blob: f2b8dfcccaddaccd0c23a9c5b233b3a8e9ebda0b [file] [log] [blame]
//===- CodeGen/ValueTypes.h - Low-Level Target independ. types --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the set of low-level target independent types which various
// values in the code generator are. This allows the target specific behavior
// of instructions to be described to target independent passes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_VALUETYPES_H
#define LLVM_CODEGEN_VALUETYPES_H
#include <cassert>
#include <string>
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/MathExtras.h"
namespace llvm {
class Type;
/// MVT namespace - This namespace defines the SimpleValueType enum, which
/// contains the various low-level value types, and the ValueType typedef.
///
namespace MVT { // MVT = Machine Value Types
enum SimpleValueType {
// If you change this numbering, you must change the values in ValueTypes.td
// well!
Other = 0, // This is a non-standard value
i1 = 1, // This is a 1 bit integer value
i8 = 2, // This is an 8 bit integer value
i16 = 3, // This is a 16 bit integer value
i32 = 4, // This is a 32 bit integer value
i64 = 5, // This is a 64 bit integer value
i128 = 6, // This is a 128 bit integer value
FIRST_INTEGER_VALUETYPE = i1,
LAST_INTEGER_VALUETYPE = i128,
f32 = 7, // This is a 32 bit floating point value
f64 = 8, // This is a 64 bit floating point value
f80 = 9, // This is a 80 bit floating point value
f128 = 10, // This is a 128 bit floating point value
ppcf128 = 11, // This is a PPC 128-bit floating point value
Flag = 12, // This is a condition code or machine flag.
isVoid = 13, // This has no value
v8i8 = 14, // 8 x i8
v4i16 = 15, // 4 x i16
v2i32 = 16, // 2 x i32
v1i64 = 17, // 1 x i64
v16i8 = 18, // 16 x i8
v8i16 = 19, // 8 x i16
v3i32 = 20, // 3 x i32
v4i32 = 21, // 4 x i32
v2i64 = 22, // 2 x i64
v2f32 = 23, // 2 x f32
v3f32 = 24, // 3 x f32
v4f32 = 25, // 4 x f32
v2f64 = 26, // 2 x f64
FIRST_VECTOR_VALUETYPE = v8i8,
LAST_VECTOR_VALUETYPE = v2f64,
LAST_VALUETYPE = 27, // This always remains at the end of the list.
// fAny - Any floating-point or vector floating-point value. This is used
// for intrinsics that have overloadings based on floating-point types.
// This is only for tblgen's consumption!
fAny = 253,
// iAny - An integer or vector integer value of any bit width. This is
// used for intrinsics that have overloadings based on integer bit widths.
// This is only for tblgen's consumption!
iAny = 254,
// iPTR - An int value the size of the pointer of the current
// target. This should only be used internal to tblgen!
iPTR = 255
};
/// MVT::ValueType - This type holds low-level value types. Valid values
/// include any of the values in the SimpleValueType enum, or any value
/// returned from a function in the MVT namespace that has a ValueType
/// return type. Any value type equal to one of the SimpleValueType enum
/// values is a "simple" value type. All other value types are "extended".
///
/// Note that simple doesn't necessary mean legal for the target machine.
/// All legal value types must be simple, but often there are some simple
/// value types that are not legal.
///
/// @internal
/// Extended types are either vector types or arbitrary precision integers.
/// Arbitrary precision integers have iAny in the first SimpleTypeBits bits,
/// and the bit-width in the next PrecisionBits bits, offset by minus one.
/// Vector types are encoded by having the first SimpleTypeBits+PrecisionBits
/// bits encode the vector element type (which must be a scalar type, possibly
/// an arbitrary precision integer) and the remaining VectorBits upper bits
/// encode the vector length, offset by one.
