIntSetCC(Cond)) { |
| MinVal = APInt::getSignedMinValue(OperandBitSize); |
| MaxVal = APInt::getSignedMaxValue(OperandBitSize); |
| } else { |
| MinVal = APInt::getMinValue(OperandBitSize); |
| MaxVal = APInt::getMaxValue(OperandBitSize); |
| } |
| |
| // Canonicalize GE/LE comparisons to use GT/LT comparisons. |
| if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { |
| // X >= MIN --> true |
| if (C1 == MinVal) |
| return DAG.getConstant(1, dl, VT); |
| |
| // X >= C0 --> X > (C0 - 1) |
| APInt C = C1 - 1; |
| ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; |
| if ((DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(NewCC, VT.getSimpleVT())) && |
| (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && |
| isLegalICmpImmediate(C.getSExtValue())))) { |
| return DAG.getSetCC(dl, VT, N0, |
| DAG.getConstant(C, dl, N1.getValueType()), |
| NewCC); |
| } |
| } |
| |
| if (Cond == ISD::SETLE || Cond == ISD::SETULE) { |
| // X <= MAX --> true |
| if (C1 == MaxVal) |
| return DAG.getConstant(1, dl, VT); |
| |
| // X <= C0 --> X < (C0 + 1) |
| APInt C = C1 + 1; |
| ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; |
| if ((DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(NewCC, VT.getSimpleVT())) && |
| (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && |
| isLegalICmpImmediate(C.getSExtValue())))) { |
| return DAG.getSetCC(dl, VT, N0, |
| DAG.getConstant(C, dl, N1.getValueType()), |
| NewCC); |
| } |
| } |
| |
| if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) |
| return DAG.getConstant(0, dl, VT); // X < MIN --> false |
| if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) |
| return DAG.getConstant(1, dl, VT); // X >= MIN --> true |
| if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) |
| return DAG.getConstant(0, dl, VT); // X > MAX --> false |
| if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) |
| return DAG.getConstant(1, dl, VT); // X <= MAX --> true |
| |
| // Canonicalize setgt X, Min --> setne X, Min |
| if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); |
| // Canonicalize setlt X, Max --> setne X, Max |
| if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); |
| |
| // If we have setult X, 1, turn it into seteq X, 0 |
| if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) |
| return DAG.getSetCC(dl, VT, N0, |
| DAG.getConstant(MinVal, dl, N0.getValueType()), |
| ISD::SETEQ); |
| // If we have setugt X, Max-1, turn it into seteq X, Max |
| if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) |
| return DAG.getSetCC(dl, VT, N0, |
| DAG.getConstant(MaxVal, dl, N0.getValueType()), |
| ISD::SETEQ); |
| |
| // If we have "setcc X, C0", check to see if we can shrink the immediate |
| // by changing cc. |
| |
| // SETUGT X, SINTMAX -> SETLT X, 0 |
| if (Cond == ISD::SETUGT && |
| C1 == APInt::getSignedMaxValue(OperandBitSize)) |
| return DAG.getSetCC(dl, VT, N0, |
| DAG.getConstant(0, dl, N1.getValueType()), |
| ISD::SETLT); |
| |
| // SETULT X, SINTMIN -> SETGT X, -1 |
| if (Cond == ISD::SETULT && |
| C1 == APInt::getSignedMinValue(OperandBitSize)) { |
| SDValue ConstMinusOne = |
| DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, |
| N1.getValueType()); |
| return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); |
| } |
| |
| // Fold bit comparisons when we can. |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| (VT == N0.getValueType() || |
| (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && |
| N0.getOpcode() == ISD::AND) { |
| auto &DL = DAG.getDataLayout(); |
| if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| EVT ShiftTy = DCI.isBeforeLegalize() |
| ? getPointerTy(DL) |
| : getShiftAmountTy(N0.getValueType(), DL); |
| if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 |
| // Perform the xform if the AND RHS is a single bit. |
| if (AndRHS->getAPIntValue().isPowerOf2()) { |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, |
| DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, |
| DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, |
| ShiftTy))); |
| } |
| } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { |
| // (X & 8) == 8 --> (X & 8) >> 3 |
| // Perform the xform if C1 is a single bit. |
| if (C1.isPowerOf2()) { |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, |
| DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, |
| DAG.getConstant(C1.logBase2(), dl, |
| ShiftTy))); |
| } |
| } |