///
/// 31--------------16-----------8-------------0
/// | Vector length | Precision | Simple type |
/// | | Vector element |
///
/// Note that the verifier currently requires the top bit to be zero.
typedef uint32_t ValueType;
static const int SimpleTypeBits = 8;
static const int PrecisionBits = 8;
static const int VectorBits = 32 - SimpleTypeBits - PrecisionBits;
static const uint32_t SimpleTypeMask =
(~uint32_t(0) << (32 - SimpleTypeBits)) >> (32 - SimpleTypeBits);
static const uint32_t PrecisionMask =
((~uint32_t(0) << VectorBits) >> (32 - PrecisionBits)) << SimpleTypeBits;
static const uint32_t VectorMask =
(~uint32_t(0) >> (32 - VectorBits)) << (32 - VectorBits);
static const uint32_t ElementMask =
(~uint32_t(0) << VectorBits) >> VectorBits;
/// MVT::isExtendedVT - Test if the given ValueType is extended
/// (as opposed to being simple).
static inline bool isExtendedVT(ValueType VT) {
return VT > SimpleTypeMask;
}
/// MVT::isInteger - Return true if this is an integer, or a vector integer
/// type.
static inline bool isInteger(ValueType VT) {
ValueType SVT = VT & SimpleTypeMask;
return (SVT >= FIRST_INTEGER_VALUETYPE && SVT <= LAST_INTEGER_VALUETYPE) ||
(SVT >= v8i8 && SVT <= v2i64) || (SVT == iAny && (VT & PrecisionMask));
}
/// MVT::isFloatingPoint - Return true if this is an FP, or a vector FP type.
static inline bool isFloatingPoint(ValueType VT) {
ValueType SVT = VT & SimpleTypeMask;
return (SVT >= f32 && SVT <= ppcf128) || (SVT >= v2f32 && SVT <= v2f64);
}
/// MVT::isVector - Return true if this is a vector value type.
static inline bool isVector(ValueType VT) {
return (VT >= FIRST_VECTOR_VALUETYPE && VT <= LAST_VECTOR_VALUETYPE) ||
(VT & VectorMask);
}
/// MVT::getVectorElementType - Given a vector type, return the type of
/// each element.
static inline ValueType getVectorElementType(ValueType VT) {
assert(isVector(VT) && "Invalid vector type!");
switch (VT) {
default:
assert(isExtendedVT(VT) && "Unknown simple vector type!");
return VT & ElementMask;
case v8i8 :
case v16i8: return i8;
case v4i16:
case v8i16: return i16;
case v2i32:
case v3i32:
case v4i32: return i32;
case v1i64:
case v2i64: return i64;
case v2f32:
case v3f32:
case v4f32: return f32;
case v2f64: return f64;
}
}
/// MVT::getVectorNumElements - Given a vector type, return the
/// number of elements it contains.
static inline unsigned getVectorNumElements(ValueType VT) {
assert(isVector(VT) && "Invalid vector type!");
switch (VT) {
default:
assert(isExtendedVT(VT) && "Unknown simple vector type!");
return ((VT & VectorMask) >> (32 - VectorBits)) - 1;
case v16i8: return 16;
case v8i8 :
case v8i16: return 8;
case v4i16:
case v4i32:
case v4f32: return 4;
case v3i32:
case v3f32: return 3;
case v2i32:
case v2i64:
case v2f32:
case v2f64: return 2;
case v1i64: return 1;
}
}
/// MVT::getSizeInBits - Return the size of the specified value type
/// in bits.
///
static inline unsigned getSizeInBits(ValueType VT) {
switch (VT) {
default:
assert(isExtendedVT(VT) && "ValueType has no known size!");
if (isVector(VT))
return getSizeInBits(getVectorElementType(VT)) *
getVectorNumElements(VT);
if (isInteger(VT))
return ((VT & PrecisionMask) >> SimpleTypeBits) + 1;
assert(0 && "Unknown value type!");
case MVT::i1 : return 1;
case MVT::i8 : return 8;
case MVT::i16 : return 16;
case MVT::f32 :
case MVT::i32 : return 32;
case MVT::f64 :
case MVT::i64 :
case MVT::v8i8:
case MVT::v4i16:
case MVT::v2i32:
case MVT::v1i64:
case MVT::v2f32: return 64;
case MVT::f80 : return 80;
case MVT::v3i32:
case MVT::v3f32: return 96;
case MVT::f128:
case MVT::ppcf128:
case MVT::i128:
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64: return 128;
}
}
/// MVT::getStoreSizeInBits - Return the number of bits overwritten by a
/// store of the specified value type.
///
static inline unsigned getStoreSizeInBits(ValueType VT) {
return (getSizeInBits(VT) + 7)/8*8;
}
/// MVT::getIntegerType - Returns the ValueType that represents an integer
/// with the given number of bits.
///
static inline ValueType getIntegerType(unsigned BitWidth) {
switch (BitWidth) {
default:
break;
case 1:
return MVT::i1;
case 8:
return MVT::i8;
case 16:
return MVT::i16;
case 32:
return MVT::i32;
case 64:
return MVT::i64;
case 128:
return MVT::i128;
}
ValueType Result = iAny |
(((BitWidth - 1) << SimpleTypeBits) & PrecisionMask);
assert(getSizeInBits(Result) == BitWidth && "Bad bit width!");
return Result;
}
/// MVT::RoundIntegerType - Rounds the bit-width of the given integer
/// ValueType up to the nearest power of two (and at least to eight),
/// and returns the integer ValueType with that number of bits.
///
static inline ValueType RoundIntegerType(ValueType VT) {
assert(isInteger(VT) && !isVector(VT) && "Invalid integer type!");
unsigned BitWidth = getSizeInBits(VT);
if (BitWidth <= 8)
return MVT::i8;
else
return getIntegerType(1 << Log2_32_Ceil(BitWidth));
}
/// MVT::getVectorType - Returns the ValueType that represents a vector
/// NumElements in length, where each element is of type VT.
///
static inline ValueType getVectorType(ValueType VT, unsigned NumElements) {
switch (VT) {
default:
break;
case MVT::i8:
if (NumElements == 8) return MVT::v8i8;
if (NumElements == 16) return MVT::v16i8;
break;
case MVT::i16:
if (NumElements == 4) return MVT::v4i16;
if (NumElements == 8) return MVT::v8i16;
break;
case MVT::i32:
if (NumElements == 2) return MVT::v2i32;
if (NumElements == 3) return MVT::v3i32;
if (NumElements == 4) return MVT::v4i32;
break;
case MVT::i64:
if (NumElements == 1) return MVT::v1i64;
if (NumElements == 2) return MVT::v2i64;
break;
case MVT::f32:
if (NumElements == 2) return MVT::v2f32;
if (NumElements == 3) return MVT::v3f32;
if (NumElements == 4) return MVT::v4f32;
break;
case MVT::f64:
if (NumElements == 2) return MVT::v2f64;
break;
}
// Set the length with the top bit forced to zero (needed by the verifier).
ValueType Result = VT | (((NumElements + 1) << (33 - VectorBits)) >> 1);
assert(getVectorElementType(Result) == VT &&
"Bad vector element type!");
assert(getVectorNumElements(Result) == NumElements &&
"Bad vector length!");
return Result;
}
/// MVT::getIntVectorWithNumElements - Return any integer vector type that has
/// the specified number of elements.
static inline ValueType getIntVectorWithNumElements(unsigned NumElts) {
switch (NumElts) {
default: return getVectorType(i8, NumElts);
case 1: return v1i64;
case 2: return v2i32;
case 3: return v3i32;
case 4: return v4i16;
case 8: return v8i8;
case 16: return v16i8;
}
}
/// MVT::getIntVTBitMask - Return an integer with 1's every place there are
/// bits in the specified integer value type.
static inline uint64_t getIntVTBitMask(ValueType VT) {
assert(isInteger(VT) && !isVector(VT) && "Only applies to int scalars!");
return ~uint64_t(0UL) >> (64-getSizeInBits(VT));
}
/// MVT::getIntVTSignBit - Return an integer with a 1 in the position of the
/// sign bit for the specified integer value type.
static inline uint64_t getIntVTSignBit(ValueType VT) {
assert(isInteger(VT) && !isVector(VT) && "Only applies to int scalars!");
return uint64_t(1UL) << (getSizeInBits(VT)-1);
}
/// MVT::getValueTypeString - This function returns value type as a string,
/// e.g. "i32".
std::string getValueTypeString(ValueType VT);
/// MVT::getTypeForValueType - This method returns an LLVM type corresponding
/// to the specified ValueType. For integer types, this returns an unsigned
/// type. Note that this will abort for types that cannot be represented.
const Type *getTypeForValueType(ValueType VT);
/// MVT::getValueType - Return the value type corresponding to the specified
/// type. This returns all pointers as MVT::iPTR. If HandleUnknown is true,
/// unknown types are returned as Other, otherwise they are invalid.
ValueType getValueType(const Type *Ty, bool HandleUnknown = false);
}
} // End llvm namespace
#endif