| } |
| } |
| |
| if (C1.getMinSignedBits() <= 64 && |
| !isLegalICmpImmediate(C1.getSExtValue())) { |
| // (X & -256) == 256 -> (X >> 8) == 1 |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| N0.getOpcode() == ISD::AND && N0.hasOneUse()) { |
| if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| const APInt &AndRHSC = AndRHS->getAPIntValue(); |
| if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { |
| unsigned ShiftBits = AndRHSC.countTrailingZeros(); |
| auto &DL = DAG.getDataLayout(); |
| EVT ShiftTy = DCI.isBeforeLegalize() |
| ? getPointerTy(DL) |
| : getShiftAmountTy(N0.getValueType(), DL); |
| EVT CmpTy = N0.getValueType(); |
| SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), |
| DAG.getConstant(ShiftBits, dl, |
| ShiftTy)); |
| SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); |
| return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); |
| } |
| } |
| } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || |
| Cond == ISD::SETULE || Cond == ISD::SETUGT) { |
| bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); |
| // X < 0x100000000 -> (X >> 32) < 1 |
| // X >= 0x100000000 -> (X >> 32) >= 1 |
| // X <= 0x0ffffffff -> (X >> 32) < 1 |
| // X > 0x0ffffffff -> (X >> 32) >= 1 |
| unsigned ShiftBits; |
| APInt NewC = C1; |
| ISD::CondCode NewCond = Cond; |
| if (AdjOne) { |
| ShiftBits = C1.countTrailingOnes(); |
| NewC = NewC + 1; |
| NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
| } else { |
| ShiftBits = C1.countTrailingZeros(); |
| } |
| NewC.lshrInPlace(ShiftBits); |
| if (ShiftBits && NewC.getMinSignedBits() <= 64 && |
| isLegalICmpImmediate(NewC.getSExtValue())) { |
| auto &DL = DAG.getDataLayout(); |
| EVT ShiftTy = DCI.isBeforeLegalize() |
| ? getPointerTy(DL) |
| : getShiftAmountTy(N0.getValueType(), DL); |
| EVT CmpTy = N0.getValueType(); |
| SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, |
| DAG.getConstant(ShiftBits, dl, ShiftTy)); |
| SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); |
| return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); |
| } |
| } |
| } |
| } |
| |
| if (isa<ConstantFPSDNode>(N0.getNode())) { |
| // Constant fold or commute setcc. |
| SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); |
| if (O.getNode()) return O; |
| } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { |
| // If the RHS of an FP comparison is a constant, simplify it away in |
| // some cases. |
| if (CFP->getValueAPF().isNaN()) { |
| // If an operand is known to be a nan, we can fold it. |
| switch (ISD::getUnorderedFlavor(Cond)) { |
| default: llvm_unreachable("Unknown flavor!"); |
| case 0: // Known false. |
| return DAG.getConstant(0, dl, VT); |
| case 1: // Known true. |
| return DAG.getConstant(1, dl, VT); |
| case 2: // Undefined. |
| return DAG.getUNDEF(VT); |
| } |
| } |
| |
| // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the |
| // constant if knowing that the operand is non-nan is enough. We prefer to |
| // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to |
| // materialize 0.0. |
| if (Cond == ISD::SETO || Cond == ISD::SETUO) |
| return DAG.getSetCC(dl, VT, N0, N0, Cond); |
| |
| // setcc (fneg x), C -> setcc swap(pred) x, -C |
| if (N0.getOpcode() == ISD::FNEG) { |
| ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); |
| if (DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { |
| SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); |
| } |
| } |
| |
| // If the condition is not legal, see if we can find an equivalent one |
| // which is legal. |
| if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { |
| // If the comparison was an awkward floating-point == or != and one of |
| // the comparison operands is infinity or negative infinity, convert the |
| // condition to a less-awkward <= or >=. |
| if (CFP->getValueAPF().isInfinity()) { |
| if (CFP->getValueAPF().isNegative()) { |
| if (Cond == ISD::SETOEQ && |
| isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); |
| if (Cond == ISD::SETUEQ && |
| isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); |
| if (Cond == ISD::SETUNE && |
| isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); |
| if (Cond == ISD::SETONE && |
| isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); |
| } else { |
| if (Cond == ISD::SETOEQ && |
| isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); |
| if (Cond == ISD::SETUEQ && |
| isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); |
| if (Cond == ISD::SETUNE && |
| isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); |
| if (Cond == ISD::SETONE && |
| isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) |
| return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); |
| } |
| } |
| } |
| } |
| |
| if (N0 == N1) { |
| // The sext(setcc()) => setcc() optimization relies on the appropriate |
| // constant being emitted. |
| uint64_t EqVal = 0; |
| switch (getBooleanContents(N0.getValueType())) { |
| case UndefinedBooleanContent: |
| case ZeroOrOneBooleanContent: |
| EqVal = ISD::isTrueWhenEqual(Cond); |
| break; |
| case ZeroOrNegativeOneBooleanContent: |
| EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; |
| break; |
| } |
| |
| // We can always fold X == X for integer setcc's. |
| if (N0.getValueType().isInteger()) { |
| return DAG.getConstant(EqVal, dl, VT); |
| } |
| unsigned UOF = ISD::getUnorderedFlavor(Cond); |
| if (UOF == 2) // FP operators that are undefined on NaNs. |
| return DAG.getConstant(EqVal, dl, VT); |
| if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) |
| return DAG.getConstant(EqVal, dl, VT); |
| // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO |
| // if it is not already. |
| ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; |
| if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || |
| getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) |
| return DAG.getSetCC(dl, VT, N0, N1, NewCond); |
| } |
| |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| N0.getValueType().isInteger()) { |
| if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || |
| N0.getOpcode() == ISD::XOR) { |
| // Simplify (X+Y) == (X+Z) --> Y == Z |
| if (N0.getOpcode() == N1.getOpcode()) { |
| if (N0.getOperand(0) == N1.getOperand(0)) |
| return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); |
| if (N0.getOperand(1) == N1.getOperand(1)) |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); |
| if (isCommutativeBinOp(N0.getOpcode())) { |
| // If X op Y == Y op X, try other combinations. |
| if (N0.getOperand(0) == N1.getOperand(1)) |
| return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), |
| Cond); |
| if (N0.getOperand(1) == N1.getOperand(0)) |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), |
| Cond); |
| } |
| } |
| |
| // If RHS is a legal immediate value for a compare instruction, we need |
| // to be careful about increasing register pressure needlessly. |
| bool LegalRHSImm = false; |
| |
| if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { |
| if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| // Turn (X+C1) == C2 --> X == C2-C1 |
| if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), |
| DAG.getConstant(RHSC->getAPIntValue()- |
| LHSR->getAPIntValue(), |
| dl, N0.getValueType()), Cond); |
| } |
| |
| // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. |
| if (N0.getOpcode() == ISD::XOR) |
| // If we know that all of the inverted bits are zero, don't bother |
| // performing the inversion. |
| if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) |
| return |
| DAG.getSetCC(dl, VT, N0.getOperand(0), |
| DAG.getConstant(LHSR->getAPIntValue() ^ |
| RHSC->getAPIntValue(), |
| dl, N0.getValueType()), |
| Cond); |
| } |
| |
| // Turn (C1-X) == C2 --> X == C1-C2 |
| if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { |
| if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { |
| return |
| DAG.getSetCC(dl, VT, N0.getOperand(1), |
| DAG.getConstant(SUBC->getAPIntValue() - |
| RHSC->getAPIntValue(), |
| dl, N0.getValueType()), |
| Cond); |
| } |
| } |
| |
| // Could RHSC fold directly into a compare? |
| if (RHSC->getValueType(0).getSizeInBits() <= 64) |
| LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); |
| } |
| |
| // Simplify (X+Z) == X --> Z == 0 |
| // Don't do this if X is an immediate that can fold into a cmp |
| // instruction and X+Z has other uses. It could be an induction variable |
| // chain, and the transform would increase register pressure. |
| if (!LegalRHSImm || N0.getNode()->hasOneUse()) { |
| if (N0.getOperand(0) == N1) |
| return DAG.getSetCC(dl, VT, N0.getOperand(1), |
| DAG.getConstant(0, dl, N0.getValueType()), Cond); |
| if (N0.getOperand(1) == N1) { |
| if (isCommutativeBinOp(N0.getOpcode())) |
| return DAG.getSetCC(dl, VT, N0.getOperand(0), |
| DAG.getConstant(0, dl, N0.getValueType()), |
| |